
Random processes: Theory and applications from physics to finance FS 2009

Problem set 12: Programming exercises to be handed in by 2009/05/20 & /27

1. Part I: Numerical integration of Langevin equations (10 points, until 2009/05/20)

Implement the Euler algorithm described in problem 2 of problem set 11 for the numerical
integration of the one-dimensional Langevin equation

˙̂x = a(x̂, t) +
√

2D ξ̂(t) , (1)

where ξ̂(t) is Gaussian white noise with 〈ξ̂(t)〉 = 0 and 〈ξ̂(t)ξ̂(t′)〉 = δ(t − t′). Use Gaussian
random numbers for the ζk, which you generate using the Box-Muller algorithm described in
problem 2 of problem set 3. Use a uniform random number generator of your choice.

• Plot a couple of sample trajectories for the case of free diffusion a(x, t) = 0 and x̂(0) = 0
for varying time-step h.

• Check the result 〈[x̂(t)]2〉 = 1 for the Ornstein-Uhlenbeck type process with a(x, t) = −x,
D = 1 and x̂(0) = 1: Plot the difference of the mean from the given analytical result for
a final time t = 1 and the standard deviation of this difference obtained by averaging
over N = 10000 realizations for different time steps h = 0.0001, 0.001, 0.01, 0.1.

Note that in many cases, the Langevin equation (1) comes from a model for the motion of
a particle in the presence of a time-dependent force F (x, t):

m ¨̂x+ η ˙̂x = F (x̂, t) +
√

2ηkBT ξ̂(t) , (2)

which is approximated in the overdamped limit m → 0.1 Then, we can identify a(x, t) =
(1/η)F (x, t) and D = kBT/η.

2. Part II: Applications (10 points, until 2009/05/27)

The following examples demonstrate some important phenomena that triggered substantial
research efforts in the field of stochastic processes in physics during the last years. They all
are particular examples of the stochastic dynamics of the form (1), or equivalently

˙̂x = − ∂

∂x
V (x̂, t) +

√
2D ξ̂(t) (3)

for a time-dependent “potential” V (x, t).

1This is usually a good approximation for the dynamics on small distances, where damping effects play
a dominant role.
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For every example, a reference is provided, which contains more information about the impor-
tance of the model. Reasonable model parameters and/or parameter ranges are always given,
but part of the exercise is to play around with the various parameters to identify particularly
interesting and surprising behaviour.

Select one of the four alternatives! Shortly present your results during the last
exercise class on May 27th.

Alternative 1: Flashing ratchet

See, e.g., D. Astumian, Thermodynamics and Kinetics of a Brownian Motor , Science 276,
917 (1997).

Consider the stochastic dynamics (3) in the spatially periodic but asymmetric, time-dependent
potential

V (x) = sin x+
1

4
sin(2x)− F x

V (x, t) = V (x)
{

1 + A sign
[

sin(Ωt)
]}
.

• Plot V (x) for both F = 0 and F = 1 as well as V (x, t) for F = 0 and A = 1 for t = π/2Ω
and t = 3π/2Ω.

• Plot some sample trajectories (with initial condition x̂(0) = 0) for A = Ω = D = 1 and
F = 0.

• Plot the particle current averaged over one driving period T = 2π/Ω

〈 ˙̂x(t)〉 :=
1

T

t+T∫
t

dt′ 〈 ˙̂x(t′)〉 (4)

in the long-time limit t→∞ as a function of the tilting force F (in the interval [−1, 1])
for A = Ω = D = 1 and as a function of A for F = 0 and D = Ω = 1. Hint: Use that,
provided that the stationary solution (t very large) fulfils 〈 ˙̂x(t)〉s = 〈 ˙̂x(t+ T )〉s,

〈 ˙̂x〉s := lim
t→∞
〈 ˙̂x(t)〉 = lim

t→∞

〈x̂(t)〉
t

. (5)

Why? Note that x̂(t) is ergodic and thus already

〈 ˙̂x〉s = lim
t→∞

x̂(t)

t
(6)

for (almost) all realizations of the stochastic process x̂(t). Verify this by numerically
calculating the standard deviation of the limit on the right-hand side. Discuss the
result for the current as a function of the tilting force. Why is it surprising? Is the
driving-amplitude dependence of the current as you would expect it from general laws
of thermodynamics?
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Alternative 2: Rocking ratchet

See, e.g., D. Astumian, Thermodynamics and Kinetics of a Brownian Motor , Science 276,
917 (1997).

Consider the stochastic dynamics (3) in the spatially periodic but asymmetric, time-dependent
potential

V (x) = sinx+
1

4
sin(2x)− F x

V (x, t) = V (x)− A sin(Ωt)x .

• Plot V (x) for F = 0 and F = 1 as well a V (x, t) for F = 0 and A = 1 for t = 0 and
t = π/2Ω.

• Plot some sample trajectories (with initial condition x̂(0) = 0) for A = Ω = D = 1 and
F = 0.

• Plot the long-time limit of the time-averaged particle current 〈 ˙̂x〉s (see Eq. (5)) as a func-
tion of the tilting force F (in the interval [−1, 1]) for A = Ω = D = 1 and as a function
of A for F = 0 and D = Ω = 1. Also check the ergodicity as discussed after Eq. (6).
Discuss the result for the current as a function of the tilting force. Why is it surprising?
Is the driving-amplitude dependence of the current as you would expect it from general
laws of thermodynamics?

Alternative 3: Stochastic resonance

See, e.g., L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Stochastic Resonance, Rev.
Mod. Phys. 70, 223 (1998).

Consider the stochastic dynamics (3) in the time-dependent double-well potential

V (x, t) = −1

2
x2 +

1

4
x4 − A sin(Ωt)x .

• Plot V (x, t) for A = 0.25 for t = 0 and t = 0, t = π/2Ω, t = π/Ω, and t = 3π/2Ω.

• Plot some sample trajectories (with initial condition x̂(0) = 1) for A = 0.1, Ω = 0.01
and D = 0.01, 0.1, 1 over a couple of driving periods.

• Plot the stationary (i.e., for large t) solution 〈x̂(t)〉s for Ω = 0.01, two driving amplitudes
A = 0.01, A = 0.1 and D = 0.1. Check that it is T -periodic and approximately of the
form 〈x̂(t)〉s = x̄ sin(Ωt − φ̄). The latter approximation becomes exact in the linear-
response limit, i.e., for A→ 0.

• Plot the spectral amplification S := (x̄/A)2, which characterizes the response of the
system to the sinusoidal driving, as a function of the noise strength D in the interval
[0.01, 0.5] for Ω = 0.01 and A = 0.1: Calculate x̄ as the maximum of 〈x̂(t)〉s within one
driving period. What do you observe?
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Alternative 4: Stochastic synchronization

See, e.g., L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Stochastic Resonance, Rev.
Mod. Phys. 70, 223 (1998).

Consider the stochastic dynamics (3) in the time-dependent double-well potential

V (x, t) = −1

2
x2 +

1

4
x4 − A sin(Ωt)x

with initial condition x̂(0) = 1.

• Plot V (x, t) for A = 0.25 for t = 0 and t = 0, t = π/2Ω, t = π/Ω, and t = 3π/2Ω.

• Plot some sample trajectories (with initial condition x̂(0) = 1) for A = 0.25, Ω = 0.01
and D = 0.01, 0.1, 1 over a couple of driving periods.

• Introduce a stochastic discrete-phase process φ̂(t) as follows: At initial time t = 0:
φ̂(0) = 0. This value is kept until x̂(t) becomes smaller than −0.75. From this time
instance on, we set φ̂(t) = π. We increase this value to φ̂(t) = 2π, when for the next
time x̂(t) becomes larger than 0.75, and so on.2 Plot this discrete-phase process together
with the sample trajectories for x̂(t).

• Define an average phase velocity (frequency) in the long-time limit ω := limt→∞〈φ̂(t)〉/t.
Check the ergodicity of this quantity (see alternative 1). Plot this frequency as a function
of the noise strength D in the interval [0, 0.2] for fixed A = 0.25 and Ω = 0.01. What
do you observe, especially, if you compare the result to the frequency Ω?

2More precisely, one should use the instantaneous minima of the potential V (x, t) as “trigger” positions. If
you prefer doing so, you can find these minima and implementing this improved variant.
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