


Overview

Connection between quantum phase transitions, entanglement
and specific heat in a simple model.

Two qutrits governed via bilinear-biquadtratic Hamiltonian

The system is in a thermal state ⇒ thermal entanglement



The Negativity - Entanglement Measure for Mixed States

Separable bipartite mixed states can always be written as

ρ =
∑

n

wn ρ
′
n ⊗ ρ′′n

If you take the transpose of only one subsystem, the resulting
matrix is still a density matrix:

σ =
∑

n

wn

(
ρ′n
)T ⊗ ρ′′n

⇒ σ has only positive eigenvalues.

⇒ Construct σ, if you find negative eigenvalues, the state is
entangled.

Entanglement measure negativity:

N (ρ) :=

∑
i |λ| − λi

2
=
‖ρΓA‖1 − 1

2



CV - Sometimes an Entanglement Witness

Link between the entanglement of a thermal system and its
thermodynamic properties?

For certain systems there exists a value of CV which is a separable
bound: When you measure a smaller value of CV , the system is
entangled.

E.g.:

H =
N∑
i

σz
i σ

z
i+1 + B

N∑
i

σx
i

Here the eigenstates are all entangled ⇒ ground state is entangled

Heat capacity as an indicator of entanglement, M.Wísniak, V. Vedral and Č.

Brukner, Phys. Rev. B 78, 064108 (2008)



The Hamiltonian

Two-site BHM for spin-1 bosons:

H =
U0

2

∑
i=L,R

ni (ni − 1)− t
∑
σ

(L̂†σR̂σ + R̂†
σL̂σ) +

U2

2

∑
i=L,R

(
~F 2

i − 2ni

)
Effective Hamiltonian for low tunneling (U0 � t):

Heff = ω~Jz + r + τ
(
~SL · ~SR

)
+ γ

(
~SL · ~SR

)2

where r = τ − γ



The Toy Model

Put one spin-1 boson in each site.

The Hamiltonian is diagonal in the basis |J, Jz〉:

E (|J, Jz〉) = ωJz +
τ

2
(J(J + 1)− 2) +

γ

4

(
(J(J + 1)− 4)2 − 4

)
Assume the system is in a thermal state.

Use the basis

{|11〉, |10〉, |1− 1〉, |01〉, |00〉, |0− 1〉, | − 11〉, | − 10〉, | − 1− 1〉}



The Negativity



”This first Order QPT is a consequence a level crossing in the
ground state energy . . . ”
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At τ = ω/2 and τ = ω + 3γ the ground state changes.

|2,−2〉 = | ↓↓〉 ⇒ EOF (|2,−2〉) = 0

|1,−1〉 =
√

1/2 (| ↓ 0〉 − |0 ↓) ⇒ EOF (|1,−1〉) = 1

|0, 0〉 =
√

1/3 (| ↓↑〉 − |00〉+ | ↑↓) ⇒ EOF (|0, 0〉) = log2 3 = 1.584



The Heat Capacity



Energy Eigenvalues



Energy Eigenvalues
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Less states close to the ground state ⇒ smaller ∆E = T 2CV

High ∆E = T 2CV ⇒ entanglement is not possible



Conclusions

”We establish a link between negativity and heat capacity.”

”. . . the first time thermodynamical signatures of the thermal
entanglement in a two-atom BHM . . . ”

”systematic correspondence at the critical points between
quantum phase transitions and a peculiar oscillating behavior
of the heat capacity.”



Calculations



Calculations



Calculations for the Heat Capacity

CV =
∂U

∂T
and U = T 2∂ lnZ

∂T



Calculations


