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‘We show that a two-atoms Bose-Hubbard model exhibits three different phases in the behavior of
thermal entanglement in its parameter space. These phases are demonstrated to be traceable back
to the existence of quantum phase transitions in the same system. Significant similarities between
the behaviors of thermal entanglement and heat capacity in the parameter space are brought to
light thus allowing to interpret the occurrence and the meaning of all these three phases.

PACS numbers:



Overview

m Connection between quantum phase transitions, entanglement
and specific heat in a simple model.

m Two qutrits governed via bilinear-biquadtratic Hamiltonian

m The system is in a thermal state = thermal entanglement



The Negativity - Entanglement Measure for Mixed States

Separable bipartite mixed states can always be written as
P= Waph®pl
n

If you take the transpose of only one subsystem, the resulting
matrix is still a density matrix:

o=> waloh) ®pp

n

= o has only positive eigenvalues.

= Construct o, if you find negative eigenvalues, the state is
entangled.

Entanglement measure negativity:

oA = A Pl -1
N(p) = 2P =2 e




Cy - Sometimes an Entanglement Witness

Link between the entanglement of a thermal system and its
thermodynamic properties?

For certain systems there exists a value of Cy which is a separable

bound: When you measure a smaller value of Cy/, the system is
entangled.

Eg.:

N N
H= Za,-za,-z+1+BZaf
i i

Here the eigenstates are all entangled = ground state is entangled

Heat capacity as an indicator of entanglement, M.Wiéniak, V. Vedral and C.
Brukner, Phys. Rev. B 78, 064108 (2008)



The Hamiltonian

Two-site BHM for spin-1 bosons:

= N =)t (LR + RIL) + 2 Y (P2 - 2m)

i=L,R o i=L,R

Effective Hamiltonian for low tunneling (Up > t):

T =l + r 47 (S0-58) + 7(§L.§R)2

where r =7 — 7



The Toy Model

Put one spin-1 boson in each site.

The Hamiltonian is diagonal in the basis |J, J,):

E(|4,).)) = wdy + %(J(J +1)-2)+ % (J(+1)—2)2—2)
Assume the system is in a thermal state.

Use the basis

{|11>7 |10>7 ’1 - 1>7 ‘01>7 ‘00>7 |O - 1>7 ’ - 11): ‘ - 10>7 ’ -1- 1>}



The Negativity
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FIG. 1: System negativity plotted against T when y = w = 1.
Energy is measured in units of { and kp =1



"This first Order QPT is a consequence a level crossing in the

ground state energy ..."
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At 7 = w/2 and T = w + 37 the ground state changes.

[2,-2) = | 1) — EOF(|2,-2))

L-1)=V1/2(40)-0)) = EOF(|1,-1))
0,0) = V/1/3 (| 41) —100) + | 1}) = EOF(|0,0)) = log 3 = 1.584
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The Heat Capacity
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FIG. 2: Heat capacity and system negativity plotted against
7T whenT =06, y=7Tand w =1



Energy Eigenvalues
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FIG. 3: Low-lying energy levels of H (in units of ¢) versus =
when v = 7 and w = 1. Two crossing points, A and B in
the plot, are clearly visible in correspondence to the values

TA:%andTB:QQ



Energy Eigenvalues
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m Less states close to the ground state = smaller AE = T2Cy,

m High AE = T?Cy = entanglement is not possible



Conclusions

m "We establish a link between negativity and heat capacity.”

m .. .the first time thermodynamical signatures of the thermal
entanglement in a two-atom BHM ..."

m "systematic correspondence at the critical points between
quantum phase transitions and a peculiar oscillating behavior
of the heat capacity.”



Calculations

Hpy = _tza'p,o (al.'oajg + a;(,am) + ey .y
+ 5 Thulis - 1) + T, P ((86)? - 2)

H:ff =wd.+Ko+Ki Z (Si-S;)+K2 Z (Si'sj)z (2)

<ij> <ij>
_ 4¢2 42
Ko = 3(Uo+U2)  3(Up—20U32)
o
Ky = Up+Us
2¢2 42

Ko = 3(Uo+Uz) + 3(Uo—20U3)



Calculations

Heff
“— =H=wl, +7(S1-82) +7(S1-82)* + 11
where
T = Kl/f
v =Ks/t
w=w/t
p=1 —%

H =wild 5P — 82 — 8D+ 1672 — 82 —52)% +
+rl =wl, + F(J2 —4Al) + 2(J* —4l)* +r]
(8)



Calculations for the Heat Capacity

Zi—; gt [2 cosh.BT(l + 2 cosh .Bw) -+

+2e 87 cosh 28w + e_-ﬁ(?’”’_zﬂ]

ou ,0InZ
CV_(’)_T and u=rT o1




Calculations

cocooocoo
cocoococoo
cocoococoo

L. M_ R_
M_ Q+ M,
R My Ly

oooooooc-f‘ftj
OQQOOOOEO
ODDCO‘\QPOO
ooooo:‘f’poo
OOO“‘Q;'UQOOO
OOO;U‘IOODOO

where
Li _ %G—Q.S(Tj:w)
M = —Je P79 sah (1)
Py = e PUr+w) cosh A7
Ry = LePm(e7Pm £3eP™ 4 2 F(37727))

s —h —B(3v—2
Qx = 5z€ 'T(Te T e T))



