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Fig. 1 (Color online) (a) Micrograph of a 1/4 λ CPW resonator coupled to a CPW through line. (b) For-
ward transmission S21 of the structure depicted in (a) at 100 mK (blue line), which has a dip at the
resonance frequency F0. Raising the temperature breaks Cooper pairs resulting in a reduction of the reso-
nance frequency and a reduction in the dip (red line). (c) The resonance features in the complex plane, the
dots indicate the position of F0 in (b), (c). The arrow in (c) indicates the direction of increasing frequency.
The changes in resonance feature result, at F0, in a change in phase δθ and a change in amplitude δR

Q superconducting resonator coupled to a suitable antenna or absorber structure
[7, 8]. We measure the electrical Noise Equivalent Power (NEP) of 1/4λ Copla-
nar Waveguide (CPW) superconducting resonators. A picture of such a resonator
is shown in Fig. 1(a). The resonator is coupled by means of a coupler capacitance to
the through line. The resonator length sets the equilibrium resonance frequency F0,
the coupler geometry determines the resonator Q factor. The through line runs over
the entire chip and is connected at its ends to semi-rigid coaxial cables that carry the
readout signal. Many resonators with slightly different frequencies can be coupled to
one through line which allows FDM readout. At resonance the forward transmission
S21 of each resonator has a dip at F0, as is shown in Fig. 1(b). If the equilibrium
Cooper pair and quasiparticle density in the superconducting resonator is modified
due to photon absorption the resonator complex surface impedance changes [2, 7,
8]. The result is a reduction in resonance frequency to FT and a reduction in reso-
nance depth. This is shown in Fig. 1(b) by the red line.1 In the complex plane the
resonance feature is a circle, as shown in Fig. 1(c) and we can use a single frequency
signal at the equilibrium resonance frequency F0 to read out either the change in
phase δθ or the change in amplitude with respect to the circle center δR. Obvious
from the figure is that the phase readout gives the largest response. However, MKIDs
suffer from excess noise in the phase direction [3, 9, 10] which limits the sensitivity
to a noise equivalent power NEP ∼ 10−17 W/

√
Hz. Hence we study here not only

the phase readout, but also the amplitude readout [9]. We will present results from 2
representative resonators on 1 chip that contains in total 23 resonators.

1Note that bare resonators are not efficient photon absorbers, dedicated absorbers [7] or antenna structures
[8] must be added to the shorted end of the resonators.
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J.M. Martinis, M. Ansmann, and J. Aumentado, PRL 103, 097002 (2009)

Possible explanations for these non-thermal quasiparticles:

‣ electromagnetic noise
‣ radiation
‣ cosmic rays
‣ local radioactivity
‣ slow heat release
‣ stray light

‣ Qp generation by 
   the microwave signal
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Summary

‣ Expected exponential suppression of qp

‣ Measure of qp fluctuations noise spectrum

‣ Observed saturation of nqp at low T

‣ Observed saturation of !r at low T

‣ Residual (“nonequilibrium”) qp concluded



Thank you for your attention


