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Introduction

I Applications of QDs both for QI and as a laboratory for studies of
fundamental physics.

I Self-assembled, epitaxial QDs have advantages over lithographically
defined dots: size, confinement, scalability.

I Direct electrical characterization (transport exp.) difficult due to their
small size.

I Alternative approach using an AFM, which couples capacitively to the QD
charge. The QD dynamics alters the frequency and the damping rate of
the cantilever.

I It provides informations on the QD.

Proposal:

I Consider a low-frequency cantilever coupled to a double QD.

I Investigate the dependence to the stength of the coherent tunneling
between the QDs.

I Results are derived using a linear-response, quantum master-equation
calculation. (In extent to the often used semi-classical Fokker-Planck
treatment)



New Effects

I In the vicinity of the charge transfer line (almost degenerate DQD
configurations with the same total charge), new mechanism for the
DQD-induced cantilever damping, that is enhanced by the relatively long
charge relaxation.
→ Characterization of T1 time of the DQD.

I Another new mechanism for the DQD-induced cantilever frequency shift
near the charge transfer line. Due to coherent tunneling, the DQD energy
eigenstates are superpositions of charge states. The cantilever motion
could adiabatically modulate these wavefunctions.
→ Allows to probe the interdot tunneling.



Model

I A self-assembled DQD capacitively coupled to an oscillating metallic
cantilever is considered. The dots are also tunnel-coupled to a 2DEG.

I Coulomb blockade Hamiltonian with coherent interdot tunneling.

ĤDQD = Ĥc + tc

(
d̂†L d̂R + d̂†R d̂L

)
+ Ĥres ,

Ĥc =
∑
α=L,R

ECα(n̂α −Nα)2 + ECm(n̂L −NL)(n̂R −NR )

Ĥres describes a free 2DEG and dot-2DEG tunneling.
I Assumptions:

I spinless electrons
I few-electron regime (at most one electron per dot), only a single orbital in

each dot is retained.
I Coulomb blockade regime ECα � kB T
I 2DEG in equilibrium at T
I dot-2DEG tunnel matrix element is the same for both dots. (∼ Γ)



I The dimensionless gate voltages Nα depend on the cantilever position ~rtip,

Nα = −VB Ctip,α(|~rtip −~rα|)
e

, (Ctip,α : cantilever-dot capacitance)

I Letting the cantilever height zm oscillate. The coordinate zm is described
as an harmonic oscillator with frequency ωm and mass m. Considering
small oscillations, the dependence of Nα is linearized in zm. The
DQD-cantilever interaction is

Ĥint = −ẑm

∑
α=L,R

Aαn̂α ≡ −ẑmF̂ ,

Aα = 2ECα
∂Nα
∂zm

+ ECm
∂Nᾱ
∂zm

= −∂E+α

∂zm
.

Electron addition energy: E+α = ECα(1− 2Nα)− ECmNᾱ.



I Mostly focus on the regime where the total DQD charge is fixed at 1 and
where δ =

E+L−E+R

2
is small (electrostatic energy detuning between state

|01〉 and |10〉.) States with n̂tot > 2 can be neglected.

I In self-assembled QDs, tc � Γ, ωm is satisfied and it is useful to work in
the basis of adiabatic eigenstates of ĤDQD , determined by the
instantaneous value of zm.

|1[zm]〉 = |11〉, |2[zm]〉 = − sin(θ/2)|10〉+ cos(θ/2)|01〉,
|3[zm]〉 = cos(θ/2)|10〉+ sin(θ/2)|01〉, |4[zm]〉 = |00〉,

where tan θ[zm] = tc/δ[zm] = tc/
(
δ − 1

2
zm(AL − AR )

)
. Adiabatic

eigenenergies,

E2,3[zm] =

(
E+L + E+R − zm(AL + AR )

2

)
∓
√

(δ[zm])2 + t2
c

≡ ε[zm]∓∆[zm].

I For zm = 0, the states |2〉 and |3〉 will primarily be occupied by the DQD.
Approximately the physics of a two-level system.



Calculation

I Because of the DQD-cantilever coupling Ĥint = −ẑmF̂ , the average force
〈F̂ 〉 will respond with a delay to the motion of the oscillator resulting in
both a spring-constant shift kdot and extra damping γdot .

I In the weak coupling limit, it is well described within linear response. kdot

and γdot are calculated by replacing ẑm → zm(t) = z0 cos(ωmt).

I A Lindblad master equation is derived to describe these effects in the
regime ωm � T .

∂ρ̂rot

∂t
=

1

i~
[Ĥeff , ρ̂rot ] +

4∑
j,k=1

ΓjkD[Ŝjk ]ρ̂rot ,

Ĥeff = εn̂tot + Em|4〉〈4|+ ∆σ̂z −
~
2

∂zm

∂t

∂θ

∂zm
σ̂y ,

D[Ŝjk ]ρ̂rot = Ŝjk ρ̂rot Ŝ†jk −
1

2
(Ŝ†jk Ŝjk ρ̂rot + ρ̂rot Ŝ†jk Ŝjk ), Ŝjk = |j〉〈k.|

where

ρ̂rot(t) = Û[zm(z)]†ρ̂(t)Û[zm(z)] and Û[x ]|j [0]〉 = |j [x ]〉,
σ̂z = |3〉〈3| − |2〉〈2|, σ̂y = i(|2〉〈3| − |3〉〈2|).

To obtain kdot and γdot , the ME is used to find the first-order-correction to ρ̂rot

in z and calculate the corresponding change in 〈F̂ (t)〉 to infer kdot and γdot .



Basic Mechanisms

I Low-frequency limit, the linear response results have the form:

mγdot = τ
∂〈F̂ 〉
∂zm

, kdot = −∂〈F̂ 〉
∂zm

.

I Single dot case ∂〈F̂〉
∂zm
∝ ∂〈n̂tot〉

∂N , thus γdot and kdot are only significant when
the QD total charge can fluctuate via 2DEG-QD tunneling (charge
addition lines).

I In the DQD case, γdot and kdot are determined by the dynamics of the
DQD charge distribution.

I Near the charge transfer line, the DQD-induced force operator is

F̂ − AL + AR

2
' Aδ(n̂L − n̂R ) = Aδ(cos θσ̂z − sin θσ̂x ), Aδ =

AL − AR

2
.

I Three different mechanisms : ∂zm 〈σ̂x〉, ∂zm 〈σ̂z〉 and ∂zmθ. The first is
strongly suppressed as ωm � tc .



Adiabatic Frequency Shift

I F̂ has a dependence on θ, which has
an intrinsic zm-dependence, causing a
modulation of F̂ .

I It corresponds to the adiabatic
modulation of the DQD eigenstates by
the cantilever oscillation, via the
cantilever’s modulation of the
electrostatic detuning δ.

I The corresponding oscillation in
〈n̂L − n̂R〉 causes a force oscillation, in
phase with zm(t).

∆ω = kdot/(2mωm)
ωm = 160 kHz, k0 = 7 N/m,

Γ = 10 kHz, T = 4.2 K,
tc = 1 meV, ECL = 20 meV,

ECR = 25 meV, ECm = 12 meV.

kdot = −Aδ〈σ̂z〉
∂ cos θ

∂zm
= −A2

δ sin2 θ tanh(∆/kB T )

∆
.



Effective TLS Damping

I Second mechanism near the charge transfer line: the cantilever’s
modulation of 〈σ̂z〉, that is the population asymmetry of the two
low-energy DQD eigenstates.

I The DQD splitting ∆ oscillates due to the cantilever oscillations. Thus the
occupancy of the states |2〉 and |3〉 also oscillates.

I The corresponding oscillations in 〈σ̂z〉, hence in 〈F̂ 〉, are phase-shifted
with respect to zm(t) due to the finite DQD T1 time.

I This mechanism contributes both to kdot and γdot and is suppressed at low
temperatures T � ∆.

I DQD-induced damping

mγdot =

(
T1

1 + ω2
mT 2

1

)
A2
δ cos2 θ

kB T cosh2(∆/kB T )



Dot-induced Damping

I Dot-induced damping not only occurs
near the charge addition lines, where
DQD-2DEG tunneling is strong.
(γdot ∝ 1/Γ)

I For low frequency cantilever, near
charge transfer line, γdot ∝ T1.

I If T1Γ > 1, the ”TLS damping”
mechanism can be greater in
magnitude than the conventional
damping peaks found near charge
addition lines.

I This effect vanishes at δ = 0 due to
the presence of coherent tunneling.

ωm = 75 kHz, k0 = 3 N/m,
Γ = 10 MHz, T = 8.4 K,

tc = 0.3 meV, ECL = 20 meV,
ECR = 25 meV, ECm = 12 meV.



Measuring T1

I For low frequency cantilever and T � ∆,

I near the charge transfer line

mγdot

kdot
' − cos2 θT1.

I Allows direct measure of the DQD T1 time.



Conclusion

I Charge dynamics in DQD can influence damping and frequency shifts of a
low-frequency resonator (AFM tip).

I Compared to single QD, qualitatively new effects arise due to the
cantilever’s sensitivity to charge distribution and to the presence of
coherent interdot tunneling.

I These effects allow to access the DQD T1 time near the charge transfer
line and to probe the strength of the coherent tunneling.


