Two-Qubit Gate of Combined Single-Spin Rotation and Interdot Spin Exchange in a Double Quantum Dot

R. Brunner, Y.-S. Shin, T. Obata, M. Pioro-Ladrière, T. Kubo, K. Yoshida, T. Taniyama, Y. Tokura, and S. Tarucha

PRL 107, 146801 (2011)

Outline

Introduction

Electron-spin resonance (ESR) and interdot exchange

Experimental setup

→ Single-spin rotation + swap gate

Control of entanglement

Conclusions

Introduction

Universal set of gates
$$U_{\text{CNOT}} = e^{i\pi S_L^z} U_s(\tau_s)^{-1/2} e^{-i(\pi/2)S_L^z} U_s(\tau_s) e^{i(\pi/2)S_L^z} U_s(\tau_s)^{1/2}$$

interdot spin exchange

Electron spin resonance (ESR) (Single-spin rotation)

Bloch Equation

$$\langle \dot{\mathbf{S}} \rangle = \langle \mathbf{S} \rangle \times (\omega_Z)$$

$$\omega_Z = g\mu_B \mathbf{B}/\hbar \quad \delta\omega(t) = g\mu_B \widetilde{B}_x \cos(\omega t)/\hbar$$

Spin precesses around axis defined by the direction of B,

Add external oscillating magnetic field $B_x(t)$ perpendicular to B_z

$$\langle \dot{\mathbf{S}} \rangle = \langle \mathbf{S} \rangle \times \left[\omega_Z - \omega \mathbf{e}_z + \frac{g\mu_B}{\hbar} \widetilde{B}_x \mathbf{e}_x \right]$$

$$\omega_{\rm R} = g\mu_B |B_z|/\hbar$$

Electric control of spins (EDSR)

Producing strong oscillating magnetic fields is very challenging

Electric control of spins is highly desirable

However, electric fields couple to the charge

indirect coupling to the spin

- Magnetic field gradient
- Spatially varying g tensor
- Spin-orbit coupling

Interdot exchange interaction

U: Coulomb energy

t₀: interdot tunneling controlled by central gate

$$H_s(t) = J(t)\mathbf{S}_L \cdot \mathbf{S}_R$$

$$J(t) \propto t_0^2(t)/U$$

$$U(t) = e^{-i/\hbar \int_0^t J(t')dt' \mathbf{S}_L \cdot \mathbf{S}_R}$$

$$U(\tau_s) \equiv \text{SWAP}$$

 J_0 : energy splitting between S(1,1) and $T_0(1,1)$

Experimental Setup

AlGaAs/GaAs heterostructure

Single-qubit rotations

J₀ finite

spin-blockade regime

vanishing J₀

Single-spin rotation τ_{EDSR}

$$g = -0.394 \pm 0.001$$

$$f_{\rm ac} = 5.6 \, GHz$$

$$\Delta B_0 = 15 \pm 5 \, mT$$

ε:energy splitting between S(0,2) and S(1,1)

Single-qubit rotations

averaged QPC signal is proportional to probability of having antiparallel spins

Two-Qubit Gate

J₀ finite

$$T_{\pm}(1,1) \stackrel{3\pi/2}{\longrightarrow}$$

vanishing J₀

$$\frac{|\uparrow\rangle \pm i|\downarrow\rangle}{\sqrt{2}} \otimes |\uparrow\rangle$$

J₀ finite

$$\xrightarrow{\text{SWAP}} |\psi_1\rangle \xrightarrow{\pi/2}$$

Two-Qubit Gate

$$SWAP^{n=0,2,4...} \to |\psi_2\rangle = T_+(1,1)$$

current is blocked

SWAP^{n=1,3,5,...}
$$\rightarrow |\psi_2\rangle = \frac{1}{2} [T_+(1,1) + T_-(1,1) - \sqrt{2}iS(1,1)]$$

do not contribute to the current flow

Readout is a direct measurement of entanglement

$$P_S = |\langle S|\psi_2\rangle|^2$$

Entanglement Control

$$C(\rho) = \max(0, \lambda_1 - \lambda_2 - \lambda_3 - \lambda_4)$$

$$\sqrt{\sqrt{\rho}\widetilde{\rho}\sqrt{\rho}} \quad \widetilde{\rho} = (\sigma_y \otimes \sigma_y)\rho^*(\sigma_y \otimes \sigma_y)$$

C=0: uncorrelated

C=1: maximally entangled

$$\Delta \equiv \delta E_Z/J_0 \quad \alpha \equiv J_0 \tau_{\rm ex}/2$$

$$C = \frac{|\sin\sqrt{1 + \Delta^2 \alpha}|}{1 + \Delta^2} \times \sqrt{(1 + \Delta^2)\cos^2\sqrt{1 + \Delta^2 \alpha} + \Delta^2 \sin^2\sqrt{1 + \Delta^2 \alpha}}$$

Control of degree of entanglement with τ_{ex}

Conclusions

All-electrical controlled two-qubit gate

Single spin rotation + interdot spin exchange

Control of entanglement through operation time t

Important step in the realization of a quantum computer

Thank you for your attention!