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Anderson localization: the basics

“Absence of diffusion in certain random lattices”,
P. W. Anderson, Phys. Rev. 109, 1492 (1958) ( > 5000 citations!)

a wave-packet (or a particle) moving in a spatially-disordered,
( time-independent ) potential exhibits localization!

After: Lagendijk et al., Phys. Today (2009)

A. L. most easily demonstrated in optical- and matter-wave systems
( potential proportional to the optical-field intensity: V ∝ |E|2 )



What happens when localization gets destroyed?

Q: When Anderson localization is destroyed by time-dependent potentials,
will the transport become diffusive?

reminder: 〈x2〉 ∝ t ( diffusive )

〈x2〉 ∝ t2 ( ballistic )

there are models that predict ’anomalous behavior’ (e.g., superdiffusion):
L. Golubović, S. Feng, and F.-A. Zeng, PRL 67, 2115 (1991)

THIS PAPER: study of potentials that are random also in time!

The resulting transport is faster than diffusion,
and can even be faster than ballistic!

“Radical differences” between 1d and 2d !



The (classical) model

Objective: Study the rate of spreading of the initially localized
wave-packet (when A.L. is destroyed)

H =
p2

2
+ V (x, t)

one-dimensional (quasi-periodic ??) potential

V (x, t) =
1

√
N

N∑
m=1

Am exp[i(kmx − ωmt)] N finite, but large!

Am – independent complex random numbers that satisfy

〈Am〉 = 〈AmAn〉 = 0 ; 〈AmA∗
n〉 = A2δmn

km, ωm distributed according to P (k, ω)

classical model?



Earlier studies

studied for small |Am|: B. V. Chirikov, Phys. Rep. 52, 263 (1979)

non-overlapping Chirikov resonances:

d

dt
(kmx − ωmt) = kmp − ωm = 0 ⇒ pres

m =
ωm

km

a particle with an initial momentum close to a resonance
shows bounded pendulum-like motion near that resonance!

non-overlapping:

∆m + ∆m−1 ≤ pres
m − pres

m−1 ∆m =

√
8|Am|/

√
N

Q: What happens if the resonances have overlaps?

A: random walk between resonances, i.e., diffusion in momentum

⇒ find the diffusion coefficient D(p)



Dynamics of weakly overlapping resonances

C(x1, t1;x2, t2) = 〈F (x1, t1)F (x2, t2)〉

D(p) =
1

2

∫ ∞

−∞
C(pτ, τ )dτ



Scaling of D(p) and Fokker-Planck equation

D(p) = 4πA2

∫
dk

∫
dω k2P (k, ω)δ(ω − kp) ⇒ D(p) ∼

D0

p3

spreading in momentum: Fokker-Planck eqn. for momentum density ρ(p)

∂ρ

∂t
=

(
∂

∂p
D(p)

∂

∂p

)
ρ

General:
∂a

∂t
= v(a) + F(t) with 〈F(t)F(t′)〉 = 2Bδ(t − t′)

∂f

∂t
= −

∂

∂a
[v(a)f ] +

∂

∂a
· B ·

∂

∂a
f



Implications of the scaling of D(p)

D(p) ∼ p−3 ⇒ 〈p2〉 ∼ t2/5 ⇒ 〈x2〉 ∼ t12/5

superballistic!

more realistic assumption: P (k, ω) = 0 for ω ≥ pmaxk

D(p) =

{
4πA2

∫
dk k2P (k, pk) , |p| ≤ pmax

0 , |p| > pmax

⇒ ballistic behavior (established numerically!)



〈p2〉 vs. t in 1d: theory vs. simulation

theory: Fokker-Planck equation

simulation: direct numerical propagation,
averaged over realizations of disorder



Behavior in d > 1

Chirikov resonance condition in d > 1:

(km − kn) · pres

mn = ωm − ωn

diffusion in the momentum is unbounded!

Asymptotically: D||(p) ∼ 1/p3

yields a universal asymptotic expansion in momentum

〈p2〉 ∼ t2/5

and a superballistic expansion rate in position space



Theory vs. simulation in 2d
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