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Anderson localization: the basics

“Absence of diffusion in certain random lattices”,
P. W. Anderson, Phys. Rev. 109, 1492 (1958) ( > 5000 citations!)

a wave-packet (or a particle) moving in a spatially-disordered,
( time-independent ) potential exhibits localization!
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After: Lagendijk et al., Phys. Today (2009)
A. L. most easily demonstrated in optical- and matter-wave systems
( potential proportional to the optical-field intensity: V o |E|? )



What happens when localization gets destroyed?

Q: When Anderson localization is destroyed by time-dependent potentials,
will the transport become diffusive?

reminder: (x?) o< t (diffusive )
(x?) oc t? ( ballistic )

there are models that predict 'anomalous behavior' (e.g., superdiffusion):
L. Golubovi¢, S. Feng, and F.-A. Zeng, PRL 67, 2115 (1991)

THIS PAPER: study of potentials that are random also in time!

@ The resulting transport is faster than diffusion,
and can even be faster than ballistic!

@ “Radical differences” between 1d and 2d !



The (classical) model

Objective: Study the rate of spreading of the initially localized
wave-packet (when A.L. is destroyed)
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H= %+V(az,t)

one-dimensional (quasi-periodic ??) potential

1

V(x,t) = Vi

N
Z A, exp[i(k,,x — w,,t)] | N finite, but large!
m=1

A, — independent complex random numbers that satisfy

(Ap) = (AmAy) =05 (A AZ) = A%5,,,

k.., w,, distributed according to P(k,w)

classical model?



Earlier studies

studied for small |A,,|: B. V. Chirikov, Phys. Rep. 52, 263 (1979)

non-overlapping Chirikov resonances:
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a particle with an initial momentum close to a resonance
shows bounded pendulum-like motion near that resonance!

non-overlapping:

Ap 4+ Ap—a S p:,ef - Pf%s_l Ay = Y 8|Am|/ VN

Q: What happens if the resonances have overlaps?

A: random walk between resonances, i.e., diffusion in momentum

= find the diffusion coefficient D(p)



Dynamics of weakly overlapping resonances
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C(x1,t1; T2, t2) = (F(x1,t1)F(22,12))

D(p) = %/_oo C(pr,7)dr




Scaling of D(p) and Fokker-Planck equation

D(p) = 47"A2/ dk/ dw k?P(k,w)d(w — kp) |=| D(p) ~ %

spreading in momentum: Fokker-Planck eqn. for momentum density p(p)
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Implications of the scaling of D(p)

D(p) ~p~% = (p?) ~t¥/° = (2?) ~ t1?/5

superballistic!

more realistic assumption: P(k,w) = 0 for w > ppaxk

D(p) anA? [ dk k*P(k,pk) , |p| < Pmax
p =
0, |p| > Pmax

= ballistic behavior (established numerically!)



(p®) vs. t in 1d: theory vs. simulation
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theory: Fokker-Planck equation

simulation: direct numerical propagation,
averaged over realizations of disorder



Behavior in d > 1

Chirikov resonance condition in d > 1:

diffusion in the momentum is unbounded!

Asymptotically: D) (p) ~ 1/p3
yields a universal asymptotic expansion in momentum
(p?) ~ t2/5

and a superballistic expansion rate in position space



Theory vs. simulation in 2d
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