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Tunneling of electrons of definite chirality into a quantum wire creates counterpropagating excitations,

carrying both charge and energy. We find that the partitioning of energy is qualitatively different from that

of charge. The partition ratio of energy depends on the excess energy of the tunneling electrons (controlled

by the applied bias) and on the interaction strength within the wire (characterized by the Luttinger-liquid

parameter !), while the partitioning of charge is fully determined by !. Moreover, unlike for charge

currents, the partitioning of energy current should manifest itself in dc experiments on wires contacted by

conventional (Fermi-liquid) leads.
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Introduction.—Recent experiments try to elucidate the
out-of-equilibrium physics of one-dimensional (1D) elec-
tron systems [1], with experimental systems including
quantum wires [2], carbon nanotubes [3], as well as quan-
tum Hall edge channels [4,5]. At low energies, the electron
kinetics is dominated by processes within the electron
liquid, and the kinetics in one dimension is quite distinct
from that in higher dimensions [6–12]. The differences
appear already in the most elementary process, namely,
the accommodation of an additional electron with well-
defined energy and momentum which is injected into the
liquid. In higher dimensions, the energy and momentum
are transferred to a quasiparticle of the Fermi liquid, while
the injected charge spreads away from the injection point
isotropically in space and on a short time scale governed by
the (collective) plasmon excitations. In one dimension,
such a momentum-conserving tunneling process creates
an excited state of the liquid, involving correlated multiple
electron-hole excitations. The description of such a state is
quite complex [7] even within the Tomonaga-Luttinger
model. That raises the question of finding measurable
characteristics which quantify the state of the liquid per-
turbed by electron injection.

Perhaps the simplest characteristic is the partition ratio
Q!=Qþ of the injected charge e. The latter creates two
pulses which carry unequal charges, Qþ and Q!, propa-
gating, respectively, in and against the direction of motion
of the injected charge [13,14]. In the absence of interac-
tions, the entire injected charge moves in the direction of
motion of the injected electron, i.e., Q! ¼ 0. In the inter-
acting (Luttinger) liquid, Q!=Qþ is simply related to the
ratio of compressibilities of the liquid with and without in-
teractions, and can be readily obtained from the conserva-
tion laws of particle number and momentum which yields
Q$ ¼ ð1$ !Þ=2 in units of e [1]. [Here, the Luttinger-
liquid parameter ! measures the interaction strength, with
! ¼ 1 (!<1) for noninteracting (repulsively interacting)

particles.] The two pulses propagate freely unless they
encounter an inhomogeneity of the interaction constant
[15,16]. Unfortunately, such inhomogeneities are inevi-
table in experiment which probe the Luttinger liquid by
attaching Fermi-liquid leads. Because of multiple scatter-
ing at the two interfaces, the net charges QL and QR

flowing into left and right leads differ from the intrinsic
values Q! and Qþ. Indeed, QL ¼ 0 in the case of Fermi-
liquid leads, rendering interaction effects in the Luttinger
liquid irrelevant for the charge partitioning measured in dc
experiments [14,17].
The energy of the injected electron is another conserved

quantity in the tunneling process which plays a crucial role
in the nonequilibrium physics of the electron liquid. In this
Letter, we show that the energy is also partitioned between
left- and right-moving excitations, in a way which is quite
distinct from the partitioning of the injected charge and
which sensitively probes the interaction strength. When
momentum is conserved in the injection process, the initial
splitting of the excess energy (measured from the Fermi
energy) depends on both energy and momentum of the
injected electron as well as the interaction strength !. The
actual amounts of energy deposited into the two Fermi-
liquid leads depend in general on the nature of the interface
between Luttinger liquid and leads. The interface is trans-
parent to the flow of energy at high energies, and has finite
transparency in the opposite limit. In both limits, the
partition of energy deposited in the two leads becomes
independent of the properties of the interface but remains
a function of ! and excess energy. We suggest relatively
simple dc experiments to detect energy partitioning and
also extend our considerations to include energy partition-
ing in tunneling into quantum Hall edge states.
Energy currents in Luttinger liquids.—We consider a

Luttinger liquid of spinless fermions at zero temperature.
Decomposing the Luttinger-liquid displacement and phase
fields " and # into right- and left-moving excitations
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WITH INTERACTIONS

electron excitations have a finite lifetime:  Spectral function is not sharp

With interactions, excitations are density waves ⇢±(x)

!!ðxÞ ¼ !ðxÞ !"ðxÞ=#, the relevant Hamiltonian takes
the form [13]

H ¼ vF

4$

Z
dx

X

%¼!
ðr!%Þ2 (1)

with commutation relations ½!%ðxÞ;!%0ðx0Þ& ¼
&%%0ði$%=#Þsgnðx' x0Þ.

We first consider tunneling from a parallel source wire of
length LS [nonlocal injection cf. Fig. 1(a)]. In this case, the
dispersions of quantum wire and source can be shifted
relative to each other in momentum by applying a magnetic
field and in energy by applying a bias voltage V [2].
Following recent experiments [2], we assume that these
shifts are such that tunneling is only allowed for left
movers from the source [field operator c SðxÞ] which tun-
nel into right-moving free-electron states in the quantum
wire [field operator c y

RðxÞ]. This is described by the

tunneling Hamiltonian HTR ¼ t
R
S dx½c y

RðxÞc SðxÞþ
c y

S ðxÞc RðxÞ&, where the nature of the chirality of the states
is included through the dispersions cf. Fig. 2(a).

The ensuing right- and left-moving energy currents IE! in
the Luttinger liquid are now described by the operators

IE! ¼ i
!
HTR;

vF

4$

Z
dxðr!!Þ2

"

¼ !ct

2i
Q!

Z
S
dxðfc y

RðxÞ;r!!ðxÞgc SðxÞ ' H:c:Þ: (2)

To leading order in the tunneling, the expectation value of
IE! becomes

hIE!ð'Þi ¼ 'i
Z '

'1
dt0h½IE!ð'Þ; HTRðt0Þ&i: (3)

The resulting correlators can be efficiently computed by
writing c y

R ) e'iðQþAþr!þþQ'A'r!'Þ, expressing them in
terms of formal derivatives with respect to the auxiliary
operators A! ¼ r'1, and tracing the modifications due to
A! in the standard calculation [18] of the Luttinger-liquid
Green function. We then find

hIE!i¼
Q2

!t
2LS

#

Z d(S
2$

Z dk

2$

Z 1

0
d!qfG>

R;k*qð(S'!qÞ

+G<
S;kð(S'eVÞþG<

R;k!qð(Sþ!qÞG>
S;kð(S'eVÞg:

(4)

Here, Gh;i
R;kð(Þ denotes the lesser (<) or larger (>) Green

function of the right-moving electrons (with chemical

potential ) ¼ 0), Gh;i
S;kð(Þ the corresponding Green func-

tions of the left-movers in the source (with chemical po-
tential )S ¼ eV), and !q ¼ cq is the plasmon dispersion.
The two terms in Eq. (4) describe spontaneous plasmon
emission in the course of tunneling from source to wire and
vice versa, yielding a zero-temperature energy current
which is strictly positive.
A complementary experimental setup would consist of

two quantum Hall edge channels spaced such that there
is appreciable Coulomb interaction but negligible inter-
edge tunneling. This system shares the same interaction
physics with the quantum wire [17], but allows for locally
injecting electrons of fixed chirality and fixed energy (in
by selective tunneling into one of the edge channels from
a nearby single-level quantum dot [local injection,
cf. Fig. 1(b)]. For tunneling into right-moving states,
the tunneling Hamiltonian takes the form HTR ¼
tloc½c y

Rðx ¼ 0Þc S þ H:c:&. Focusing on tunneling from
the quantum dot into the quantum wire, i.e., on voltages
for which the quantum dot is occupied and described by
the Green function G<

S ðk; (Þ ¼ 2$i&ð(þ eV ' (inÞ, we
obtain

FIG. 1 (color online). Illustration of proposed experimental
setups. (a) Nonlocal injection by momentum-conserving tunnel-
ing between parallel quantum wires. The quantum dots to the left
and right of the injection region serve to probe the energy
partitioning. (b) Local injection into one of two close by quan-
tum Hall edge channels. The figure indicates both the initial
splitting of charge and energy at injection and the resulting
splitting in the Fermi-liquid leads. While the charge partitioning
is identical for both setups, the energy partitioning is different
and distinct from the charge partitioning.

FIG. 2 (color online). Illustration of nonlocal injection pro-
cess. (a) Overlap of occupied states in the (noninteracting)
source wire (thick blue line) and the Luttinger liquid, as de-
scribed by the spectral function. The difference between the
Fermi energies of source and Luttinger liquid is controlled by the
voltage V. The Luttinger-liquid spectral function is indicated
as a gray-scale background. (b) Illustration of the energy-
conservation argument for energy partitioning. (c) For an inter-
acting source, the tunneling current is determined by the overlap
of the spectral functions of source and wire.
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HAMILTONIAN

�(x) / ⇢+(x) + ⇢�(x) ✓(x) / ⇢+(x)� ⇢�(x)

Description by bosonic fields

Tunneling Hamiltonian

HT = t

Z

S
dx

h
 †
R(x) S(x) + h.c.

i

Hamiltonian wire
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Z
dx

X

↵=±
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PARTITION OF CHARGE 
CURRENT

Total charge current:

Left-going current:

Right-going current:

I(x, t) =
ie

~ [HT , ⇢�(x) + ⇢+(x)]

I�(x, t) =
ie

~ [HT , ⇢�(x)] =
1� 

2
I(x, t)

I+(x, t) =
ie

~ [HT , ⇢+(x)] =
1 + 

2
I(x, t)
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PARTITION OF CHARGE 
CURRENT

Electron coming in (Charge 1, momentum mvF)
Eigenstates are CDWs (Charge Q±, momentum mc=mvF/K)

Conservation of charge and momentum

mvF = Q+mc-Q-mc
Q++Q-=1

Gives Q+=(1+K)/2 and Q-=(1-K)/2
Tuesday, October 25, 11
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PARTITION OF CHARGE 
CURRENT

In the leads: I+(x, t) = I(x, t) , I�(x, t) = 0
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LOOK AT ENERGY CURRENTS
Definition energy current:

IE± = i
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LOOK AT ENERGY CURRENTS
Definition energy current:

IE± = i
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vF
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Z
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2
�

To leading order in tunneling

⌦
IE±

↵
=

Q2
±t

2LS



Z
d✏

2⇡

Z
dk

2⇡

Z 1

0
d!q

�
G>
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LOOK AT ENERGY CURRENTS
Definition energy current:

IE± = i


HT ,

vF
4⇡

Z
dx (r✓±)

2
�

Greens functions are given by

G>
k (✏) = �iA(k, ✏) [1� nF (✏)] A± / |! ⌥ ck|'�1|! ± ck|'✓(|!|� c|k|)

' = (+ �1 � 2)/4
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COMPARISON ENERGY AND 
CHARGE CURRENT

!!ðxÞ ¼ !ðxÞ !"ðxÞ=#, the relevant Hamiltonian takes
the form [13]

H ¼ vF

4$

Z
dx

X

%¼!
ðr!%Þ2 (1)

with commutation relations ½!%ðxÞ;!%0ðx0Þ& ¼
&%%0ði$%=#Þsgnðx' x0Þ.

We first consider tunneling from a parallel source wire of
length LS [nonlocal injection cf. Fig. 1(a)]. In this case, the
dispersions of quantum wire and source can be shifted
relative to each other in momentum by applying a magnetic
field and in energy by applying a bias voltage V [2].
Following recent experiments [2], we assume that these
shifts are such that tunneling is only allowed for left
movers from the source [field operator c SðxÞ] which tun-
nel into right-moving free-electron states in the quantum
wire [field operator c y

RðxÞ]. This is described by the

tunneling Hamiltonian HTR ¼ t
R
S dx½c y

RðxÞc SðxÞþ
c y

S ðxÞc RðxÞ&, where the nature of the chirality of the states
is included through the dispersions cf. Fig. 2(a).

The ensuing right- and left-moving energy currents IE! in
the Luttinger liquid are now described by the operators

IE! ¼ i
!
HTR;

vF

4$

Z
dxðr!!Þ2

"

¼ !ct

2i
Q!

Z
S
dxðfc y

RðxÞ;r!!ðxÞgc SðxÞ ' H:c:Þ: (2)

To leading order in the tunneling, the expectation value of
IE! becomes

hIE!ð'Þi ¼ 'i
Z '

'1
dt0h½IE!ð'Þ; HTRðt0Þ&i: (3)

The resulting correlators can be efficiently computed by
writing c y

R ) e'iðQþAþr!þþQ'A'r!'Þ, expressing them in
terms of formal derivatives with respect to the auxiliary
operators A! ¼ r'1, and tracing the modifications due to
A! in the standard calculation [18] of the Luttinger-liquid
Green function. We then find

hIE!i¼
Q2

!t
2LS

#

Z d(S
2$

Z dk

2$

Z 1

0
d!qfG>

R;k*qð(S'!qÞ

+G<
S;kð(S'eVÞþG<

R;k!qð(Sþ!qÞG>
S;kð(S'eVÞg:

(4)

Here, Gh;i
R;kð(Þ denotes the lesser (<) or larger (>) Green

function of the right-moving electrons (with chemical

potential ) ¼ 0), Gh;i
S;kð(Þ the corresponding Green func-

tions of the left-movers in the source (with chemical po-
tential )S ¼ eV), and !q ¼ cq is the plasmon dispersion.
The two terms in Eq. (4) describe spontaneous plasmon
emission in the course of tunneling from source to wire and
vice versa, yielding a zero-temperature energy current
which is strictly positive.
A complementary experimental setup would consist of

two quantum Hall edge channels spaced such that there
is appreciable Coulomb interaction but negligible inter-
edge tunneling. This system shares the same interaction
physics with the quantum wire [17], but allows for locally
injecting electrons of fixed chirality and fixed energy (in
by selective tunneling into one of the edge channels from
a nearby single-level quantum dot [local injection,
cf. Fig. 1(b)]. For tunneling into right-moving states,
the tunneling Hamiltonian takes the form HTR ¼
tloc½c y

Rðx ¼ 0Þc S þ H:c:&. Focusing on tunneling from
the quantum dot into the quantum wire, i.e., on voltages
for which the quantum dot is occupied and described by
the Green function G<

S ðk; (Þ ¼ 2$i&ð(þ eV ' (inÞ, we
obtain

FIG. 1 (color online). Illustration of proposed experimental
setups. (a) Nonlocal injection by momentum-conserving tunnel-
ing between parallel quantum wires. The quantum dots to the left
and right of the injection region serve to probe the energy
partitioning. (b) Local injection into one of two close by quan-
tum Hall edge channels. The figure indicates both the initial
splitting of charge and energy at injection and the resulting
splitting in the Fermi-liquid leads. While the charge partitioning
is identical for both setups, the energy partitioning is different
and distinct from the charge partitioning.

FIG. 2 (color online). Illustration of nonlocal injection pro-
cess. (a) Overlap of occupied states in the (noninteracting)
source wire (thick blue line) and the Luttinger liquid, as de-
scribed by the spectral function. The difference between the
Fermi energies of source and Luttinger liquid is controlled by the
voltage V. The Luttinger-liquid spectral function is indicated
as a gray-scale background. (b) Illustration of the energy-
conservation argument for energy partitioning. (c) For an inter-
acting source, the tunneling current is determined by the overlap
of the spectral functions of source and wire.
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!!ðxÞ ¼ !ðxÞ !"ðxÞ=#, the relevant Hamiltonian takes
the form [13]
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X
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with commutation relations ½!%ðxÞ;!%0ðx0Þ& ¼
&%%0ði$%=#Þsgnðx' x0Þ.

We first consider tunneling from a parallel source wire of
length LS [nonlocal injection cf. Fig. 1(a)]. In this case, the
dispersions of quantum wire and source can be shifted
relative to each other in momentum by applying a magnetic
field and in energy by applying a bias voltage V [2].
Following recent experiments [2], we assume that these
shifts are such that tunneling is only allowed for left
movers from the source [field operator c SðxÞ] which tun-
nel into right-moving free-electron states in the quantum
wire [field operator c y

RðxÞ]. This is described by the

tunneling Hamiltonian HTR ¼ t
R
S dx½c y

RðxÞc SðxÞþ
c y

S ðxÞc RðxÞ&, where the nature of the chirality of the states
is included through the dispersions cf. Fig. 2(a).
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The resulting correlators can be efficiently computed by
writing c y
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operators A! ¼ r'1, and tracing the modifications due to
A! in the standard calculation [18] of the Luttinger-liquid
Green function. We then find
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tential )S ¼ eV), and !q ¼ cq is the plasmon dispersion.
The two terms in Eq. (4) describe spontaneous plasmon
emission in the course of tunneling from source to wire and
vice versa, yielding a zero-temperature energy current
which is strictly positive.
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two quantum Hall edge channels spaced such that there
is appreciable Coulomb interaction but negligible inter-
edge tunneling. This system shares the same interaction
physics with the quantum wire [17], but allows for locally
injecting electrons of fixed chirality and fixed energy (in
by selective tunneling into one of the edge channels from
a nearby single-level quantum dot [local injection,
cf. Fig. 1(b)]. For tunneling into right-moving states,
the tunneling Hamiltonian takes the form HTR ¼
tloc½c y

Rðx ¼ 0Þc S þ H:c:&. Focusing on tunneling from
the quantum dot into the quantum wire, i.e., on voltages
for which the quantum dot is occupied and described by
the Green function G<

S ðk; (Þ ¼ 2$i&ð(þ eV ' (inÞ, we
obtain

FIG. 1 (color online). Illustration of proposed experimental
setups. (a) Nonlocal injection by momentum-conserving tunnel-
ing between parallel quantum wires. The quantum dots to the left
and right of the injection region serve to probe the energy
partitioning. (b) Local injection into one of two close by quan-
tum Hall edge channels. The figure indicates both the initial
splitting of charge and energy at injection and the resulting
splitting in the Fermi-liquid leads. While the charge partitioning
is identical for both setups, the energy partitioning is different
and distinct from the charge partitioning.

FIG. 2 (color online). Illustration of nonlocal injection pro-
cess. (a) Overlap of occupied states in the (noninteracting)
source wire (thick blue line) and the Luttinger liquid, as de-
scribed by the spectral function. The difference between the
Fermi energies of source and Luttinger liquid is controlled by the
voltage V. The Luttinger-liquid spectral function is indicated
as a gray-scale background. (b) Illustration of the energy-
conservation argument for energy partitioning. (c) For an inter-
acting source, the tunneling current is determined by the overlap
of the spectral functions of source and wire.
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CONSERVATION ARGUMENT

!!ðxÞ ¼ !ðxÞ !"ðxÞ=#, the relevant Hamiltonian takes
the form [13]

H ¼ vF

4$

Z
dx

X

%¼!
ðr!%Þ2 (1)

with commutation relations ½!%ðxÞ;!%0ðx0Þ& ¼
&%%0ði$%=#Þsgnðx' x0Þ.

We first consider tunneling from a parallel source wire of
length LS [nonlocal injection cf. Fig. 1(a)]. In this case, the
dispersions of quantum wire and source can be shifted
relative to each other in momentum by applying a magnetic
field and in energy by applying a bias voltage V [2].
Following recent experiments [2], we assume that these
shifts are such that tunneling is only allowed for left
movers from the source [field operator c SðxÞ] which tun-
nel into right-moving free-electron states in the quantum
wire [field operator c y

RðxÞ]. This is described by the

tunneling Hamiltonian HTR ¼ t
R
S dx½c y

RðxÞc SðxÞþ
c y

S ðxÞc RðxÞ&, where the nature of the chirality of the states
is included through the dispersions cf. Fig. 2(a).

The ensuing right- and left-moving energy currents IE! in
the Luttinger liquid are now described by the operators

IE! ¼ i
!
HTR;

vF
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Z
dxðr!!Þ2
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¼ !ct

2i
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Z
S
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RðxÞ;r!!ðxÞgc SðxÞ ' H:c:Þ: (2)

To leading order in the tunneling, the expectation value of
IE! becomes

hIE!ð'Þi ¼ 'i
Z '

'1
dt0h½IE!ð'Þ; HTRðt0Þ&i: (3)

The resulting correlators can be efficiently computed by
writing c y

R ) e'iðQþAþr!þþQ'A'r!'Þ, expressing them in
terms of formal derivatives with respect to the auxiliary
operators A! ¼ r'1, and tracing the modifications due to
A! in the standard calculation [18] of the Luttinger-liquid
Green function. We then find
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Here, Gh;i
R;kð(Þ denotes the lesser (<) or larger (>) Green

function of the right-moving electrons (with chemical

potential ) ¼ 0), Gh;i
S;kð(Þ the corresponding Green func-

tions of the left-movers in the source (with chemical po-
tential )S ¼ eV), and !q ¼ cq is the plasmon dispersion.
The two terms in Eq. (4) describe spontaneous plasmon
emission in the course of tunneling from source to wire and
vice versa, yielding a zero-temperature energy current
which is strictly positive.
A complementary experimental setup would consist of

two quantum Hall edge channels spaced such that there
is appreciable Coulomb interaction but negligible inter-
edge tunneling. This system shares the same interaction
physics with the quantum wire [17], but allows for locally
injecting electrons of fixed chirality and fixed energy (in
by selective tunneling into one of the edge channels from
a nearby single-level quantum dot [local injection,
cf. Fig. 1(b)]. For tunneling into right-moving states,
the tunneling Hamiltonian takes the form HTR ¼
tloc½c y

Rðx ¼ 0Þc S þ H:c:&. Focusing on tunneling from
the quantum dot into the quantum wire, i.e., on voltages
for which the quantum dot is occupied and described by
the Green function G<

S ðk; (Þ ¼ 2$i&ð(þ eV ' (inÞ, we
obtain

FIG. 1 (color online). Illustration of proposed experimental
setups. (a) Nonlocal injection by momentum-conserving tunnel-
ing between parallel quantum wires. The quantum dots to the left
and right of the injection region serve to probe the energy
partitioning. (b) Local injection into one of two close by quan-
tum Hall edge channels. The figure indicates both the initial
splitting of charge and energy at injection and the resulting
splitting in the Fermi-liquid leads. While the charge partitioning
is identical for both setups, the energy partitioning is different
and distinct from the charge partitioning.

FIG. 2 (color online). Illustration of nonlocal injection pro-
cess. (a) Overlap of occupied states in the (noninteracting)
source wire (thick blue line) and the Luttinger liquid, as de-
scribed by the spectral function. The difference between the
Fermi energies of source and Luttinger liquid is controlled by the
voltage V. The Luttinger-liquid spectral function is indicated
as a gray-scale background. (b) Illustration of the energy-
conservation argument for energy partitioning. (c) For an inter-
acting source, the tunneling current is determined by the overlap
of the spectral functions of source and wire.
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MEASURING ENERGY CURRENT

Energy in density waves

✏± = c|k±| = (✏± ckV )
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IE! becomes

hIE!ð'Þi ¼ 'i
Z '

'1
dt0h½IE!ð'Þ; HTRðt0Þ&i: (3)

The resulting correlators can be efficiently computed by
writing c y
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Here, Gh;i
R;kð(Þ denotes the lesser (<) or larger (>) Green

function of the right-moving electrons (with chemical

potential ) ¼ 0), Gh;i
S;kð(Þ the corresponding Green func-

tions of the left-movers in the source (with chemical po-
tential )S ¼ eV), and !q ¼ cq is the plasmon dispersion.
The two terms in Eq. (4) describe spontaneous plasmon
emission in the course of tunneling from source to wire and
vice versa, yielding a zero-temperature energy current
which is strictly positive.
A complementary experimental setup would consist of

two quantum Hall edge channels spaced such that there
is appreciable Coulomb interaction but negligible inter-
edge tunneling. This system shares the same interaction
physics with the quantum wire [17], but allows for locally
injecting electrons of fixed chirality and fixed energy (in
by selective tunneling into one of the edge channels from
a nearby single-level quantum dot [local injection,
cf. Fig. 1(b)]. For tunneling into right-moving states,
the tunneling Hamiltonian takes the form HTR ¼
tloc½c y

Rðx ¼ 0Þc S þ H:c:&. Focusing on tunneling from
the quantum dot into the quantum wire, i.e., on voltages
for which the quantum dot is occupied and described by
the Green function G<

S ðk; (Þ ¼ 2$i&ð(þ eV ' (inÞ, we
obtain

FIG. 1 (color online). Illustration of proposed experimental
setups. (a) Nonlocal injection by momentum-conserving tunnel-
ing between parallel quantum wires. The quantum dots to the left
and right of the injection region serve to probe the energy
partitioning. (b) Local injection into one of two close by quan-
tum Hall edge channels. The figure indicates both the initial
splitting of charge and energy at injection and the resulting
splitting in the Fermi-liquid leads. While the charge partitioning
is identical for both setups, the energy partitioning is different
and distinct from the charge partitioning.

FIG. 2 (color online). Illustration of nonlocal injection pro-
cess. (a) Overlap of occupied states in the (noninteracting)
source wire (thick blue line) and the Luttinger liquid, as de-
scribed by the spectral function. The difference between the
Fermi energies of source and Luttinger liquid is controlled by the
voltage V. The Luttinger-liquid spectral function is indicated
as a gray-scale background. (b) Illustration of the energy-
conservation argument for energy partitioning. (c) For an inter-
acting source, the tunneling current is determined by the overlap
of the spectral functions of source and wire.
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