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In the important cases of finite-range or exponentially decaying

interactions, one has �Φ�a < ∞ for some a > 0. In that case

the double sum can be estimated by

�

x∈X

�

y∈Y

Fa(d(x , y)) ≤ �F�min(|X |, |Y |)e−ad(X ,Y )

and one gets the familar Lieb-Robinson bound of the form

� [ τt(A) , B ] � ≤ Ce−a(d(X ,Y )−v |t|)

for some C which depends only on A and B , and constants

a, v > 0, which only depend on the model.

Introduction
We consider 1D lattices of spins which interact with their neighbours 
(everything applies equally well to higher-dimensional lattices etc.):

Our task: simulate the dynamics of this system 
for some t.
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Figure 1: (a) An evolved local operator OY (t) behaves almost like the identity outside its associated space-time cone. (b)
Approximating OY (t) by application of subsystem propagators to OY . The errors decrease exponentially with the subsystem
sizes. (c) For one-dimensional systems, approximating OY (t) by a Trotter decomposition yields an error scaling as t

2∆t.

In Eq. (14), one has with the Lindblad representation

KXO = i[k,O] +
�

ν

�
K†

νOKν − 1
2 (K

†
νKνO +OK†

νKν)
�

of the local Liouvillian KX that �KX� /2 ≤ �k� +�
ν �Kν�2. The theorem tells us that an evolved observ-

able OY (t) remains basically unchanged when we evolve

it with respect to a Liouvillian that is supported at a

distance R � v · (t − r) away from Y , i.e., that OY (t)

behaves like the identity outside the corresponding space-

time cone. In the special case KXO = [OX , O], Eq. (14)

yields a Lieb-Robinson bound for �[OX , OY (t)]� as in

Ref. [22]. The proof of Theorem 1 is given in Sect. V.

This theorem can now be employed to proceed from

Eq. (13) in our proof of quasi-locality. Let us restrict

ourselves to the typical case of Liouvillians L(t) for which

the number of terms �X(t) with distance d(y,X)/a ∈
[n, n+1) from any site y ∈ Λ is bounded by a power law,

|Rn,y| ≤ Mn
κ ∀y∈Λ, n∈N+ , (15)

Rn,y := {X ⊂ Λ | �X �= 0,
d(y,X)

a ∈ [n, n+ 1)},

for some constantsM,κ > 0. Now, choose a point y0 ∈ Y

that is closest to Λ \ V , i.e., d(y0,Λ \ V ) = d(Y,Λ \ V ).

With D := �d(Y,Λ \ V )/a�, we can exploit that the sup-

port of every term in LΛ\V is element of exactly one of

the sets Rn,y0 with n ≥ D, to obtain

�τ(t, r)OY − τV̄ (t, r)OY �

≤
∞�

n=D

�

X∈Rn,y0

� t

r
ds ��X(s)τ(s, r)OY �

≤
∞�

n=D

Mn
κ|�| �OY �

� t

r
ds e

v·(s−r)−n

≤ M |�| �OY �
ev·(t−r)

v

∞�

n=D

n
κ
e
−n

.

In the second step, Theorem 1 and VXY ≤ Vol(X̄)/Z ≤
1 have been used. With the bound

�∞
n=D nκe−n ≤

2eDκe−D ∀D>2κ+1 from Appx. D, we arrive at the main

result of this work.

Theorem 2 (Quasi-locality of Markovian quan-
tum dynamics)
Let the Liouvillian L(t) =

�
Z⊂Λ �Z(t) for the lattice Λ

be of finite range a, with a finite maximum number Z

of nearest neighbors, and |�| as defined in Sect. II. Fur-
ther, let constraint Eq. (15) be fulfilled for some constants
M,κ > 0. Also, let Y ⊂ V ⊂ Λ, OY ∈ B(HY ), and
t > r ∈ R. Then one has with D := �d(Y,Λ \ V )/a�

�τ(t, r)OY − τV̄ (t, r)OY �
≤ 2M

Z �OY �Dκev·(t−r)−D ∀D>2κ+1, (16)

where v is the Lieb-Robinson speed from Eq. (14).

The constraint Eq. (15) requires the lattice to have some

sort of finite spatial dimension. As an example, a D-

dimensional cubic lattice with finite-range interactions

fulfills Eq. (15) with κ = D− 1. The constraint excludes

for example the Bethe lattice [33].

IV. TROTTER DECOMPOSITION OF THE
EVOLUTION

The quasi-locality of the dynamics, Theorem 2, im-

plies that the evolution of observables with a finite spa-

tial support can be solved efficiently on classical comput-

ers, in the sense that the computation cost is indepen-

dent of the system size, irrespective of the desired ac-

curacy. However, exploiting this in an exact diagonaliza-

tion approach that stores the approximated time-evolved

observable τV̄ (t, r)OY in a full basis of HV̄ exactly, re-

quires resources that are exponential in the size |V̄ | of

the considered subsystem. There are more sophisticated

numerical techniques, e.g., one can use matrix-product

operators [34–36] for the representation of (an approxi-

mation to) τV̄ (t, r)OY , or sampling algorithms. In such

schemes, it is typically not possible to address the differ-
ential equation for τV̄ (t, r)OY directly, but one can use

Trotter decompositions [24] instead, where propagators

τV̄ (t, r) are decomposed into a circuit of local (diameter-

a) channels.

Using the quasi-locality, Theorem 2, and techniques as

in Ref. [23], we can derive a Trotter decomposition with



Expanding the field operator in the Wannier basis of 
localized wave functions on each lattice site, yields :

Bose-Hubbard Hamiltonian

Tunnelmatrix element/Hopping element Onsite interaction matrix element
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The dynamics of an ultracold dilute gas of bosonic atoms in an optical lattice can be described

by a Bose-Hubbard model where the system parameters are controlled by laser light. We study the
continuous (zero temperature) quantum phase transition from the superfluid to the Mott insulator phase
induced by varying the depth of the optical potential, where the Mott insulator phase corresponds to
a commensurate filling of the lattice (“optical crystal”). Examples for formation of Mott structures
in optical lattices with a superimposed harmonic trap and in optical superlattices are presented.
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Optical lattices—arrays of microscopic potentials in-
duced by the ac Stark effect of interfering laser beams—
can be used to confine cold atoms [1–7]. The quantized
motion of such atoms is described by the vibrational mo-
tion within an individual well and the tunneling between
neighboring wells, leading to a spectrum describable as a
band structure [3]. Near-resonant optical lattices, where
dissipation associated with optical pumping produces
cooling, have given filling factors of about one atom per
ten lattice sites [1,6]. Higher filling factors will require
lower temperatures, and hence will also require mini-
mization of the optical dissipation. This can be achieved
in a far-detuned optical lattice (especially with blue detun-
ing), where photon scattering times of many minutes have
been demonstrated [2]. Thus the lattice then behaves as a
conservative potential, which could be loaded with a Bose
condensed atomic vapor [8,9], for which present densities
would correspond to tens of atoms per lattice site.
In this Letter we will study the dynamics of ultracold

bosonic atoms loaded in an optical lattice. We will show
that the dynamics of the bosonic atoms on the optical
lattices realizes a Bose-Hubbard model (BHM) [10–16],
describing the hopping of bosonic atoms between the
lowest vibrational states of the optical lattice sites, the
unique feature being the full control of the system’s
parameters by the laser parameters and configurations.
The BHM predicts phase transition from a superfluid

(SF) phase to a Mott insulator (MI) at low temperatures
and with increasing ratio of the on site interaction U

(due to repulsion of atoms) to the tunneling matrix
element J [10]. In the case of optical lattices this
ratio can be varied by changing the laser intensity: with
increasing depth of the optical potential the atomic wave
function becomes more and more localized and the on
site interaction increases, while at the same time the
tunneling matrix element is reduced. In the MI phase the
density (occupation number per site) is pinned at integer
n � 1, 2, . . . , corresponding to a commensurate filling of

the lattice, and thus represents an optical crystal with
diagonal long range order with the period imposed by the
laser light. The nature of the MI phase is reflected in the
existence of a finite gap U in the excitation spectrum.
Our starting point is the Hamilton operator for bosonic

atoms in an external trapping potential

H �
Z

d
3
x cy�x�

√
2

h̄
2

2m
=2 1 V0�x� 1 VT �x�

!
c�x�

1
1
2

4pash̄
2

m

Z
d

3
x cy�x�cy�x�c�x�c�x� , (1)

with c�x� a boson field operator for atoms in a given
internal atomic state, V0�x� is the optical lattice poten-
tial, and VT �x� describes an additional (slowly varying)
external trapping potential, e.g., a magnetic trap (see
Fig. 1a). In the simplest case, the optical lattice poten-
tial has the form V0�x� �

P3
j�1 Vj0 sin2�kxj� with wave

vectors k � 2p�l and l the wavelength of the laser
light, corresponding to a lattice period a � l�2. V0 is
proportional to the dynamic atomic polarizability times
the laser intensity. The interaction potential between the

FIG. 1. (a) Realization of the BHM in an optical lattice (see
text). The offset of the bottoms of the wells indicates a trapping
potential VT . (b) Plot of the scaled on site interaction U�ER

multiplied by a�as �¿1� (solid line; axis on left-hand side of
graph) and J�ER (dashed line; axis on right-hand side of graph)
as a function of V0�ER � Vx,y,z0�ER (3D lattice).
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of sub-femtosecond pump-probe interrogation
of strong-field phenomena opens exciting re-
search prospects. Real-time insight into multiple
ionization in multi- to single-cycle laser fields,
or into strong-field–induced electron correlations
in atoms, molecules, or solids (48, 49), are but a
few examples.

References and Notes
1. J. F. Whitaker et al., Microelectron. Eng. 12, 369

(1990).
2. L. Xu et al., Opt. Lett. 21, 2008 (1996).
3. T. Brabec, F. Krausz, Rev. Mod. Phys. 72, 545

(2000).
4. J. Reichert et al., Opt. Commun. 172, 59 (1999).
5. D. J. Jones et al., Science 288, 635 (2000).
6. S. A. Diddams et al., Phys. Rev. Lett. 84, 5102

(2000).
7. A. Apolonski et al., Phys. Rev. Lett. 85, 740 (2000).
8. T. Udem, R. Holzwarth, T. W. Hänsch, Nature 416, 233

(2002).
9. S. T. Cundiff, J. Ye, Rev. Mod. Phys. 75, 325 (2003).

10. A. Baltuška et al., Nature 421, 611 (2003).
11. M. Hentschel et al., Nature 414, 509 (2001).
12. R. Kienberger et al., Nature 427, 817 (2004).
13. G. Sansone et al., Science 314, 443 (2006).
14. E. Goulielmakis et al., Science 320, 1614 (2008).
15. M. F. Kling et al., Science 312, 246 (2006).
16. G. Sansone et al., Nature 465, 763 (2010).
17. M. Schultze et al., Science 328, 1658 (2010).
18. J. Mauritsson et al., Phys. Rev. Lett. 105, 053001

2010).
19. E. Goulielmakis et al., Nature 466, 739 (2010).

20. S. Zherebtsov et al., Nat. Phys., published online
24 April 2011 (10.1038/nphys1983).

21. P. Eckle et al., Science 322, 1525 (2008).
22. S. E. Harris, A. V. Sokolov, Phys. Rev. Lett. 81, 2894

(1998).
23. A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin,

S. E. Harris, Phys. Rev. Lett. 85, 562 (2000).
24. J. Q. Liang, M. Katsuragawa, F. L. Kien, K. Hakuta,

Phys. Rev. Lett. 85, 2474 (2000).
25. A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin,

S. E. Harris, Phys. Rev. Lett. 87, 033402 (2001).
26. T. Suzuki, M. Hirai, M. Katsuragawa, Phys. Rev. Lett. 101,

243602 (2008).
27. Z.-M. Hsieh et al., Phys. Rev. Lett. 102, 213902

(2009).
28. H.-S. Chan et al., Science 331, 1165 (2011).
29. R. K. Shelton et al., Science 293, 1286 (2001).
30. M. Yamashita, K. Yamane, R. Morita, IEEE J. Sel. Top.

Quantum Electron. 12, 213 (2006).
31. S. Rausch, T. Binhammer, A. Harth, F. X. Kärtner,

U. Morgner, Opt. Express 16, 17410 (2008).
32. G. Krauss et al., Nat. Photonics 4, 33 (2010).
33. K. Okamura, T. Kobayashi, Opt. Lett. 36, 226 (2011).
34. E. Goulielmakis et al., Science 317, 769 (2007).
35. E. Goulielmakis et al., Science 305, 1267 (2004).
36. This indicates that relative to the ground state

configuration, a hole (or electron vacancy) is created in
the nl−1j nl subshell, where j denotes the total angular
momentum and mj its projection on the z axis, the latter
being aligned with the laser polarization.

37. B. R. Mollow, Phys. Rev. A 5, 1522 (1972).
38. T. Unold, K. Mueller, C. Lienau, T. Elsaesser, A. D. Wieck,

Phys. Rev. Lett. 92, 157401 (2004).
39. C. H. B. Cruz, J. P. Gordon, P. C. Becker, R. L. Fork,

C. V. Shank, Int. J. Quant. Elec. 24, 261 (1988).

40. S. H. Autler, C. H. Townes, Phys. Rev. 100, 703
(1955).

41. B. J. Sussman, Am. J. Phys. 79, 477 (2011).
42. N. B. Delone, V. P. Krainov, Phys. Uspekhi 169, 753

(1999).
43. L. Greenman et al., Phys. Rev. A 82, 023406 (2010).
44. S. Pabst, L. Greenman, P. J. Ho, D. A. Mazziotti, R. Santra,

Phys. Rev. Lett. 106, 053003 (2011).
45. F. Remacle, M. Nest, R. D. Levine, Phys. Rev. Lett. 99,

183902 (2007).
46. M. Meckel et al., Science 320, 1478 (2008).
47. O. Smirnova et al., Nature 460, 972 (2009).
48. M. Gertsvolf, M. Spanner, D. M. Rayner, P. B. Corkum,

J. Phys. B 43, 131002 (2010).
49. M. Durach, A. Rusina, M. F. Kling, M. I. Stockman,

Phys. Rev. Lett. 105, 086803 (2010).
Acknowledgments: We acknowledge the development of

dedicated attosecond soft x-ray optics by M. Hofstetter
and U. Kleineberg (LMU, MPQ). This work was supported
by the Max Planck Society, the European Research
Council grant (Attoelectronics-258501), the Deutsche
Forschungsgemeinschaft Cluster of Excellence: Munich
Centre for Advanced Photonics (www.munich-photonics.de),
the King Saud University–MPQ collaboration, and the
European Research Training Network ATTOFEL.

Supporting Online Material
www.sciencemag.org/cgi/content/full/science.1210268/DC1
SOM Text
Figs. S1 to S10
References (50–59)

24 June 2011; accepted 30 August 2011
Published online 1 September 2011;
10.1126/science.1210268

REPORTS

Observation of Correlated Particle-Hole
Pairs andStringOrder in Low-Dimensional
Mott Insulators
M. Endres,1* M. Cheneau,1 T. Fukuhara,1 C. Weitenberg,1 P. Schauß,1 C. Gross,1 L. Mazza,1

M. C. Bañuls,1 L. Pollet,2 I. Bloch,1,3 S. Kuhr1,4

Quantum phases of matter are characterized by the underlying correlations of the many-body
system. Although this is typically captured by a local order parameter, it has been shown that a
broad class of many-body systems possesses a hidden nonlocal order. In the case of bosonic
Mott insulators, the ground state properties are governed by quantum fluctuations in the form of
correlated particle-hole pairs that lead to the emergence of a nonlocal string order in one
dimension. By using high-resolution imaging of low-dimensional quantum gases in an optical
lattice, we directly detect these pairs with single-site and single-particle sensitivity and
observe string order in the one-dimensional case.

The realization of strongly correlated quan-
tum many-body systems using ultracold
atoms has enabled the direct observation

and control of fundamental quantum effects
(1–3). A prominent example is the transition
from a superfluid (SF) to a Mott insulator (MI),
occurring when interactions between bosonic
particles on a lattice dominate over their ki-
netic energy (4–8). At zero temperature and in
the limit where the ratio of kinetic energy over

interaction energy vanishes, particle fluctua-
tions are completely suppressed and the lattice
sites are occupied by an integer number of par-
ticles. However, at a finite tunnel coupling but
still in the Mott insulating regime, quantum fluc-
tuations create correlated particle-hole pairs
on top of this fixed-density background, which
can be understood as virtual excitations. These
particle-hole pairs fundamentally determine the
properties of the MI, such as its residual phase

coherence (9), and lie at the heart of superexchange-
mediated spin interactions that form the basis of
quantum magnetism in multicomponent quan-
tum gas mixtures (10–12).

In a one-dimensional system, the appearance
of correlated particle-hole pairs at the transition
point from a SF to aMI is intimately connected to
the emergence of a hidden string-order param-
eter OP (13, 14):

O2
P ¼ lim

l→∞
O2

PðlÞ ¼ lim
l→∞

〈 ∏
k ≤ j ≤ kþl

eiπδ%nj 〉 ð1Þ

Here, δ%nj ¼ %nj − n denotes the deviation in
occupation of the jth lattice site from the
average background density, and k is an arbi-
trary position along the chain. In the simplest
case of a MI with unity filling (n ¼ 1), relevant
to our experiments, each factor in the product of
operators in Eq. 1 yields −1 instead of +1 when a
single-particle fluctuation from the unit back-

1Max-Planck-Institut für Quantenoptik, 85748 Garching,
Germany. 2Theoretische Physik, Eidgenössische Technische
Hochschule (ETH) Zurich, 8093 Zurich, Switzerland. 3Ludwig-
Maximilians-Universität, 80799 Munich, Germany. 4University
of Strathclyde, Scottish Universities Physics Alliance, Glasgow
G4 0NG, UK.

*To whom correspondence should be addressed. E-mail:
manuel.endres@mpq.mpg.de

14 OCTOBER 2011 VOL 334 SCIENCE www.sciencemag.org200

 o
n 

N
ov

em
be

r 1
8,

 2
01

1
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fro
m

 

of sub-femtosecond pump-probe interrogation
of strong-field phenomena opens exciting re-
search prospects. Real-time insight into multiple
ionization in multi- to single-cycle laser fields,
or into strong-field–induced electron correlations
in atoms, molecules, or solids (48, 49), are but a
few examples.
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Observation of Correlated Particle-Hole
Pairs andStringOrder in Low-Dimensional
Mott Insulators
M. Endres,1* M. Cheneau,1 T. Fukuhara,1 C. Weitenberg,1 P. Schauß,1 C. Gross,1 L. Mazza,1

M. C. Bañuls,1 L. Pollet,2 I. Bloch,1,3 S. Kuhr1,4

Quantum phases of matter are characterized by the underlying correlations of the many-body
system. Although this is typically captured by a local order parameter, it has been shown that a
broad class of many-body systems possesses a hidden nonlocal order. In the case of bosonic
Mott insulators, the ground state properties are governed by quantum fluctuations in the form of
correlated particle-hole pairs that lead to the emergence of a nonlocal string order in one
dimension. By using high-resolution imaging of low-dimensional quantum gases in an optical
lattice, we directly detect these pairs with single-site and single-particle sensitivity and
observe string order in the one-dimensional case.

The realization of strongly correlated quan-
tum many-body systems using ultracold
atoms has enabled the direct observation

and control of fundamental quantum effects
(1–3). A prominent example is the transition
from a superfluid (SF) to a Mott insulator (MI),
occurring when interactions between bosonic
particles on a lattice dominate over their ki-
netic energy (4–8). At zero temperature and in
the limit where the ratio of kinetic energy over

interaction energy vanishes, particle fluctua-
tions are completely suppressed and the lattice
sites are occupied by an integer number of par-
ticles. However, at a finite tunnel coupling but
still in the Mott insulating regime, quantum fluc-
tuations create correlated particle-hole pairs
on top of this fixed-density background, which
can be understood as virtual excitations. These
particle-hole pairs fundamentally determine the
properties of the MI, such as its residual phase

coherence (9), and lie at the heart of superexchange-
mediated spin interactions that form the basis of
quantum magnetism in multicomponent quan-
tum gas mixtures (10–12).

In a one-dimensional system, the appearance
of correlated particle-hole pairs at the transition
point from a SF to aMI is intimately connected to
the emergence of a hidden string-order param-
eter OP (13, 14):

O2
P ¼ lim

l→∞
O2

PðlÞ ¼ lim
l→∞

〈 ∏
k ≤ j ≤ kþl

eiπδ%nj 〉 ð1Þ

Here, δ%nj ¼ %nj − n denotes the deviation in
occupation of the jth lattice site from the
average background density, and k is an arbi-
trary position along the chain. In the simplest
case of a MI with unity filling (n ¼ 1), relevant
to our experiments, each factor in the product of
operators in Eq. 1 yields −1 instead of +1 when a
single-particle fluctuation from the unit back-
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averaging effect over different local chemical
potentials. The increased strength of the cor-
relations and the larger shift of the maximum of
the correlations relative to the critical point in
the one-dimensional case directly reflect the
more prominent role of quantum fluctuations in
lower dimensions. This can also be seen from the
on-site fluctuations C(d = 0) at the critical point,
which are increased in the one-dimensional case
(24). In both the one-dimensional and the two-
dimensional systems, two-site correlations are
expected to decay strongly with distance. Our
data for the next-nearest-neighbor correlations
C(d = 2) are consistent with this predicted be-
havior (24).

In addition to two-site correlations, we eval-
uated string-type correlatorsO2

P(l ) ¼ 〈∏kþl
j¼k %sj 〉

(Eq. 1 and Fig. 1B) in our one-dimensional sys-
tems, where the product is calculated over a chain
of length l + 1. In the simplest case of a zero-
temperature MI at J/U = 0, no fluctuations exist
and thereforeO2

P(l ) ¼ 1. As J/U increases, fluc-
tuations in the form of particle-hole pairs appear.
Whenever a certain number of particle-hole pairs
lies completely within the region covered by
the string correlator, the respective minus signs
cancel pairwise. However, there is also the pos-
sibility that a particle-hole pair is cut by one end
of the string correlator, for example, when a
particle exists at position < k and the corre-
sponding hole has a position ≥ k, resulting in an
unpaired minus sign. As a consequence, O2

P(l )
decreases with increasing J/U because the prob-

ability to cut particle-hole pairs becomes larger.
Finally, at the transition to the SF phase, the
pairs begin to deconfine and overlap, resulting
in a completely random product of signs and
O2

P ¼ 0.
To support this intuitive argument, we calcu-

lated O2
P(l ) numerically by using density-matrix

renormalization group (DMRG) in a homoge-

neous system at T = 0. We show O2
PðlÞ in Fig. 3

for selected distances of l together with the extra-
polated values of O2

P = liml→∞O2
PðlÞ (Fig. 3 inset),

which we computed by using finite-size scaling
(24). We performed a fit to the extrapolated values
close to the critical point with an exponential scal-
ing O2

P º expf−A[(J /U )1dc − (J /U )]−1=2g char-
acteristic for a transition of BKT type (Fig. 3)

Fig. 3. Numerical calculation of the string-order parameter.O2
P(l) is shown as a function of J/U calculated

with DMRG for a homogeneous chain (n̄ = 1, T = 0) of total length 216. Lines show O2
P(l) for selected l

(black to red colors). (Inset) Extrapolated values of O2
P = liml→∞O2

P(l) together with a fit (black line) of the

formO2
P ºexp f−A [ ( J/U )c1d − ( J/U ) ]−1/2g, characteristic for a transition of BKT type (24).

Fig. 2. Nonlocal parity correlations. (A) (Top) Typical experimental fluo-
rescence images for J/U = 0.06 (1), J/U = 0.11 (2), and J/U = 0.3 (3) for the
one-dimensional geometry. (Bottom) Reconstructed on-site parity. Particle-
hole pairs are emphasized by a yellow shading in (1). For increased J/U, the
pairs start to proliferate, and an identification in a single experimental image
becomes impossible (2 and 3). (B) One-dimensional nearest-neighbor
correlations C(d = 1) as a function of J/U along the x (red circles) and y
directions (blue circles). The curves are first-order perturbation theory
(dashed-dotted line), DMRG calculations for a homogeneous system at T =
0 (dashed line), and finite-temperature MPS calculations including
harmonic confinement at T = 0.09 U/kB (solid line). (C) Parity correlations
in two dimensions. Symbols have the same meaning as in (B). The curves
are first-order perturbation theory (dashed-dotted line) and QMC
calculations for a homogeneous system at T = 0.01 U/kB (dashed line)
and at T = 0.1 U/kB (solid line). Each data point is an average over the
central nine-by-seven lattice sites from 50 to 100 pictures. The error bars
denote the 1s statistical uncertainty. The light blue shading highlights the SF phase.
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ground density is encountered. In the SF, particle
and hole fluctuations occur independently and
are uncorrelated, such that OP ¼ 0. However,
in the Mott insulating phase, density fluctua-
tions always occur as correlated particle-hole
pairs, resulting in OP ≠ 0. For a homogeneous
system, OP is expected to follow a scaling of
Berezinskii-Kosterlitz-Thouless (BKT) type (15).
Nonlocal correlation functions, like the string-
order parameter defined above, have been in-
troduced in the context of low-dimensional quantum
systems. They classify many-body quantum
phases that are not amenable to a description
through a local order parameter, typically used
in the Landau paradigm of phase transitions.
Examples include spin-1 chains (16) and spin-
1/2 ladders (17), fermionic Mott and band
insulators (18), and Haldane insulators in one-
dimensional Bose gases (13, 14). Recently, the
intimate connection of string order and local
symmetries has been uncovered (19), and wide-
ranging classification schemes for quantum
phases using such symmetry principles have
been introduced (20, 21). We show that corre-
lated particle-hole pairs and string order can be
directly detected by using single-atom–resolved
images of strongly correlated ultracold quantum
gases (22, 23).

We prepared a two-dimensional degenerate
gas of ultracold 87Rb atoms before shining in
a two-dimensional square optical lattice (lattice
spacing alat = 532 nm) with variable lattice
depths in x and y directions (23, 24). A micro-
scope objective with a resolution comparable
to the lattice spacing was used for fluorescence
detection of individual atoms. Because inelas-
tic light-assisted collisions during the imaging
lead to a rapid loss of atom pairs, our scheme
detects the parity of the atom number. We used
an algorithm to deconvolve the images, yielding
single-site–resolved information of the on-site
parity. Typically, our samples contained 150 to
200 atoms in order to avoid MIs of occupation
numbers n > 1.

To detect particle-hole pairs, we evaluated
two-site parity correlation functions (25)

CðdÞ ¼ 〈 %sk %skþd〉 − 〈 %sk 〉 〈 %skþd〉 ð2Þ

where %sk ¼ eiπδ%nk is the parity operator at site k
and d is the distance between the lattice sites. For
the case of n ¼ 1, %sk yields +1 for an odd occu-
pation number nk and −1 for an even nk. If a
particle-hole pair exists on sites k and k + d, the
same parity s(nk) = s(nk+d) = −1 is detected
(Fig. 1). The existence of correlated particle-hole
pairs therefore leads to an increase of 〈 %sk %skþd〉
above the factorized form 〈 %sk 〉 〈 %skþd〉, which re-
sults from uncorrelated fluctuations, for exam-
ple, because of thermal excitations. We obtained
C(d ) from our deconvolved images by an aver-
age over many experimental realizations and
by an additional average over k in a central
region of interest.

We first analyzed two-site parity correlations
in one-dimensional systems (Fig. 2, A and B). To
create isolated one-dimensional tubes, we kept
the lattice axis along y at a constant depth of Vy =
17(1) Er, where Er ¼ h2/(8ma2lat) denotes the re-
coil energy and m is the atomic mass of 87Rb.
Experimental uncertainties are marked as terms
in parentheses following numerical values. We
recorded the nearest-neighbor correlationsC(d=1)
for different values of J/U along the direction of
the one-dimensional tubes (red circles in Fig. 2B),
where J and U are the tunneling matrix element
and the on-site interaction energy in the Bose-
Hubbard model, respectively (24). For small J/U,
the nearest-neighbor correlations vanish, because
only uncorrelated thermal excitations exist deep
in the MI regime. Because particle-hole pairs
emerge with increasing J/U, we observe an in-
crease of nearest-neighbor correlations until a
peak value is reached,well before the critical value
(J /U )1dc ≈ 0:3 (26, 27) for the one-dimensional
SF-MI transition. The observed signal is a gen-
uine quantum effect because thermally induced

particle-hole pairs extend over arbitrary distances
and are therefore uncorrelated. Their presence
leads to a reduction of the correlation signal. We
found no correlations when performing the same
analysis perpendicular to the one-dimensional
tubes (blue circles in Fig. 2B), showing that the
coupling between the tubes was negligible.

Our data show very good agreement with
ab initio finite-temperature matrix product state
(MPS) calculations (28, 29) at temperature T =
0.09 U/kB (where kB is Boltzman’s constant)
(Fig. 2A, solid line) that also take into account
our harmonic trapping potential with frequency
w/(2π) = 60(1) Hz. Compared with a homoge-
neous system at T = 0 (dashed line), the ex-
perimental signal is reduced, especially around
the maximum. This reduction can be attributed in
equal parts to the finite temperature of our system
and the averaging over different local chemical
potentials. The latter is especially severe in the
one-dimensional case owing to the narrow width
of the Mott lobe for n ¼ 1 close to the critical
point (15). Interestingly, the growth of particle-
hole correlationsº J2/U2 expected from first-
order perturbation theory (24) is limited to very
small values, J/U < 0.05, before deviations in
the experiment and the numerical simulations
are observed.

Because the dimensionality of the system
plays an important role in its correlation properties,
we also measured the two-site parity correlations
across the two-dimensional SF-MI transition by
simultaneously varying J/U along both lattice axes
(Fig. 2C). In contrast to the one-dimensional case,
we now observe the same nearest-neighbor cor-
relations within our error bars along both axes.
The maximum correlations are smaller than in
one dimension, and the peak value is now reached
around the critical value (J /U )2dc ≈ 0:06 (30).
We compared our data with quantum Monte
Carlo (QMC) simulations for a homogeneous
system at T = 0.1U/kB (solid line in Fig. 2C) and
found good quantitative agreement. Here, the
broader shape of the Mott lobe leads to a weaker

Fig. 1. Quantum-correlated particle-hole pairs in one-dimensional MIs. (A) In
a two-dimensional array of atoms (blue circles), decoupled one-dimensional
systems were created by suppressing tunneling along the y direction. Quantum
fluctuations then only induce correlated particle-hole excitations (yellow

ellipses) along the x direction of the one-dimensional MIs. (B) Such correlated
fluctuations in the occupation nj% are detected in the experiment as correlated
fluctuations in the parity sj% . The light red bar in (A) marks the one-dimensional
chain chosen in (B) for further explanations.
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Single-spin addressing in an atomic Mott
insulator
Christof Weitenberg1, Manuel Endres1, Jacob F. Sherson1{, Marc Cheneau1, Peter Schauß1, Takeshi Fukuhara1, Immanuel Bloch1,2

& Stefan Kuhr1

Ultracold atoms in optical lattices provide a versatile tool with which to investigate fundamental properties of quantum
many-body systems. In particular, the high degree of control of experimental parameters has allowed the study ofmany
interesting phenomena, such as quantumphase transitions and quantumspin dynamics. Herewedemonstrate how such
control can be implemented at the most fundamental level of a single spin at a specific site of an optical lattice. Using a
tightly focused laser beam together with a microwave field, we were able to flip the spin of individual atoms in a Mott
insulator with sub-diffraction-limited resolution, well below the lattice spacing. The Mott insulator provided us with a
large two-dimensional array of perfectly arranged atoms, in which we created arbitrary spin patterns by sequentially
addressing selected lattice sites after freezing out the atom distribution. We directly monitored the tunnelling quantum
dynamics of single atoms in the lattice prepared along a single line, and observed that our addressing scheme leaves the
atoms in themotional ground state. The results should enable studies of entropy transport and the quantum dynamics of
spin impurities, the implementation of novel cooling schemes, and the engineering of quantummany-body phases and
various quantum information processing applications.

The ability to observe and control the position of single atoms on a
surface of a solid by means of scanning tunnelling and atomic force
microscopy has revolutionized the field of condensedmatter physics1,2.
In few-atom systems, coherent control of single particles in, for
example, an ion chain, has proven crucial for the implementation of
high-fidelity quantum gates and the readout of individual qubits in
quantum information processing3. Bringing such levels of control to
the regime of large-scale many-body systems has been a long-standing
goal in quantum physics. In the context of ultracold atoms in optical
lattices, a major challenge has been to combine degenerate atomic
samples with single-site addressing resolution and single-atom sensi-
tivity. This full control is essential for many applications in condensed
matter physics, such as the study of spin impurities4 and quantum spin
dynamics5,6 within quantummagnetism, entropy transport, the imple-
mentation of novel cooling schemes7,8 or digital quantum simulations
based on Rydberg atoms9. For scalable quantum information proces-
sing, a Mott insulator with unity filling provides a natural quantum
register with several hundreds of qubits. In order to exploit the full
potential of such a large-scale system for quantum computation, coher-
ent manipulation of individual spins is indispensable, both within a
circuit-based10 or a one-way quantum computer architecture11,12.
The quest to address atoms on single sites of an optical lattice has a

long history7,13–22. In one dimension, single-site addressing has been
accomplished optically in a long-wavelength lattice23, inwhichhowever
tunnelling was completely suppressed, and also by using magnetic
resonance techniques in a sparsely filled short-wavelength lattice24,25.
In two dimensions, an electron beam has been used to depopulate sites
of a Bose–Einstein condensate loaded into an array of potential tubes,
each containing up to 80 atoms26. In this case, coherent spinmanipula-
tionwas not possible and the readout was done by averaging overmore
than 100 single images. None of the experiments so far have shown
single-atom spin control in strongly correlated systems together with
high fidelity single-atom detection.

Here we report the achievement of this goal, by demonstrating
single-site-resolved addressing and control of the spin states of indi-
vidual atoms in a Mott insulator in an optical lattice. The Mott insu-
lator provided us with an almost perfect initial two-dimensional array
of atoms in the same spin state. Apart from a few thermal defects, each
lattice site contained a single atom in its motional ground state27,28.
Using a tightly focused laser beam, we introduced a controlled differ-
ential energy shift between two atomic spin states at a given lattice site.
Microwave radiation resonant with this shifted transition then
allowed us to selectively address the spin of a single atom7,17 with high
fidelity. We thereby obtained sub-diffraction-limited spatial resolu-
tion well below the lattice spacing. By moving the addressing laser
beam to different lattice sites and by inducing spin-flips in the Mott
insulator, we were able to deterministically create arbitrary two-
dimensional spin patterns of individual atoms, thereby realizing a
scalable single-atom source29–31. Furthermore, we investigated how
much our single-spin manipulation affects the motional state of the
atoms by directly monitoring the tunnelling dynamics of single atoms
after addressing them. Averaging over several snapshots after differ-
ent tunnelling times, we fully reconstructed the characteristic spatial
probability distribution of the single-atom wavefunction and its
coherent evolution over more than 20 lattice sites. We were able to
discriminate the dynamics of the atoms in the zeroth and in the first
band and found that most of the atoms remained in the motional
ground state after addressing.

Experimental set-up
In our experiments, we prepared a two-dimensional sample of ultracold
87Rb atoms inanoptical lattice, confined ina single antinodeof a vertical
standing wave along the z direction. Two pairs of counterpropagating
laser beams (wavelength l5 1,064nm) along the horizontal x and y
directions provided a square lattice with period of alat5 l/25 532 nm
(for details, see ref. 28). Starting from a Bose–Einstein condensate, we

1Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany. 2Ludwig-Maximilians-Universität, Schellingstr. 4/II, 80799 München, Germany. {Present address:
Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark.
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The ability to observe and control the position of single atoms on a
surface of a solid by means of scanning tunnelling and atomic force
microscopy has revolutionized the field of condensedmatter physics1,2.
In few-atom systems, coherent control of single particles in, for
example, an ion chain, has proven crucial for the implementation of
high-fidelity quantum gates and the readout of individual qubits in
quantum information processing3. Bringing such levels of control to
the regime of large-scale many-body systems has been a long-standing
goal in quantum physics. In the context of ultracold atoms in optical
lattices, a major challenge has been to combine degenerate atomic
samples with single-site addressing resolution and single-atom sensi-
tivity. This full control is essential for many applications in condensed
matter physics, such as the study of spin impurities4 and quantum spin
dynamics5,6 within quantummagnetism, entropy transport, the imple-
mentation of novel cooling schemes7,8 or digital quantum simulations
based on Rydberg atoms9. For scalable quantum information proces-
sing, a Mott insulator with unity filling provides a natural quantum
register with several hundreds of qubits. In order to exploit the full
potential of such a large-scale system for quantum computation, coher-
ent manipulation of individual spins is indispensable, both within a
circuit-based10 or a one-way quantum computer architecture11,12.
The quest to address atoms on single sites of an optical lattice has a

long history7,13–22. In one dimension, single-site addressing has been
accomplished optically in a long-wavelength lattice23, inwhichhowever
tunnelling was completely suppressed, and also by using magnetic
resonance techniques in a sparsely filled short-wavelength lattice24,25.
In two dimensions, an electron beam has been used to depopulate sites
of a Bose–Einstein condensate loaded into an array of potential tubes,
each containing up to 80 atoms26. In this case, coherent spinmanipula-
tionwas not possible and the readout was done by averaging overmore
than 100 single images. None of the experiments so far have shown
single-atom spin control in strongly correlated systems together with
high fidelity single-atom detection.

Here we report the achievement of this goal, by demonstrating
single-site-resolved addressing and control of the spin states of indi-
vidual atoms in a Mott insulator in an optical lattice. The Mott insu-
lator provided us with an almost perfect initial two-dimensional array
of atoms in the same spin state. Apart from a few thermal defects, each
lattice site contained a single atom in its motional ground state27,28.
Using a tightly focused laser beam, we introduced a controlled differ-
ential energy shift between two atomic spin states at a given lattice site.
Microwave radiation resonant with this shifted transition then
allowed us to selectively address the spin of a single atom7,17 with high
fidelity. We thereby obtained sub-diffraction-limited spatial resolu-
tion well below the lattice spacing. By moving the addressing laser
beam to different lattice sites and by inducing spin-flips in the Mott
insulator, we were able to deterministically create arbitrary two-
dimensional spin patterns of individual atoms, thereby realizing a
scalable single-atom source29–31. Furthermore, we investigated how
much our single-spin manipulation affects the motional state of the
atoms by directly monitoring the tunnelling dynamics of single atoms
after addressing them. Averaging over several snapshots after differ-
ent tunnelling times, we fully reconstructed the characteristic spatial
probability distribution of the single-atom wavefunction and its
coherent evolution over more than 20 lattice sites. We were able to
discriminate the dynamics of the atoms in the zeroth and in the first
band and found that most of the atoms remained in the motional
ground state after addressing.

Experimental set-up
In our experiments, we prepared a two-dimensional sample of ultracold
87Rb atoms inanoptical lattice, confined ina single antinodeof a vertical
standing wave along the z direction. Two pairs of counterpropagating
laser beams (wavelength l5 1,064nm) along the horizontal x and y
directions provided a square lattice with period of alat5 l/25 532 nm
(for details, see ref. 28). Starting from a Bose–Einstein condensate, we

1Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany. 2Ludwig-Maximilians-Universität, Schellingstr. 4/II, 80799 München, Germany. {Present address:
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atoms, which ideally should remain unaffected. For this purpose, we
monitored the probability of finding a hole at the sites next to the
addressed ones (dark blue regions in Fig. 3a, b and points in Fig. 3c). In
order to distinguish accidentally flipped neighbouring atoms from
holes that originate from thermal excitations of the initial Mott insu-
lator28, we also monitored the probability of finding a hole at the
second next neighbours (light blue regions and points in Fig. 3). As
both yielded the same hole probability of 6(2)%, we attribute all holes
to thermal excitations and conclude that the probability of addressing
a neighbouring atom is indiscernibly small. We fitted the hole prob-
ability p0(dx) of the addressed site with a flat-top model function (see
Methods), keeping the offset fixed at the thermal contribution of 6%.
From the fit, we derived a spin-flip fidelity of 95(2)%, an FWHM of
sa5 330(10) nm and an edge sharpness of ss5 50(10) nm (Fig. 3c).
These values correspond to 60% and 10% of the addressing beam
diameter, demonstrating that our method reaches sub-diffraction-
limited resolution, well below the lattice spacing.
The observedmaximum spin-flip fidelity is currently limited by the

population transfer efficiency of our microwave sweep. The edge
sharpness ss originates from the beam pointing error of = 0.1 alat
and from variations in the magnetic bias field. The latter causes fre-
quency fluctuations of ,5 kHz, which translate into an effective
pointing error of 0.05 alat at the maximum slope of the addressing
beam profile. The resolution sa could in principle be further reduced
by a narrower microwave sweep, at the cost of a larger sensitivity to
the magnetic field fluctuations. A larger addressing beam power
would reduce this sensitivity, but we observed that this deformed
the lattice potential, owing to the imperfect s2-polarization, allowing
neighbouring atoms to tunnel to the addressed sites.

Coherent tunnelling dynamics
The preparation of an arbitrary atom distribution opens up new pos-
sibilities for exploring coherent quantum dynamics at the single-atom
level. As an example, we studied the tunnelling dynamics in a one-
dimensional lattice (Fig. 4) which allowed us to determine how much
our addressing scheme affects the vibrational state of the atoms. We
started by preparing a single line of up to 18 atoms along the y direction
before we lowered the lattice along the x direction to Vx5 5.0(5) Er

within 200ms. At the same time, the other lattices were lowered to
Vy5 30 Er and Vz5 23 Er, which reduced the external confinement
along the x direction, but still suppressed tunnelling in the y and z
directions. After a varying hold time t, allowing the atoms to tunnel
along x, the atomic distributionwas frozenby a rapid 100ms rampof all
lattice axes to 56–90 Er. By averaging the resulting atomic distribution
along the y direction and repeating the experiment several times, we
obtained the probability distribution of finding an atom at the different
lattice sites (Fig. 4, bottom row).
This probability distribution samples the single-atom wave-

function after a coherent tunnelling evolution. We observed how
the wavefunction expands in the lattice and how the interference of
different paths leads to distinct maxima and minima in the distri-
bution, leaving for example almost no atoms at the initial position
after a single tunnelling time (Fig. 4c). This behaviour differs mark-
edly from the evolution in free space, where a Gaussian wave packet
disperses without changing its shape, always preserving a maximum
probability in the centre. For longer hold times, an asymmetry in the
spatial distribution becomes apparent (Fig. 4d), which originates from
an offset between the bottom of the external harmonic confinement
and the initial position of the atoms.
We describe the observed tunnelling dynamics by a simple

Hamiltonian including the tunnel coupling J(0) between twoneighbour-
ing sites and an external harmonic confinement, parameterized by the
trap frequencyvtrap, and the position offset xoffs (Methods). A single fit
to all probability distributions recorded at different hold times yields
J(0)/B5 940(20)Hz, vtrap/(2p)5 103(4)Hz and xoffs526.3(6) alat.
This is in agreement with the trap frequency vtrap/(2p)5 107(2)Hz
obtained froman independentmeasurement via excitationof thedipole
mode without the x lattice, whose contribution to the external confine-
ment is negligible compared to the other two axes. From J(0), we calcu-
lated a lattice depth ofVx5 4.6(1)Er, which agreeswith an independent
calibration via parametric heating. The expansion of the wave packet
can also be understood by writing the initial localized wavefunc-
tion as a superposition of all Bloch waves of quasi-momentum Bq,
with 2p/alat# q#p/alat. To each quasi-momentum Bq, one can
assign a velocity vq~ 1

B
LE
Lq, determined by the dispersion relation

E(q)522J(0) cos(qalat) of the lowest band. The edges of the wave
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Figure 2 | Single-site addressing. a, Top, experimentally obtained
fluorescence image of a Mott insulator with unity filling in which the spin of
selected atoms was flipped from |0æ to | 1æ using our single-site addressing
scheme. Atoms in state | 1æ were removed by a resonant laser pulse before
detection. Bottom, the reconstructed atom number distribution on the lattice.
Each filled circle indicates a single atom; the pointsmark the lattice sites.b, Top,
as for a except that a global microwave sweep exchanged the population in | 0æ

and |1æ, such that only the addressed atoms were observed. Bottom, the
reconstructed atom number distribution shows 14 atoms on neighbouring
sites. c–f, As for b, but omitting the atom number distribution. The images
contain 29 (c), 35 (d), 18 (e) and 23 (f) atoms. The single isolated atoms in
b, e and fwere placed intentionally to allow for the correct determination of the
lattice phase for the feedback on the addressing beam position.
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Single-atom-resolved fluorescence imaging of an
atomic Mott insulator
Jacob F. Sherson1*{, Christof Weitenberg1*, Manuel Endres1, Marc Cheneau1, Immanuel Bloch1,2 & Stefan Kuhr1

The reliable detection of single quantumparticles has revolutionized
the field of quantum optics and quantum information processing.
For several years, researchers have aspired to extend such detection
possibilities to larger-scale, strongly correlated quantum systems1,2

in order to record in situ images of a quantum fluid in which each
underlying quantum particle is detected. Here we report fluor-
escence imaging of strongly interacting bosonic Mott insulators in
an optical lattice with single-atom and single-site resolution. From
our images, we fully reconstruct the atom distribution on the lattice
and identify individual excitations with high fidelity. A comparison
of the radial density and variance distributions with theory provides
a precise in situ temperature and entropy measurement from single
images.WeobserveMott-insulatingplateauswithnear-zero entropy
and clearly resolve the high-entropy rings separating them, even
though their width is of the order of just a single lattice site.
Furthermore, we show how a Mott insulator melts with increasing
temperature, owing to a proliferation of local defects. The ability to
resolve individual lattice sites directly opens up new avenues for the
manipulation, analysis and applications of strongly interacting
quantum gases on a lattice. For example, one could introduce local
perturbations or access regions of high entropy, a crucial require-
ment for the implementation of novel cooling schemes3.

Ultracold atoms in optical lattices have proved to be powerful
simulators for the investigation of the static quantum phases and
dynamical evolutions of strongly correlated quantum many-body
systems. Prominent examples include the quantum phase transition
from a superfluid to a Mott insulator4–7 and the fermionized Tonks–
Girardeau gas for bosonic particles8,9, as well as the recently realized
fermionic Mott insulator10,11. In all these cases, the strong interactions
between the particles compared to their kinetic energy generate intri-
guinghighly correlatedquantumstates that are of fundamental interest
in condensed matter physics and promising for practical applications
in quantum information science. Formany of these applications it is of
crucial importance to image the correlated many-body systems with
single-atom and single-site resolution. One could then, for example,
probe the evolution from a Poissonian atom number distribution into
highly number-squeezed Fock states on a lattice not only globally12 but
also on a local scale. Furthermore, one shouldbe able to observe critical
phenomena directly in the in situ density or in spin-resolved images of
the particles when approaching a quantum critical point. For applica-
tions in quantum information science, it is essential to address and
manipulate single atoms on individual lattice sites. A prominent
example is the one-way quantum computer13, in which local single-
particlemeasurements and operations are carried out after a successful
global entanglement operation that creates a highly correlated cluster
state.

Over the past years tremendous progress has beenmade in the high-
resolution and single-atomsensitivedetectionof atomsona lattice14–18.

However, it has only now become possible to apply these techniques
to the detection of strongly correlated quantum systems, in this work
and in the work of ref. 19. Here we report on in situ fluorescence
imaging of a Mott insulator with single-atom and single-site resolu-
tion. From a single image, we reconstruct the atom distribution on the
lattice and individual thermal excitations of theMott insulator become
directly visible. This allowsus to observe the number squeezing and the
quality of an atomicMott insulator down to a single lattice site. Using a
simple model20,21, we characterize the average density distribution and
number fluctuations of the quantum system, and use this for an in situ
temperature measurement. We find excellent agreement with our
theory, which assumes global thermal equilibrium. Furthermore, we
show how the incompressible Mott phase evolves into a compressible
normal phase as the temperature is increased.

Our experiments start with an almost pure two-dimensional Bose–
Einstein condensate7 (BEC) of up to a few thousand 87Rb atoms, pre-
pared in a single pancake-shaped antinodeof a vertical optical standing
wave (beam waist w05 75mm) oriented along the z axis (see Fig. 1).
The lattice depthwasVz5 26(2)Er (the number in parentheses denotes
the 1s uncertainty of the last digit), where Er5 h2/(2ml2) is the recoil
energy,mdenotes the atomicmassof 87Rb andl the latticewavelength.
Additional beams along the x and y directions were used to load the
two-dimensional quantum gas into an optical lattice. All lattice beams
had a wavelength of l5 1,064 nm, resulting in a lattice period of
532 nm.We detected the atoms in the lattice by high-resolution fluor-
escence imaging through a specially designed microscope objective
with a numerical aperture of NA5 0.68 and an optical resolution
(full-width at half-maximum) of about 700nm at a wavelength of
780 nm. For detection, the lattice depths along all three directions were
increased to Vx,y,z/kB< 300mK before an optical molasses induced
fluorescence and simultaneously laser-cooled the atoms14,18 (see
Methods). In the low-density thermal clouds (inset inFig. 1) individual
atoms are directly visible above an almost indiscernible background
and their positions have a discrete spacing given by our lattice period
(see Supplementary Information). During the imaging, atom pairs on
a lattice site are immediately lost owing to inelastic light-induced colli-
sions22. We therefore detect only the particle number modulo two on
each lattice site. This amounts to recording the parity of the atom
number.

The two-dimensional lattice gases used in our experiments are well
described by the Bose–Hubbard model, in which particles are
restricted to occupy the lowest-energy band of the lattice and their
kinetic energy is characterized by a tunnelling matrix element J and
an on-site two-particle interaction energy U (see refs 1 and 2). For a
BEC loaded into a weak lattice potential, U=J = 1, one expects a
Poissonian atom number distribution on a lattice site i, because the
classical coherent matter wave field of a BEC is characterized by
Glauber’s coherent states. Such states, with an average filling of !nni

1Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, D-85748 Garching, Germany. 2Ludwig-Maximilians-Universität, Schellingstraße 4/II, D-80799 München,
Germany. {Present address: Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark.
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FIG. 1. Spreading of correlations in a quenched atomic
Mott insulator. a, A 1d ultracold gas of bosonic atoms
(black balls) in an optical lattice is initially prepared deep
in the Mott-insulating phase with unity filling. The lattice
depth is then abruptly lowered, bringing the system out of
equilibrium. b, Following the quench, entangled quasiparticle
pairs emerge at all sites. Each of these pairs consists of a
doublon (red ball) and a holon (blue ball) on top of the unity-
filling background, which propagate ballistically in opposite
directions. It follows that a correlation in the parity of the
site occupancy builds up at time t between any pair of sites
separated by a distance d = vt, where v is the relative velocity
of the doublons and holons.

mentum k, respectively, and k belongs to the first Bril-
louin zone. Quasiparticles thus emerge at any site in the
form of entangled pairs, consisting of a doublon and a
holon with opposite momenta. Some of these pairs are
bound on nearest-neighbour sites while the others form
wave packets, due to their peaked momentum distribu-
tion. The wave packets propagate in opposite directions
with a relative group velocity v determined by the dis-
persion relation �d(k) + �h(−k) of doublons and holons
(Fig. 1b). The propagation of quasiparticle pairs is re-
flected in the two-point parity correlation functions [21]:

Cd(t) = �ŝj(t)ŝj+d(t)� − �ŝj(t)��ŝj+d(t)� , (2)

where j labels the lattice sites. The operator ŝj(t) =
eiπ[n̂j(t)−n̄] measures the parity of the occupation number
n̂j(t). It yields +1 in the absence of quasiparticles (odd
occupancy) and -1 if a quasiparticle is present (even occu-
pancy). Because the initial state is close to a Fock state
with one atom per lattice site, we expect Cd(t = 0) � 0.
After the quench, the propagation of quasiparticle pairs
with the relative velocity v results in a positive correla-
tion between any pair of sites separated by a distance
d = vt.

The experimental sequence started with the prepara-
tion of a two-dimensional (2d) degenerate gas of 87Rb
confined in a single antinode of a vertical optical lattice
[17, 21] (z-axis, alat = 532nm). The system was then
divided into about 10 decoupled 1d chains by adding a
second optical lattice along the y-axis and by setting both

lattice depths to 20.0(5)Er, where Er = (2π�)2/(8ma2lat)
is the recoil energy of the lattice and m the atomic mass of
87Rb. The effective interaction strength along the chains
was tuned via a third optical lattice along the x-axis. The
number of atoms per chain ranged between 10 and 18, re-
sulting in a lattice filling n̄ = 1 in the Mott-insulating do-
main. The inital state was prepared by adiabatically in-
creasing the x-lattice depth until the interaction strength
reached a value of (U/J)0 = 40(2). We then brought the
system out of equilibrium by lowering the lattice depth
typically within 100 µs, which is fast compared to the
inverse tunnel coupling �/J , but still adiabatic with re-
spect to transitions to higher Bloch bands. The final
lattice depths were in the Mott-insulating regime, close
to the critical point. After a variable evolution time, we
“froze” the density distribution of the many-body state
by rapidly raising the lattice depth in all directions to
∼ 80Er. Finally, the atoms were detected by fluorescence
imaging using a microscope objective with a resolution
on the order of the lattice spacing and a reconstruction
algorithm extracted the occupation number at each lat-
tice site [17]. Because inelastic light-assisted collisions
during the imaging lead to a rapid loss of atom pairs, we
directly detected the parity of the occupation number.

Our experimental results for the time evolution of the
two-point parity correlations after a quench to U/J =
9.0(3) show a clear positive signal propagating with in-
creasing time to larger distances d (Fig. 2). In addition,
the propagation velocity of the correlation signal is con-
stant over the range 2 ≤ d ≤ 6 (inset of Fig. 2). We found
similar dynamics also for quenches to U/J = 5.0(2) and
7.0(3) (Fig. 4). We note that the observed signal can-
not be attributed to a simple density wave because such
an excitation would result in �ŝj ŝj+d� = �ŝj��ŝj+d�. We
compared the experimental results to numerical simula-
tions of an infinite, homogeneous system at T = 0 using
the adaptive time-dependent density matrix renormal-
ization group [22, 23] (t-DMRG). In the simulation, the
initial and final interaction strengths were fixed at the ex-
perimentally determined values and the quench was con-
sidered instantaneous, at t = 0. We found remarkable
agreement between the experiment and theory over all
explored distances and times, despite the finite tempera-
ture T � 0.1U/kb (kb is the Boltzmann constant) and the
harmonic confinement with frequency ν = 68(1)Hz that
characterise the experimental system. The observed dy-
namics is also qualitatively reproduced by our analytical
model for U/J = 9.0. For lower values of U/J , however,
the model breaks down due to the increasing number of
quasiparticles.

We extracted the propagation velocity v from the time
of the correlation peak as a function of the distance
d (Fig. 3a). A linear fit restricted to 2 ≤ d ≤ 6
yields v × �/(Jalat) = 5.0(2), 5.6(5) and 5.0(2) for U/J =
5.0(2), 7.0(3) and 9.0(3), respectively. The points for
d = 1 were excluded from the fit, as they result from the

Mott insulatorn̄ = 1

doublon
holon
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Marc Cheneau,1, ∗ Peter Barmettler,2 Dario Poletti,2 Manuel Endres,1 Peter Schauß,1

Takeshi Fukuhara,1 Christian Gross,1 Immanuel Bloch,1, 3 Corinna Kollath,2, 4 and Stefan Kuhr1, 5
1Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany

2Département de physique théorique, Université de Genève, 1211 Genève, Switzerland
3Ludwig-Maximilians-Universität, 80799 München, Germany

4Centre de physique théorique, École Polytechnique, CNRS, 91128 Palaiseau, France
5University of Strathclyde, SUPA, Glasgow G4 0NG, United Kingdom

How fast can correlations spread in a quantum many-body system? Based on the seminal work
by Lieb and Robinson [1], it has recently been shown that several interacting many-body systems
exhibit an effective light cone that bounds the propagation speed of correlations [2–5]. The existence
of such a “speed of light” has profound implications for condensed matter physics and quantum
information, but has never been observed experimentally. Here we report on the time-resolved
detection of propagating correlations in an interacting quantum many-body system. By quenching
a one-dimensional quantum gas in an optical lattice, we reveal how quasiparticle pairs transport
correlations with a finite velocity across the system, resulting in an effective light cone for the
quantum dynamics. Our results open important perspectives for understanding relaxation of closed
quantum systems far from equilibrium [6] as well as for engineering efficient quantum channels
necessary for fast quantum computations [7, 8].

In contrast to relativistic quantum field theory, no
“speed limit” exists in non-relativistic quantum mechan-
ics, allowing in principle for the propagation of informa-
tion over arbitrary distances in arbitrary short times [2].
However, one could naively expect that in real physi-
cal systems short-range interactions allow information to
propagate only with a finite velocity. The existence of a
maximal velocity, also called Lieb–Robinson bound, has
indeed been shown theoretically in some systems, e.g.
interacting spins on a lattice [2–5], but to which extent
this result can be generalised remains an open question
[9]. Lieb–Robinson bounds have already found a num-
ber of fundamental applications [10, 11]. For example,
they allow for a rigorous proof of a long-standing con-
jecture that linked the presence of a spectral gap in a
lattice system to the exponential decay of correlations in
the ground state [12, 13]. They also provide fundamental
scaling laws for the entanglement entropy, which is an in-
dicator of the computational cost for simulating strongly
interacting systems [14].

In the context of quantum many-body systems, the
existence of a Lieb–Robinson bound can be probed by
recording the dynamics following a sudden parameter
change (quench) in the Hamiltonian. In that case, a
simple picture has been suggested: quantum-entangled
quasiparticles emerge from the initially highly excited
state and propagate ballistically [3], carrying correla-
tions across the system. Ultracold atomic gases offer
an ideal testbed to explore such quantum dynamics due
to their almost perfect decoupling from the environment
and their fast tunability [15]. In addition, the recently
demonstrated technique of single-site imaging in an op-
tical lattice [16, 17] offers the resolution and sensitivity
necessary to reveal the dynamical evolution of a many-
body system at the single-particle level.

Our system consists of ultracold bosonic atoms in an
optical lattice and is well described by the Bose–Hubbard
model [18, 19]. This model is parameterised by two en-
ergy scales: the on-site interaction, U , and the tunnel
coupling between adjacent sites, J . Driven by the com-
petition of these two parameters, a quantum phase tran-
sition between a superfluid and a Mott insulating phase
occurs in homogeneous systems with integer filling n̄. In
the one-dimensional (1d) geometry considered here, the
critical point of this transition is located at (U/J)c � 3.4
[20]. We observed the dynamics of spatial correlations
after a fast decrease of the effective interaction strength
U/J from an initial value deep in the Mott-insulating
regime, with filling n̄ = 1, to a final value closer to the
critical point (Fig. 1a). The time evolution of the sys-
tem can be understood within an analytical model, in
which the local Hilbert space is restricted to the occu-
pancies n = 0, 1, 2 and the resulting quasiparticles obey
a hard-core constraint. This constraint is usually difficult
to take into account, but can be partially fulfilled in 1d
systems if the quasiparticles are considered as fermions
(see Appendix). After the quench, the initial many-body
state |Ψ0� is highly excited and acts as a source of such
quasiparticles. For large interaction strengths, these can
be regarded as an excess particle (doublon) or a hole
(holon) on top of the unity-filling background. To first
order in J/U , we find that the many-body state at time
t after the quench reads:

|Ψ(t)� � |Ψ0�+ i
√
8
J

U

�

k

�
sin(kalat)

·
�
1− e−i[�d(k)+�h(−k)]t/�

�
d̂†k ĥ

†
−k

�
|Ψ0� , (1)

with alat the lattice period. Here d̂†k and ĥ†
k are the

creation operators for a doublon and a holon with mo-
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How fast can correlations spread in a quantum many-body system? Based on the seminal work
by Lieb and Robinson [1], it has recently been shown that several interacting many-body systems
exhibit an effective light cone that bounds the propagation speed of correlations [2–5]. The existence
of such a “speed of light” has profound implications for condensed matter physics and quantum
information, but has never been observed experimentally. Here we report on the time-resolved
detection of propagating correlations in an interacting quantum many-body system. By quenching
a one-dimensional quantum gas in an optical lattice, we reveal how quasiparticle pairs transport
correlations with a finite velocity across the system, resulting in an effective light cone for the
quantum dynamics. Our results open important perspectives for understanding relaxation of closed
quantum systems far from equilibrium [6] as well as for engineering efficient quantum channels
necessary for fast quantum computations [7, 8].

In contrast to relativistic quantum field theory, no
“speed limit” exists in non-relativistic quantum mechan-
ics, allowing in principle for the propagation of informa-
tion over arbitrary distances in arbitrary short times [2].
However, one could naively expect that in real physi-
cal systems short-range interactions allow information to
propagate only with a finite velocity. The existence of a
maximal velocity, also called Lieb–Robinson bound, has
indeed been shown theoretically in some systems, e.g.
interacting spins on a lattice [2–5], but to which extent
this result can be generalised remains an open question
[9]. Lieb–Robinson bounds have already found a num-
ber of fundamental applications [10, 11]. For example,
they allow for a rigorous proof of a long-standing con-
jecture that linked the presence of a spectral gap in a
lattice system to the exponential decay of correlations in
the ground state [12, 13]. They also provide fundamental
scaling laws for the entanglement entropy, which is an in-
dicator of the computational cost for simulating strongly
interacting systems [14].

In the context of quantum many-body systems, the
existence of a Lieb–Robinson bound can be probed by
recording the dynamics following a sudden parameter
change (quench) in the Hamiltonian. In that case, a
simple picture has been suggested: quantum-entangled
quasiparticles emerge from the initially highly excited
state and propagate ballistically [3], carrying correla-
tions across the system. Ultracold atomic gases offer
an ideal testbed to explore such quantum dynamics due
to their almost perfect decoupling from the environment
and their fast tunability [15]. In addition, the recently
demonstrated technique of single-site imaging in an op-
tical lattice [16, 17] offers the resolution and sensitivity
necessary to reveal the dynamical evolution of a many-
body system at the single-particle level.

Our system consists of ultracold bosonic atoms in an
optical lattice and is well described by the Bose–Hubbard
model [18, 19]. This model is parameterised by two en-
ergy scales: the on-site interaction, U , and the tunnel
coupling between adjacent sites, J . Driven by the com-
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quasiparticles. For large interaction strengths, these can
be regarded as an excess particle (doublon) or a hole
(holon) on top of the unity-filling background. To first
order in J/U , we find that the many-body state at time
t after the quench reads:

|Ψ(t)� � |Ψ0�+ i
√
8
J

U

�

k

�
sin(kalat)

·
�
1− e−i[�d(k)+�h(−k)]t/�

�
d̂†k ĥ

†
−k

�
|Ψ0� , (1)

with alat the lattice period. Here d̂†k and ĥ†
k are the

creation operators for a doublon and a holon with mo-
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Quenches to U/J= 5.0 and 7.0

We also recorded the time evolution of the two-point

parity correlations (2) after quenches to U/J = 5.0(2)
and 7.0(3), and compared the experimental results to

DMRG simulations of an infinite, homogeneous system

at zero temperature (Fig. 4). The experimental se-

quence was identical to the one we used for the quench

to U/J = 9.0(3), apart from the different end point of

the quench. The data presented here are those used in

Fig. 3.
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In the Bose–Hubbard model, bosonic atoms in an op-

tical lattice are confined to a single Bloch band and obey

the Hamiltonian

Ĥ =
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j

�
− J

�
â
†
j âj+1 + h. c.

�
+

U

2
n̂j(n̂j − 1)

�
, (3)

where âj and â
†
j represent the annihilation and creation

operator of an atom at site j and n̂j = â
†
j âj counts the

U/J = 5.0 U/J = 9.0

FIG. 4. Time evolution of the two-point parity corre-
lations. Left panel: quench to U/J = 5.0(2). Right panel:
quench to U/J = 7.0(3). The circles indicate the correlations
measured experimentally and the line is derived from the nu-
merical simulations for an infinite, homogeneous system at
zero temperature. The experimental and numerical values
were obtained in the same way as described in the legend of
Fig. 2 and in the Methods Summary section.

number of atoms at that site. The model is entirely

parametrised by the effective interaction strength U/J .

In order to analytically treat the time evolution of cor-

relations after a sudden decrease of U/J , we developed

a novel approach based on fermionized quasiparticles.

The initial state being close to a Fock state with one

atom per lattice site, an effective description of the evo-

lution at sufficiently large final interaction strengths can

be obtained within a local basis formed by empty states,

| ◦◦ �j , singly occupied states, | ◦• �j , and doubly occupied

states, | •• �j . Using generalised Jordan–Wigner transfor-

mations [28], we then introduced fermionic creation op-

erators for the excess particles, d̂
†
j | ◦• �j → | •• �j , and the

holes, ĥ
†
j | ◦• �j → | ◦◦ �j , as well as the corresponding anni-

hilation operators. Within the truncated Hilbert space,

the original Hamiltonian (3) can be exactly written in

terms of these operators:

Ĥ =
�

j

P̂
�
− 2J d̂

†
j d̂j+1 − J ĥ

†
j+1 ĥj

− J

√
2
�
d̂
†
j ĥ

†
j+1 − ĥj d̂j+1

�
+ h. c

+
U

2

�
n̂d,j + n̂h,j

��
P̂ , (4)

with n̂d,j = d̂
†
j d̂j and n̂h,j = ĥ

†
j ĥj . The complexity of the

model is hidden in the projector P̂ =
�

j(Î − n̂d,j n̂h,j)
that eliminates the unphysical situation of having an ex-

cess particle and a hole at the same site (Î is the identity

operator). For the present situation, we found that the

substitution P̂ → Î yields good results provided the den-

sity of excitations �n̂d,j(t)+ n̂h,j(t)� remains dilute. This

prescription amounts to treating the constraint on the

level of the Gutzwiller approximation [29, 30]. Moreover,

multiple occupancies of the fermionic species are natu-

rally avoided due to their statistics, which is not the case

in the usual bosonic representations [31, 32].

The Hamiltonian (4) with P̂ → Î is quadratic and can

be diagonalised by a Bogolyubov transformation. The

eigenmodes are doublons and holons with well defined

momentum k:

γ̂†
d,k = u(k) d̂†k + v(k) ĥ−k , (5)

γ̂†
h,−k = u(k) ĥ†

−k − v(k) d̂k , (6)

with

u(k) = cos[θ(k)/2] , v(k) = i sin[θ(k)/2]

and θ(k) = atan

� √
32J sin(kalat)

U − 6J cos(kalat)

�
. (7)
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parametrised by the effective interaction strength U/J .

In order to analytically treat the time evolution of cor-

relations after a sudden decrease of U/J , we developed

a novel approach based on fermionized quasiparticles.

The initial state being close to a Fock state with one

atom per lattice site, an effective description of the evo-
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Ĥ =
�

j

�
− J

�
â
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number of atoms at that site. The model is entirely

parametrised by the effective interaction strength U/J .

In order to analytically treat the time evolution of cor-

relations after a sudden decrease of U/J , we developed

a novel approach based on fermionized quasiparticles.

The initial state being close to a Fock state with one

atom per lattice site, an effective description of the evo-

lution at sufficiently large final interaction strengths can

be obtained within a local basis formed by empty states,

| ◦◦ �j , singly occupied states, | ◦• �j , and doubly occupied

states, | •• �j . Using generalised Jordan–Wigner transfor-

mations [28], we then introduced fermionic creation op-

erators for the excess particles, d̂
†
j | ◦• �j → | •• �j , and the

holes, ĥ
†
j | ◦• �j → | ◦◦ �j , as well as the corresponding anni-

hilation operators. Within the truncated Hilbert space,

the original Hamiltonian (3) can be exactly written in

terms of these operators:
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that eliminates the unphysical situation of having an ex-

cess particle and a hole at the same site (Î is the identity

operator). For the present situation, we found that the

substitution P̂ → Î yields good results provided the den-

sity of excitations �n̂d,j(t)+ n̂h,j(t)� remains dilute. This

prescription amounts to treating the constraint on the

level of the Gutzwiller approximation [29, 30]. Moreover,

multiple occupancies of the fermionic species are natu-

rally avoided due to their statistics, which is not the case

in the usual bosonic representations [31, 32].

The Hamiltonian (4) with P̂ → Î is quadratic and can

be diagonalised by a Bogolyubov transformation. The

eigenmodes are doublons and holons with well defined

momentum k:

γ̂†
d,k = u(k) d̂†k + v(k) ĥ−k , (5)

γ̂†
h,−k = u(k) ĥ†

−k − v(k) d̂k , (6)

with
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number of atoms at that site. The model is entirely

parametrised by the effective interaction strength U/J .

In order to analytically treat the time evolution of cor-

relations after a sudden decrease of U/J , we developed

a novel approach based on fermionized quasiparticles.

The initial state being close to a Fock state with one

atom per lattice site, an effective description of the evo-

lution at sufficiently large final interaction strengths can

be obtained within a local basis formed by empty states,

| ◦◦ �j , singly occupied states, | ◦• �j , and doubly occupied

states, | •• �j . Using generalised Jordan–Wigner transfor-

mations [28], we then introduced fermionic creation op-

erators for the excess particles, d̂
†
j | ◦• �j → | •• �j , and the

holes, ĥ
†
j | ◦• �j → | ◦◦ �j , as well as the corresponding anni-

hilation operators. Within the truncated Hilbert space,

the original Hamiltonian (3) can be exactly written in

terms of these operators:

Ĥ =
�
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P̂
�
− 2J d̂

†
j d̂j+1 − J ĥ

†
j+1 ĥj

− J

√
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�
d̂
†
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†
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�
+ h. c
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with n̂d,j = d̂
†
j d̂j and n̂h,j = ĥ

†
j ĥj . The complexity of the

model is hidden in the projector P̂ =
�

j(Î − n̂d,j n̂h,j)
that eliminates the unphysical situation of having an ex-

cess particle and a hole at the same site (Î is the identity

operator). For the present situation, we found that the

substitution P̂ → Î yields good results provided the den-

sity of excitations �n̂d,j(t)+ n̂h,j(t)� remains dilute. This

prescription amounts to treating the constraint on the

level of the Gutzwiller approximation [29, 30]. Moreover,

multiple occupancies of the fermionic species are natu-

rally avoided due to their statistics, which is not the case

in the usual bosonic representations [31, 32].

The Hamiltonian (4) with P̂ → Î is quadratic and can

be diagonalised by a Bogolyubov transformation. The

eigenmodes are doublons and holons with well defined

momentum k:
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�
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j ĥj . The complexity of the

model is hidden in the projector P̂ =
�

j(Î − n̂d,j n̂h,j)
that eliminates the unphysical situation of having an ex-

cess particle and a hole at the same site (Î is the identity
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number of atoms at that site. The model is entirely

parametrised by the effective interaction strength U/J .

In order to analytically treat the time evolution of cor-

relations after a sudden decrease of U/J , we developed

a novel approach based on fermionized quasiparticles.

The initial state being close to a Fock state with one

atom per lattice site, an effective description of the evo-

lution at sufficiently large final interaction strengths can

be obtained within a local basis formed by empty states,

| ◦◦ �j , singly occupied states, | ◦• �j , and doubly occupied
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the original Hamiltonian (3) can be exactly written in

terms of these operators:
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with n̂d,j = d̂
†
j d̂j and n̂h,j = ĥ

†
j ĥj . The complexity of the

model is hidden in the projector P̂ =
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j(Î − n̂d,j n̂h,j)
that eliminates the unphysical situation of having an ex-

cess particle and a hole at the same site (Î is the identity

operator). For the present situation, we found that the

substitution P̂ → Î yields good results provided the den-

sity of excitations �n̂d,j(t)+ n̂h,j(t)� remains dilute. This

prescription amounts to treating the constraint on the

level of the Gutzwiller approximation [29, 30]. Moreover,

multiple occupancies of the fermionic species are natu-

rally avoided due to their statistics, which is not the case

in the usual bosonic representations [31, 32].

The Hamiltonian (4) with P̂ → Î is quadratic and can

be diagonalised by a Bogolyubov transformation. The

eigenmodes are doublons and holons with well defined

momentum k:

γ̂†
d,k = u(k) d̂†k + v(k) ĥ−k , (5)

γ̂†
h,−k = u(k) ĥ†

−k − v(k) d̂k , (6)

with

u(k) = cos[θ(k)/2] , v(k) = i sin[θ(k)/2]
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and 7.0(3), and compared the experimental results to

DMRG simulations of an infinite, homogeneous system

at zero temperature (Fig. 4). The experimental se-

quence was identical to the one we used for the quench

to U/J = 9.0(3), apart from the different end point of

the quench. The data presented here are those used in
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Replacing leaves us with a quadratic fermionic Hamiltonian.

Go to Fourier space and use Bogoliubov transformation
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j âj counts the

U/J = 5.0 U/J = 9.0

FIG. 4. Time evolution of the two-point parity corre-
lations. Left panel: quench to U/J = 5.0(2). Right panel:
quench to U/J = 7.0(3). The circles indicate the correlations
measured experimentally and the line is derived from the nu-
merical simulations for an infinite, homogeneous system at
zero temperature. The experimental and numerical values
were obtained in the same way as described in the legend of
Fig. 2 and in the Methods Summary section.

number of atoms at that site. The model is entirely

parametrised by the effective interaction strength U/J .

In order to analytically treat the time evolution of cor-

relations after a sudden decrease of U/J , we developed

a novel approach based on fermionized quasiparticles.

The initial state being close to a Fock state with one

atom per lattice site, an effective description of the evo-

lution at sufficiently large final interaction strengths can

be obtained within a local basis formed by empty states,

| ◦◦ �j , singly occupied states, | ◦• �j , and doubly occupied

states, | •• �j . Using generalised Jordan–Wigner transfor-

mations [28], we then introduced fermionic creation op-

erators for the excess particles, d̂
†
j | ◦• �j → | •• �j , and the

holes, ĥ
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Their respective eigenenergies are given by

�d(k) = −J cos(kalat)

+
1

2

�
[U − 6J cos(kalat)]2 + 32J2 sin2(kalat) , (8)

�h(k) = J cos(kalat)

+
1

2

�
[U − 6J cos(kalat)]2 + 32J2 sin2(kalat) . (9)

Within this model, the initial state |ψ0� evolves in time
according to:

|ψ(t)� = e−iĤt/� |ψ0� (10)

=
�

k

�
ū(k)− v̄(k) e−i[�d(k)+�h(−k)]t/�

· γ̂†
d,k γ̂

†
h,−k

�
|vac� , (11)

with

ū(k) = u(k)u0(k)− v(k)v0(k) , (12)
v̄(k) = v(k)u0(k)− u(k)v0(k) . (13)

Here the subscript “0” denotes quantities correspond-
ing to the initial interaction strength, whereas no la-
bel is used for the quantities corresponding to the fi-
nal interaction strength. Further, |vac� represents the
quasiparticle vacuum at the final interaction strength
(γ̂d,k|vac� = γ̂h,k|vac� = 0). Equation (10) describes
wave packets of entangled quasiparticle pairs that travel
in opposite directions with different velocities. One can
extract a maximal velocity for the spreading of the cor-
relations from the dispersion relation of a quasiparticle
pair (black line in Fig. 3b):

vmax =
1

� max
k

�
d
dk

���d(k) + �h(k)
��
�

. (14)

Additionally, we derived from equation (10) the time
evolution of the two-point parity correlations. In agree-
ment with DMRG simulations, it displays a clear pos-
itive signal, the position of which increases with time
(Fig. 2). We extracted the instantaneous propagation ve-
locity v(d0) from a linear fit through the signal positions
d0 ≤ d ≤ d0 +4 (Fig. 5). The case d0 = 2 corresponds to
the data shown in Fig. 3. At short distances, we find ve-
locities about 10% smaller than vmax, in good agreement
with the velocities measured experimentally. At large dis-
tances, the velocity converges algebraically to vmax. This
latter behaviour can be understood from the expansion
of the correlation functions to first order in J/U , which
can be expressed in terms of the Airy function Ai(x):

Cd(t)
d�1
�

�
27/3d2/3�

3Ut
Ai

�
(2/d)1/3(d− 6Jt/�)

��2
.

(15)
We checked the validity of our model of freely prop-

agating fermionic quasiparticles by comparing it with

FIG. 5. Instantaneous propagation velocity. We com-
pare the instantaneous velocity v(d0) predicted by our ana-
lytical model (points) with the one derived from numerical
simulations (circles). The agreement is excellent at U/J = 20
(left panel) and qualitatively good at U/J = 9 (right panel).
Error bars denote the 68% confidence interval of the fit. The
dashed line represents the asymptotic expression (15). Ar-
rows point to the maximum velocity vmax at the given inter-
action strength. The signal position was obtained using the
procedure described in the Methods Summary section for the
numerical simulations.

DMRG simulations. The propagation velocity of the two-
point parity correlations is very accurate in the strongly
interacting limit (e.g. U/J = 20), and remains in fairly
good agreement down to U/J = 9, where the quasiparti-
cle density is about 0.1 per site (Fig. 5). At lower inter-
action strengths, we found that the Gutzwiller approxi-
mation breaks down. Nevertheless, the experiment and
the simulations show that the spreading of correlations
is still characterised by a well defined velocity, for which
vmax remains a relevant upper bound. We verified nu-
merically that the truncation of the local Hilbert space
to three states is reasonable down to U/J � 6.

Calibration of the lattice depth

We calibrated the lattice depths by performing ampli-
tude modulation spectroscopy of the transition between
the zeroth and second Bloch band on a 1d degenerate
gas for the x- and y-axes, and on a 2d degenerate gas for
the z-axis. We estimate the calibration uncertainty to be
1–2%.

Bose–Hubbard parameters

For a given lattice depth V , we calculated the tunnel
coupling and the on-site interaction of the Bose–Hubard
model (3) in the single-particle picture using their ex-
pressions as overlap integrals of the Wannier functions.
In Table I, we provide the values of V , J and U for the ef-
fective interaction strengths mentioned in the main text.

5

APPENDIX

Quenches to U/J= 5.0 and 7.0

We also recorded the time evolution of the two-point

parity correlations (2) after quenches to U/J = 5.0(2)
and 7.0(3), and compared the experimental results to

DMRG simulations of an infinite, homogeneous system

at zero temperature (Fig. 4). The experimental se-

quence was identical to the one we used for the quench

to U/J = 9.0(3), apart from the different end point of

the quench. The data presented here are those used in

Fig. 3.

Quasiparticle model

In the Bose–Hubbard model, bosonic atoms in an op-

tical lattice are confined to a single Bloch band and obey

the Hamiltonian
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j âj+1 + h. c.
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+
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n̂j(n̂j − 1)
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, (3)

where âj and â
†
j represent the annihilation and creation

operator of an atom at site j and n̂j = â
†
j âj counts the
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FIG. 4. Time evolution of the two-point parity corre-
lations. Left panel: quench to U/J = 5.0(2). Right panel:
quench to U/J = 7.0(3). The circles indicate the correlations
measured experimentally and the line is derived from the nu-
merical simulations for an infinite, homogeneous system at
zero temperature. The experimental and numerical values
were obtained in the same way as described in the legend of
Fig. 2 and in the Methods Summary section.

number of atoms at that site. The model is entirely

parametrised by the effective interaction strength U/J .

In order to analytically treat the time evolution of cor-

relations after a sudden decrease of U/J , we developed

a novel approach based on fermionized quasiparticles.

The initial state being close to a Fock state with one

atom per lattice site, an effective description of the evo-

lution at sufficiently large final interaction strengths can

be obtained within a local basis formed by empty states,

| ◦◦ �j , singly occupied states, | ◦• �j , and doubly occupied

states, | •• �j . Using generalised Jordan–Wigner transfor-

mations [28], we then introduced fermionic creation op-

erators for the excess particles, d̂
†
j | ◦• �j → | •• �j , and the

holes, ĥ
†
j | ◦• �j → | ◦◦ �j , as well as the corresponding anni-

hilation operators. Within the truncated Hilbert space,

the original Hamiltonian (3) can be exactly written in

terms of these operators:

Ĥ =
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with n̂d,j = d̂
†
j d̂j and n̂h,j = ĥ

†
j ĥj . The complexity of the

model is hidden in the projector P̂ =
�

j(Î − n̂d,j n̂h,j)
that eliminates the unphysical situation of having an ex-

cess particle and a hole at the same site (Î is the identity

operator). For the present situation, we found that the

substitution P̂ → Î yields good results provided the den-

sity of excitations �n̂d,j(t)+ n̂h,j(t)� remains dilute. This

prescription amounts to treating the constraint on the

level of the Gutzwiller approximation [29, 30]. Moreover,

multiple occupancies of the fermionic species are natu-

rally avoided due to their statistics, which is not the case

in the usual bosonic representations [31, 32].

The Hamiltonian (4) with P̂ → Î is quadratic and can

be diagonalised by a Bogolyubov transformation. The

eigenmodes are doublons and holons with well defined

momentum k:

γ̂†
d,k = u(k) d̂†k + v(k) ĥ−k , (5)

γ̂†
h,−k = u(k) ĥ†

−k − v(k) d̂k , (6)

with

u(k) = cos[θ(k)/2] , v(k) = i sin[θ(k)/2]

and θ(k) = atan
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32J sin(kalat)

U − 6J cos(kalat)

�
. (7)
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†
j represent the annihilation and creation

operator of an atom at site j and n̂j = â
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− J

√
2
�
d̂
†
j ĥ
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†
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sity of excitations �n̂d,j(t)+ n̂h,j(t)� remains dilute. This

prescription amounts to treating the constraint on the

level of the Gutzwiller approximation [29, 30]. Moreover,

multiple occupancies of the fermionic species are natu-

rally avoided due to their statistics, which is not the case

in the usual bosonic representations [31, 32].

The Hamiltonian (4) with P̂ → Î is quadratic and can

be diagonalised by a Bogolyubov transformation. The

eigenmodes are doublons and holons with well defined

momentum k:

γ̂†
d,k = u(k) d̂†k + v(k) ĥ−k , (5)

γ̂†
h,−k = u(k) ĥ†

−k − v(k) d̂k , (6)

with

u(k) = cos[θ(k)/2] , v(k) = i sin[θ(k)/2]

and θ(k) = atan

� √
32J sin(kalat)

U − 6J cos(kalat)

�
. (7)
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Their respective eigenenergies are given by

�d(k) = −J cos(kalat)

+
1

2

�
[U − 6J cos(kalat)]2 + 32J2 sin2(kalat) , (8)

�h(k) = J cos(kalat)

+
1

2

�
[U − 6J cos(kalat)]2 + 32J2 sin2(kalat) . (9)

Within this model, the initial state |ψ0� evolves in time
according to:

|ψ(t)� = e−iĤt/� |ψ0� (10)

=
�

k

�
ū(k)− v̄(k) e−i[�d(k)+�h(−k)]t/�

· γ̂†
d,k γ̂

†
h,−k

�
|vac� , (11)

with

ū(k) = u(k)u0(k)− v(k)v0(k) , (12)
v̄(k) = v(k)u0(k)− u(k)v0(k) . (13)

Here the subscript “0” denotes quantities correspond-
ing to the initial interaction strength, whereas no la-
bel is used for the quantities corresponding to the fi-
nal interaction strength. Further, |vac� represents the
quasiparticle vacuum at the final interaction strength
(γ̂d,k|vac� = γ̂h,k|vac� = 0). Equation (10) describes
wave packets of entangled quasiparticle pairs that travel
in opposite directions with different velocities. One can
extract a maximal velocity for the spreading of the cor-
relations from the dispersion relation of a quasiparticle
pair (black line in Fig. 3b):

vmax =
1

� max
k

�
d
dk

���d(k) + �h(k)
��
�

. (14)

Additionally, we derived from equation (10) the time
evolution of the two-point parity correlations. In agree-
ment with DMRG simulations, it displays a clear pos-
itive signal, the position of which increases with time
(Fig. 2). We extracted the instantaneous propagation ve-
locity v(d0) from a linear fit through the signal positions
d0 ≤ d ≤ d0 +4 (Fig. 5). The case d0 = 2 corresponds to
the data shown in Fig. 3. At short distances, we find ve-
locities about 10% smaller than vmax, in good agreement
with the velocities measured experimentally. At large dis-
tances, the velocity converges algebraically to vmax. This
latter behaviour can be understood from the expansion
of the correlation functions to first order in J/U , which
can be expressed in terms of the Airy function Ai(x):

Cd(t)
d�1
�

�
27/3d2/3�

3Ut
Ai

�
(2/d)1/3(d− 6Jt/�)

��2
.

(15)
We checked the validity of our model of freely prop-

agating fermionic quasiparticles by comparing it with

FIG. 5. Instantaneous propagation velocity. We com-
pare the instantaneous velocity v(d0) predicted by our ana-
lytical model (points) with the one derived from numerical
simulations (circles). The agreement is excellent at U/J = 20
(left panel) and qualitatively good at U/J = 9 (right panel).
Error bars denote the 68% confidence interval of the fit. The
dashed line represents the asymptotic expression (15). Ar-
rows point to the maximum velocity vmax at the given inter-
action strength. The signal position was obtained using the
procedure described in the Methods Summary section for the
numerical simulations.

DMRG simulations. The propagation velocity of the two-
point parity correlations is very accurate in the strongly
interacting limit (e.g. U/J = 20), and remains in fairly
good agreement down to U/J = 9, where the quasiparti-
cle density is about 0.1 per site (Fig. 5). At lower inter-
action strengths, we found that the Gutzwiller approxi-
mation breaks down. Nevertheless, the experiment and
the simulations show that the spreading of correlations
is still characterised by a well defined velocity, for which
vmax remains a relevant upper bound. We verified nu-
merically that the truncation of the local Hilbert space
to three states is reasonable down to U/J � 6.

Calibration of the lattice depth

We calibrated the lattice depths by performing ampli-
tude modulation spectroscopy of the transition between
the zeroth and second Bloch band on a 1d degenerate
gas for the x- and y-axes, and on a 2d degenerate gas for
the z-axis. We estimate the calibration uncertainty to be
1–2%.

Bose–Hubbard parameters

For a given lattice depth V , we calculated the tunnel
coupling and the on-site interaction of the Bose–Hubard
model (3) in the single-particle picture using their ex-
pressions as overlap integrals of the Wannier functions.
In Table I, we provide the values of V , J and U for the ef-
fective interaction strengths mentioned in the main text.

This gives us the quench dynamics
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DMRG simulations. The propagation velocity of the two-
point parity correlations is very accurate in the strongly
interacting limit (e.g. U/J = 20), and remains in fairly
good agreement down to U/J = 9, where the quasiparti-
cle density is about 0.1 per site (Fig. 5). At lower inter-
action strengths, we found that the Gutzwiller approxi-
mation breaks down. Nevertheless, the experiment and
the simulations show that the spreading of correlations
is still characterised by a well defined velocity, for which
vmax remains a relevant upper bound. We verified nu-
merically that the truncation of the local Hilbert space
to three states is reasonable down to U/J � 6.

Calibration of the lattice depth

We calibrated the lattice depths by performing ampli-
tude modulation spectroscopy of the transition between
the zeroth and second Bloch band on a 1d degenerate
gas for the x- and y-axes, and on a 2d degenerate gas for
the z-axis. We estimate the calibration uncertainty to be
1–2%.

Bose–Hubbard parameters

For a given lattice depth V , we calculated the tunnel
coupling and the on-site interaction of the Bose–Hubard
model (3) in the single-particle picture using their ex-
pressions as overlap integrals of the Wannier functions.
In Table I, we provide the values of V , J and U for the ef-
fective interaction strengths mentioned in the main text.
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How fast can correlations spread in a quantum many-body system? Based on the seminal work
by Lieb and Robinson [1], it has recently been shown that several interacting many-body systems
exhibit an effective light cone that bounds the propagation speed of correlations [2–5]. The existence
of such a “speed of light” has profound implications for condensed matter physics and quantum
information, but has never been observed experimentally. Here we report on the time-resolved
detection of propagating correlations in an interacting quantum many-body system. By quenching
a one-dimensional quantum gas in an optical lattice, we reveal how quasiparticle pairs transport
correlations with a finite velocity across the system, resulting in an effective light cone for the
quantum dynamics. Our results open important perspectives for understanding relaxation of closed
quantum systems far from equilibrium [6] as well as for engineering efficient quantum channels
necessary for fast quantum computations [7, 8].

In contrast to relativistic quantum field theory, no
“speed limit” exists in non-relativistic quantum mechan-
ics, allowing in principle for the propagation of informa-
tion over arbitrary distances in arbitrary short times [2].
However, one could naively expect that in real physi-
cal systems short-range interactions allow information to
propagate only with a finite velocity. The existence of a
maximal velocity, also called Lieb–Robinson bound, has
indeed been shown theoretically in some systems, e.g.
interacting spins on a lattice [2–5], but to which extent
this result can be generalised remains an open question
[9]. Lieb–Robinson bounds have already found a num-
ber of fundamental applications [10, 11]. For example,
they allow for a rigorous proof of a long-standing con-
jecture that linked the presence of a spectral gap in a
lattice system to the exponential decay of correlations in
the ground state [12, 13]. They also provide fundamental
scaling laws for the entanglement entropy, which is an in-
dicator of the computational cost for simulating strongly
interacting systems [14].

In the context of quantum many-body systems, the
existence of a Lieb–Robinson bound can be probed by
recording the dynamics following a sudden parameter
change (quench) in the Hamiltonian. In that case, a
simple picture has been suggested: quantum-entangled
quasiparticles emerge from the initially highly excited
state and propagate ballistically [3], carrying correla-
tions across the system. Ultracold atomic gases offer
an ideal testbed to explore such quantum dynamics due
to their almost perfect decoupling from the environment
and their fast tunability [15]. In addition, the recently
demonstrated technique of single-site imaging in an op-
tical lattice [16, 17] offers the resolution and sensitivity
necessary to reveal the dynamical evolution of a many-
body system at the single-particle level.

Our system consists of ultracold bosonic atoms in an
optical lattice and is well described by the Bose–Hubbard
model [18, 19]. This model is parameterised by two en-
ergy scales: the on-site interaction, U , and the tunnel
coupling between adjacent sites, J . Driven by the com-
petition of these two parameters, a quantum phase tran-
sition between a superfluid and a Mott insulating phase
occurs in homogeneous systems with integer filling n̄. In
the one-dimensional (1d) geometry considered here, the
critical point of this transition is located at (U/J)c � 3.4
[20]. We observed the dynamics of spatial correlations
after a fast decrease of the effective interaction strength
U/J from an initial value deep in the Mott-insulating
regime, with filling n̄ = 1, to a final value closer to the
critical point (Fig. 1a). The time evolution of the sys-
tem can be understood within an analytical model, in
which the local Hilbert space is restricted to the occu-
pancies n = 0, 1, 2 and the resulting quasiparticles obey
a hard-core constraint. This constraint is usually difficult
to take into account, but can be partially fulfilled in 1d
systems if the quasiparticles are considered as fermions
(see Appendix). After the quench, the initial many-body
state |Ψ0� is highly excited and acts as a source of such
quasiparticles. For large interaction strengths, these can
be regarded as an excess particle (doublon) or a hole
(holon) on top of the unity-filling background. To first
order in J/U , we find that the many-body state at time
t after the quench reads:

|Ψ(t)� � |Ψ0�+ i
√
8
J

U

�

k

�
sin(kalat)

·
�
1− e−i[�d(k)+�h(−k)]t/�

�
d̂†k ĥ

†
−k

�
|Ψ0� , (1)

with alat the lattice period. Here d̂†k and ĥ†
k are the

creation operators for a doublon and a holon with mo-
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FIG. 1. Spreading of correlations in a quenched atomic
Mott insulator. a, A 1d ultracold gas of bosonic atoms
(black balls) in an optical lattice is initially prepared deep
in the Mott-insulating phase with unity filling. The lattice
depth is then abruptly lowered, bringing the system out of
equilibrium. b, Following the quench, entangled quasiparticle
pairs emerge at all sites. Each of these pairs consists of a
doublon (red ball) and a holon (blue ball) on top of the unity-
filling background, which propagate ballistically in opposite
directions. It follows that a correlation in the parity of the
site occupancy builds up at time t between any pair of sites
separated by a distance d = vt, where v is the relative velocity
of the doublons and holons.

mentum k, respectively, and k belongs to the first Bril-
louin zone. Quasiparticles thus emerge at any site in the
form of entangled pairs, consisting of a doublon and a
holon with opposite momenta. Some of these pairs are
bound on nearest-neighbour sites while the others form
wave packets, due to their peaked momentum distribu-
tion. The wave packets propagate in opposite directions
with a relative group velocity v determined by the dis-
persion relation �d(k) + �h(−k) of doublons and holons
(Fig. 1b). The propagation of quasiparticle pairs is re-
flected in the two-point parity correlation functions [21]:

Cd(t) = �ŝj(t)ŝj+d(t)� − �ŝj(t)��ŝj+d(t)� , (2)

where j labels the lattice sites. The operator ŝj(t) =
eiπ[n̂j(t)−n̄] measures the parity of the occupation number
n̂j(t). It yields +1 in the absence of quasiparticles (odd
occupancy) and -1 if a quasiparticle is present (even occu-
pancy). Because the initial state is close to a Fock state
with one atom per lattice site, we expect Cd(t = 0) � 0.
After the quench, the propagation of quasiparticle pairs
with the relative velocity v results in a positive correla-
tion between any pair of sites separated by a distance
d = vt.

The experimental sequence started with the prepara-
tion of a two-dimensional (2d) degenerate gas of 87Rb
confined in a single antinode of a vertical optical lattice
[17, 21] (z-axis, alat = 532nm). The system was then
divided into about 10 decoupled 1d chains by adding a
second optical lattice along the y-axis and by setting both

lattice depths to 20.0(5)Er, where Er = (2π�)2/(8ma2lat)
is the recoil energy of the lattice and m the atomic mass of
87Rb. The effective interaction strength along the chains
was tuned via a third optical lattice along the x-axis. The
number of atoms per chain ranged between 10 and 18, re-
sulting in a lattice filling n̄ = 1 in the Mott-insulating do-
main. The inital state was prepared by adiabatically in-
creasing the x-lattice depth until the interaction strength
reached a value of (U/J)0 = 40(2). We then brought the
system out of equilibrium by lowering the lattice depth
typically within 100 µs, which is fast compared to the
inverse tunnel coupling �/J , but still adiabatic with re-
spect to transitions to higher Bloch bands. The final
lattice depths were in the Mott-insulating regime, close
to the critical point. After a variable evolution time, we
“froze” the density distribution of the many-body state
by rapidly raising the lattice depth in all directions to
∼ 80Er. Finally, the atoms were detected by fluorescence
imaging using a microscope objective with a resolution
on the order of the lattice spacing and a reconstruction
algorithm extracted the occupation number at each lat-
tice site [17]. Because inelastic light-assisted collisions
during the imaging lead to a rapid loss of atom pairs, we
directly detected the parity of the occupation number.

Our experimental results for the time evolution of the
two-point parity correlations after a quench to U/J =
9.0(3) show a clear positive signal propagating with in-
creasing time to larger distances d (Fig. 2). In addition,
the propagation velocity of the correlation signal is con-
stant over the range 2 ≤ d ≤ 6 (inset of Fig. 2). We found
similar dynamics also for quenches to U/J = 5.0(2) and
7.0(3) (Fig. 4). We note that the observed signal can-
not be attributed to a simple density wave because such
an excitation would result in �ŝj ŝj+d� = �ŝj��ŝj+d�. We
compared the experimental results to numerical simula-
tions of an infinite, homogeneous system at T = 0 using
the adaptive time-dependent density matrix renormal-
ization group [22, 23] (t-DMRG). In the simulation, the
initial and final interaction strengths were fixed at the ex-
perimentally determined values and the quench was con-
sidered instantaneous, at t = 0. We found remarkable
agreement between the experiment and theory over all
explored distances and times, despite the finite tempera-
ture T � 0.1U/kb (kb is the Boltzmann constant) and the
harmonic confinement with frequency ν = 68(1)Hz that
characterise the experimental system. The observed dy-
namics is also qualitatively reproduced by our analytical
model for U/J = 9.0. For lower values of U/J , however,
the model breaks down due to the increasing number of
quasiparticles.

We extracted the propagation velocity v from the time
of the correlation peak as a function of the distance
d (Fig. 3a). A linear fit restricted to 2 ≤ d ≤ 6
yields v × �/(Jalat) = 5.0(2), 5.6(5) and 5.0(2) for U/J =
5.0(2), 7.0(3) and 9.0(3), respectively. The points for
d = 1 were excluded from the fit, as they result from the

Mott insulatorn̄ = 1

doublon
holon
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How fast can correlations spread in a quantum many-body system? Based on the seminal work
by Lieb and Robinson [1], it has recently been shown that several interacting many-body systems
exhibit an effective light cone that bounds the propagation speed of correlations [2–5]. The existence
of such a “speed of light” has profound implications for condensed matter physics and quantum
information, but has never been observed experimentally. Here we report on the time-resolved
detection of propagating correlations in an interacting quantum many-body system. By quenching
a one-dimensional quantum gas in an optical lattice, we reveal how quasiparticle pairs transport
correlations with a finite velocity across the system, resulting in an effective light cone for the
quantum dynamics. Our results open important perspectives for understanding relaxation of closed
quantum systems far from equilibrium [6] as well as for engineering efficient quantum channels
necessary for fast quantum computations [7, 8].

In contrast to relativistic quantum field theory, no
“speed limit” exists in non-relativistic quantum mechan-
ics, allowing in principle for the propagation of informa-
tion over arbitrary distances in arbitrary short times [2].
However, one could naively expect that in real physi-
cal systems short-range interactions allow information to
propagate only with a finite velocity. The existence of a
maximal velocity, also called Lieb–Robinson bound, has
indeed been shown theoretically in some systems, e.g.
interacting spins on a lattice [2–5], but to which extent
this result can be generalised remains an open question
[9]. Lieb–Robinson bounds have already found a num-
ber of fundamental applications [10, 11]. For example,
they allow for a rigorous proof of a long-standing con-
jecture that linked the presence of a spectral gap in a
lattice system to the exponential decay of correlations in
the ground state [12, 13]. They also provide fundamental
scaling laws for the entanglement entropy, which is an in-
dicator of the computational cost for simulating strongly
interacting systems [14].

In the context of quantum many-body systems, the
existence of a Lieb–Robinson bound can be probed by
recording the dynamics following a sudden parameter
change (quench) in the Hamiltonian. In that case, a
simple picture has been suggested: quantum-entangled
quasiparticles emerge from the initially highly excited
state and propagate ballistically [3], carrying correla-
tions across the system. Ultracold atomic gases offer
an ideal testbed to explore such quantum dynamics due
to their almost perfect decoupling from the environment
and their fast tunability [15]. In addition, the recently
demonstrated technique of single-site imaging in an op-
tical lattice [16, 17] offers the resolution and sensitivity
necessary to reveal the dynamical evolution of a many-
body system at the single-particle level.

Our system consists of ultracold bosonic atoms in an
optical lattice and is well described by the Bose–Hubbard
model [18, 19]. This model is parameterised by two en-
ergy scales: the on-site interaction, U , and the tunnel
coupling between adjacent sites, J . Driven by the com-
petition of these two parameters, a quantum phase tran-
sition between a superfluid and a Mott insulating phase
occurs in homogeneous systems with integer filling n̄. In
the one-dimensional (1d) geometry considered here, the
critical point of this transition is located at (U/J)c � 3.4
[20]. We observed the dynamics of spatial correlations
after a fast decrease of the effective interaction strength
U/J from an initial value deep in the Mott-insulating
regime, with filling n̄ = 1, to a final value closer to the
critical point (Fig. 1a). The time evolution of the sys-
tem can be understood within an analytical model, in
which the local Hilbert space is restricted to the occu-
pancies n = 0, 1, 2 and the resulting quasiparticles obey
a hard-core constraint. This constraint is usually difficult
to take into account, but can be partially fulfilled in 1d
systems if the quasiparticles are considered as fermions
(see Appendix). After the quench, the initial many-body
state |Ψ0� is highly excited and acts as a source of such
quasiparticles. For large interaction strengths, these can
be regarded as an excess particle (doublon) or a hole
(holon) on top of the unity-filling background. To first
order in J/U , we find that the many-body state at time
t after the quench reads:
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How fast can correlations spread in a quantum many-body system? Based on the seminal work
by Lieb and Robinson [1], it has recently been shown that several interacting many-body systems
exhibit an effective light cone that bounds the propagation speed of correlations [2–5]. The existence
of such a “speed of light” has profound implications for condensed matter physics and quantum
information, but has never been observed experimentally. Here we report on the time-resolved
detection of propagating correlations in an interacting quantum many-body system. By quenching
a one-dimensional quantum gas in an optical lattice, we reveal how quasiparticle pairs transport
correlations with a finite velocity across the system, resulting in an effective light cone for the
quantum dynamics. Our results open important perspectives for understanding relaxation of closed
quantum systems far from equilibrium [6] as well as for engineering efficient quantum channels
necessary for fast quantum computations [7, 8].

In contrast to relativistic quantum field theory, no
“speed limit” exists in non-relativistic quantum mechan-
ics, allowing in principle for the propagation of informa-
tion over arbitrary distances in arbitrary short times [2].
However, one could naively expect that in real physi-
cal systems short-range interactions allow information to
propagate only with a finite velocity. The existence of a
maximal velocity, also called Lieb–Robinson bound, has
indeed been shown theoretically in some systems, e.g.
interacting spins on a lattice [2–5], but to which extent
this result can be generalised remains an open question
[9]. Lieb–Robinson bounds have already found a num-
ber of fundamental applications [10, 11]. For example,
they allow for a rigorous proof of a long-standing con-
jecture that linked the presence of a spectral gap in a
lattice system to the exponential decay of correlations in
the ground state [12, 13]. They also provide fundamental
scaling laws for the entanglement entropy, which is an in-
dicator of the computational cost for simulating strongly
interacting systems [14].

In the context of quantum many-body systems, the
existence of a Lieb–Robinson bound can be probed by
recording the dynamics following a sudden parameter
change (quench) in the Hamiltonian. In that case, a
simple picture has been suggested: quantum-entangled
quasiparticles emerge from the initially highly excited
state and propagate ballistically [3], carrying correla-
tions across the system. Ultracold atomic gases offer
an ideal testbed to explore such quantum dynamics due
to their almost perfect decoupling from the environment
and their fast tunability [15]. In addition, the recently
demonstrated technique of single-site imaging in an op-
tical lattice [16, 17] offers the resolution and sensitivity
necessary to reveal the dynamical evolution of a many-
body system at the single-particle level.

Our system consists of ultracold bosonic atoms in an
optical lattice and is well described by the Bose–Hubbard
model [18, 19]. This model is parameterised by two en-
ergy scales: the on-site interaction, U , and the tunnel
coupling between adjacent sites, J . Driven by the com-
petition of these two parameters, a quantum phase tran-
sition between a superfluid and a Mott insulating phase
occurs in homogeneous systems with integer filling n̄. In
the one-dimensional (1d) geometry considered here, the
critical point of this transition is located at (U/J)c � 3.4
[20]. We observed the dynamics of spatial correlations
after a fast decrease of the effective interaction strength
U/J from an initial value deep in the Mott-insulating
regime, with filling n̄ = 1, to a final value closer to the
critical point (Fig. 1a). The time evolution of the sys-
tem can be understood within an analytical model, in
which the local Hilbert space is restricted to the occu-
pancies n = 0, 1, 2 and the resulting quasiparticles obey
a hard-core constraint. This constraint is usually difficult
to take into account, but can be partially fulfilled in 1d
systems if the quasiparticles are considered as fermions
(see Appendix). After the quench, the initial many-body
state |Ψ0� is highly excited and acts as a source of such
quasiparticles. For large interaction strengths, these can
be regarded as an excess particle (doublon) or a hole
(holon) on top of the unity-filling background. To first
order in J/U , we find that the many-body state at time
t after the quench reads:

|Ψ(t)� � |Ψ0�+ i
√
8
J

U

�

k

�
sin(kalat)

·
�
1− e−i[�d(k)+�h(−k)]t/�

�
d̂†k ĥ

†
−k

�
|Ψ0� , (1)

with alat the lattice period. Here d̂†k and ĥ†
k are the

creation operators for a doublon and a holon with mo-
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How fast can correlations spread in a quantum many-body system? Based on the seminal work
by Lieb and Robinson [1], it has recently been shown that several interacting many-body systems
exhibit an effective light cone that bounds the propagation speed of correlations [2–5]. The existence
of such a “speed of light” has profound implications for condensed matter physics and quantum
information, but has never been observed experimentally. Here we report on the time-resolved
detection of propagating correlations in an interacting quantum many-body system. By quenching
a one-dimensional quantum gas in an optical lattice, we reveal how quasiparticle pairs transport
correlations with a finite velocity across the system, resulting in an effective light cone for the
quantum dynamics. Our results open important perspectives for understanding relaxation of closed
quantum systems far from equilibrium [6] as well as for engineering efficient quantum channels
necessary for fast quantum computations [7, 8].

In contrast to relativistic quantum field theory, no
“speed limit” exists in non-relativistic quantum mechan-
ics, allowing in principle for the propagation of informa-
tion over arbitrary distances in arbitrary short times [2].
However, one could naively expect that in real physi-
cal systems short-range interactions allow information to
propagate only with a finite velocity. The existence of a
maximal velocity, also called Lieb–Robinson bound, has
indeed been shown theoretically in some systems, e.g.
interacting spins on a lattice [2–5], but to which extent
this result can be generalised remains an open question
[9]. Lieb–Robinson bounds have already found a num-
ber of fundamental applications [10, 11]. For example,
they allow for a rigorous proof of a long-standing con-
jecture that linked the presence of a spectral gap in a
lattice system to the exponential decay of correlations in
the ground state [12, 13]. They also provide fundamental
scaling laws for the entanglement entropy, which is an in-
dicator of the computational cost for simulating strongly
interacting systems [14].

In the context of quantum many-body systems, the
existence of a Lieb–Robinson bound can be probed by
recording the dynamics following a sudden parameter
change (quench) in the Hamiltonian. In that case, a
simple picture has been suggested: quantum-entangled
quasiparticles emerge from the initially highly excited
state and propagate ballistically [3], carrying correla-
tions across the system. Ultracold atomic gases offer
an ideal testbed to explore such quantum dynamics due
to their almost perfect decoupling from the environment
and their fast tunability [15]. In addition, the recently
demonstrated technique of single-site imaging in an op-
tical lattice [16, 17] offers the resolution and sensitivity
necessary to reveal the dynamical evolution of a many-
body system at the single-particle level.

Our system consists of ultracold bosonic atoms in an
optical lattice and is well described by the Bose–Hubbard
model [18, 19]. This model is parameterised by two en-
ergy scales: the on-site interaction, U , and the tunnel
coupling between adjacent sites, J . Driven by the com-
petition of these two parameters, a quantum phase tran-
sition between a superfluid and a Mott insulating phase
occurs in homogeneous systems with integer filling n̄. In
the one-dimensional (1d) geometry considered here, the
critical point of this transition is located at (U/J)c � 3.4
[20]. We observed the dynamics of spatial correlations
after a fast decrease of the effective interaction strength
U/J from an initial value deep in the Mott-insulating
regime, with filling n̄ = 1, to a final value closer to the
critical point (Fig. 1a). The time evolution of the sys-
tem can be understood within an analytical model, in
which the local Hilbert space is restricted to the occu-
pancies n = 0, 1, 2 and the resulting quasiparticles obey
a hard-core constraint. This constraint is usually difficult
to take into account, but can be partially fulfilled in 1d
systems if the quasiparticles are considered as fermions
(see Appendix). After the quench, the initial many-body
state |Ψ0� is highly excited and acts as a source of such
quasiparticles. For large interaction strengths, these can
be regarded as an excess particle (doublon) or a hole
(holon) on top of the unity-filling background. To first
order in J/U , we find that the many-body state at time
t after the quench reads:

|Ψ(t)� � |Ψ0�+ i
√
8
J

U

�

k

�
sin(kalat)

·
�
1− e−i[�d(k)+�h(−k)]t/�

�
d̂†k ĥ

†
−k

�
|Ψ0� , (1)

with alat the lattice period. Here d̂†k and ĥ†
k are the

creation operators for a doublon and a holon with mo-
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Entangled quasi-particle pairs emerge at all 
sites and propagate in opposite directions.
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APPENDIX

Quenches to U/J= 5.0 and 7.0

We also recorded the time evolution of the two-point

parity correlations (2) after quenches to U/J = 5.0(2)
and 7.0(3), and compared the experimental results to

DMRG simulations of an infinite, homogeneous system

at zero temperature (Fig. 4). The experimental se-

quence was identical to the one we used for the quench

to U/J = 9.0(3), apart from the different end point of

the quench. The data presented here are those used in

Fig. 3.

Quasiparticle model

In the Bose–Hubbard model, bosonic atoms in an op-

tical lattice are confined to a single Bloch band and obey

the Hamiltonian

Ĥ =
�

j

�
− J

�
â
†
j âj+1 + h. c.

�
+

U

2
n̂j(n̂j − 1)

�
, (3)

where âj and â
†
j represent the annihilation and creation

operator of an atom at site j and n̂j = â
†
j âj counts the

U/J = 5.0 U/J = 9.0

FIG. 4. Time evolution of the two-point parity corre-
lations. Left panel: quench to U/J = 5.0(2). Right panel:
quench to U/J = 7.0(3). The circles indicate the correlations
measured experimentally and the line is derived from the nu-
merical simulations for an infinite, homogeneous system at
zero temperature. The experimental and numerical values
were obtained in the same way as described in the legend of
Fig. 2 and in the Methods Summary section.

number of atoms at that site. The model is entirely

parametrised by the effective interaction strength U/J .

In order to analytically treat the time evolution of cor-

relations after a sudden decrease of U/J , we developed

a novel approach based on fermionized quasiparticles.

The initial state being close to a Fock state with one

atom per lattice site, an effective description of the evo-

lution at sufficiently large final interaction strengths can

be obtained within a local basis formed by empty states,

| ◦◦ �j , singly occupied states, | ◦• �j , and doubly occupied

states, | •• �j . Using generalised Jordan–Wigner transfor-

mations [28], we then introduced fermionic creation op-

erators for the excess particles, d̂
†
j | ◦• �j → | •• �j , and the

holes, ĥ
†
j | ◦• �j → | ◦◦ �j , as well as the corresponding anni-

hilation operators. Within the truncated Hilbert space,

the original Hamiltonian (3) can be exactly written in

terms of these operators:

Ĥ =
�

j

P̂
�
− 2J d̂

†
j d̂j+1 − J ĥ

†
j+1 ĥj

− J

√
2
�
d̂
†
j ĥ

†
j+1 − ĥj d̂j+1

�
+ h. c

+
U

2

�
n̂d,j + n̂h,j

��
P̂ , (4)

with n̂d,j = d̂
†
j d̂j and n̂h,j = ĥ

†
j ĥj . The complexity of the

model is hidden in the projector P̂ =
�

j(Î − n̂d,j n̂h,j)
that eliminates the unphysical situation of having an ex-

cess particle and a hole at the same site (Î is the identity

operator). For the present situation, we found that the

substitution P̂ → Î yields good results provided the den-

sity of excitations �n̂d,j(t)+ n̂h,j(t)� remains dilute. This

prescription amounts to treating the constraint on the

level of the Gutzwiller approximation [29, 30]. Moreover,

multiple occupancies of the fermionic species are natu-

rally avoided due to their statistics, which is not the case

in the usual bosonic representations [31, 32].

The Hamiltonian (4) with P̂ → Î is quadratic and can

be diagonalised by a Bogolyubov transformation. The

eigenmodes are doublons and holons with well defined

momentum k:

γ̂†
d,k = u(k) d̂†k + v(k) ĥ−k , (5)

γ̂†
h,−k = u(k) ĥ†

−k − v(k) d̂k , (6)

with

u(k) = cos[θ(k)/2] , v(k) = i sin[θ(k)/2]

and θ(k) = atan

� √
32J sin(kalat)

U − 6J cos(kalat)

�
. (7)
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be obtained within a local basis formed by empty states,

| ◦◦ �j , singly occupied states, | ◦• �j , and doubly occupied

states, | •• �j . Using generalised Jordan–Wigner transfor-

mations [28], we then introduced fermionic creation op-

erators for the excess particles, d̂
†
j | ◦• �j → | •• �j , and the

holes, ĥ
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Ĥ =
�

j

P̂
�
− 2J d̂

†
j d̂j+1 − J ĥ

†
j+1 ĥj
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substitution P̂ → Î yields good results provided the den-

sity of excitations �n̂d,j(t)+ n̂h,j(t)� remains dilute. This

prescription amounts to treating the constraint on the

level of the Gutzwiller approximation [29, 30]. Moreover,

multiple occupancies of the fermionic species are natu-

rally avoided due to their statistics, which is not the case

in the usual bosonic representations [31, 32].

The Hamiltonian (4) with P̂ → Î is quadratic and can
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FIG. 1. Spreading of correlations in a quenched atomic
Mott insulator. a, A 1d ultracold gas of bosonic atoms
(black balls) in an optical lattice is initially prepared deep
in the Mott-insulating phase with unity filling. The lattice
depth is then abruptly lowered, bringing the system out of
equilibrium. b, Following the quench, entangled quasiparticle
pairs emerge at all sites. Each of these pairs consists of a
doublon (red ball) and a holon (blue ball) on top of the unity-
filling background, which propagate ballistically in opposite
directions. It follows that a correlation in the parity of the
site occupancy builds up at time t between any pair of sites
separated by a distance d = vt, where v is the relative velocity
of the doublons and holons.

mentum k, respectively, and k belongs to the first Bril-
louin zone. Quasiparticles thus emerge at any site in the
form of entangled pairs, consisting of a doublon and a
holon with opposite momenta. Some of these pairs are
bound on nearest-neighbour sites while the others form
wave packets, due to their peaked momentum distribu-
tion. The wave packets propagate in opposite directions
with a relative group velocity v determined by the dis-
persion relation �d(k) + �h(−k) of doublons and holons
(Fig. 1b). The propagation of quasiparticle pairs is re-
flected in the two-point parity correlation functions [21]:

Cd(t) = �ŝj(t)ŝj+d(t)� − �ŝj(t)��ŝj+d(t)� , (2)

where j labels the lattice sites. The operator ŝj(t) =
eiπ[n̂j(t)−n̄] measures the parity of the occupation number
n̂j(t). It yields +1 in the absence of quasiparticles (odd
occupancy) and -1 if a quasiparticle is present (even occu-
pancy). Because the initial state is close to a Fock state
with one atom per lattice site, we expect Cd(t = 0) � 0.
After the quench, the propagation of quasiparticle pairs
with the relative velocity v results in a positive correla-
tion between any pair of sites separated by a distance
d = vt.

The experimental sequence started with the prepara-
tion of a two-dimensional (2d) degenerate gas of 87Rb
confined in a single antinode of a vertical optical lattice
[17, 21] (z-axis, alat = 532nm). The system was then
divided into about 10 decoupled 1d chains by adding a
second optical lattice along the y-axis and by setting both

lattice depths to 20.0(5)Er, where Er = (2π�)2/(8ma2lat)
is the recoil energy of the lattice and m the atomic mass of
87Rb. The effective interaction strength along the chains
was tuned via a third optical lattice along the x-axis. The
number of atoms per chain ranged between 10 and 18, re-
sulting in a lattice filling n̄ = 1 in the Mott-insulating do-
main. The inital state was prepared by adiabatically in-
creasing the x-lattice depth until the interaction strength
reached a value of (U/J)0 = 40(2). We then brought the
system out of equilibrium by lowering the lattice depth
typically within 100 µs, which is fast compared to the
inverse tunnel coupling �/J , but still adiabatic with re-
spect to transitions to higher Bloch bands. The final
lattice depths were in the Mott-insulating regime, close
to the critical point. After a variable evolution time, we
“froze” the density distribution of the many-body state
by rapidly raising the lattice depth in all directions to
∼ 80Er. Finally, the atoms were detected by fluorescence
imaging using a microscope objective with a resolution
on the order of the lattice spacing and a reconstruction
algorithm extracted the occupation number at each lat-
tice site [17]. Because inelastic light-assisted collisions
during the imaging lead to a rapid loss of atom pairs, we
directly detected the parity of the occupation number.

Our experimental results for the time evolution of the
two-point parity correlations after a quench to U/J =
9.0(3) show a clear positive signal propagating with in-
creasing time to larger distances d (Fig. 2). In addition,
the propagation velocity of the correlation signal is con-
stant over the range 2 ≤ d ≤ 6 (inset of Fig. 2). We found
similar dynamics also for quenches to U/J = 5.0(2) and
7.0(3) (Fig. 4). We note that the observed signal can-
not be attributed to a simple density wave because such
an excitation would result in �ŝj ŝj+d� = �ŝj��ŝj+d�. We
compared the experimental results to numerical simula-
tions of an infinite, homogeneous system at T = 0 using
the adaptive time-dependent density matrix renormal-
ization group [22, 23] (t-DMRG). In the simulation, the
initial and final interaction strengths were fixed at the ex-
perimentally determined values and the quench was con-
sidered instantaneous, at t = 0. We found remarkable
agreement between the experiment and theory over all
explored distances and times, despite the finite tempera-
ture T � 0.1U/kb (kb is the Boltzmann constant) and the
harmonic confinement with frequency ν = 68(1)Hz that
characterise the experimental system. The observed dy-
namics is also qualitatively reproduced by our analytical
model for U/J = 9.0. For lower values of U/J , however,
the model breaks down due to the increasing number of
quasiparticles.

We extracted the propagation velocity v from the time
of the correlation peak as a function of the distance
d (Fig. 3a). A linear fit restricted to 2 ≤ d ≤ 6
yields v × �/(Jalat) = 5.0(2), 5.6(5) and 5.0(2) for U/J =
5.0(2), 7.0(3) and 9.0(3), respectively. The points for
d = 1 were excluded from the fit, as they result from the

ŝj(t) = eiπ[n̂j(t)−n̄] number parity

Observable of choice

We expect a positive correlation between 
any pair of sites separated by a distance d = vt

After the quench initial state 
is highly excited.

Prepare



3

FIG. 2. Time evolution of the two-point parity cor-
relations. After the quench, a positive correlation signal

propagates with increasing time to larger distances. The ex-

perimental values for a quench from U/J = 40 to U/J = 9.0
(circles) are in good agreement with the corresponding numer-

ical simulation for an infinite, homogeneous system at zero

temperature (continuous line). Our analytical model (dashed

line) also qualitatively reproduces the observed dynamics. In-

set: Experimental data displayed as a colormap, revealing the

propagation of the correlation signal with a well defined ve-

locity. The experimental values result from the average over

the central N sites of more than 1000 chains, where N equals

80% of the length of each chain. Error bars represent the

standard deviation.

interference between propagating and bound quasiparti-

cle pairs (Eq. (1)). A comparison of the experimental

velocities with the ones obtained from numerical simu-

lations (Fig. 3b) shows agreement within the error bars.

The measured velocities can also be compared with two

limiting cases: On the one hand, they are significantly

larger than the spreading velocity of non-interacting par-

ticles, v = 4Jalat/�, and twice the velocity of sound

in the superfluid phase [24]; on the other hand, they re-

main below the maximum velocity predicted by our effec-

tive model, that can be interpreted as a Lieb–Robinson

FIG. 3. Propagation velocity. a, Determination of the

propagation velocity for the quenches to U/J = 5.0, 7.0 and

9.0. The time of the maximum of the correlation signal is

obtained from fits to the traces Cd(t) (circles). Error bars

represent the 68% confidence interval of these fits. We then

extract the propagation velocities from weigthed linear fits

restricted to 2 ≤ d ≤ 6 (lines). The data for U/J = 5.0 and

7.0 have been offset horizontally for clarity. b, Comparison

of the experimental velocities (circles) to the ones obtained

from numerical simulations for an infinite, homogeneous sys-

tem at zero temperature (shaded area). The shaded area and

the vertical error bars denote the 68 % confidence interval of

the fit. The horizontal error bars represent the uncertainty

due to the calibration of the lattice depth. The black line cor-

responds to the bound predicted by our effective model (the

shading indicates the break down of this model). The arrows

mark the maximum velocity expected in the non-interacting

case (left) and the asymptotic value derived from our model

when U/J → ∞ (right).

bound (Fig. 3b). This bound equals 6 Jalat/� in the limit

U/J → ∞, corresponding to doublons and holons propa-

gating with the respective group velocities 4 Jalat/� and

2 Jalat/�. The higher velocity of doublons simply reflects

their Bose-enhanced tunnel coupling.

In conclusion, we have presented the first experimen-

tal observation of an effective light cone for the spread-

ing of correlations in an interacting quantum many-body

system. Although the observed dynamics can be under-

stood within a fermionic quasiparticle picture valid deep
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FIG. 1. Spreading of correlations in a quenched atomic
Mott insulator. a, A 1d ultracold gas of bosonic atoms
(black balls) in an optical lattice is initially prepared deep
in the Mott-insulating phase with unity filling. The lattice
depth is then abruptly lowered, bringing the system out of
equilibrium. b, Following the quench, entangled quasiparticle
pairs emerge at all sites. Each of these pairs consists of a
doublon (red ball) and a holon (blue ball) on top of the unity-
filling background, which propagate ballistically in opposite
directions. It follows that a correlation in the parity of the
site occupancy builds up at time t between any pair of sites
separated by a distance d = vt, where v is the relative velocity
of the doublons and holons.

mentum k, respectively, and k belongs to the first Bril-
louin zone. Quasiparticles thus emerge at any site in the
form of entangled pairs, consisting of a doublon and a
holon with opposite momenta. Some of these pairs are
bound on nearest-neighbour sites while the others form
wave packets, due to their peaked momentum distribu-
tion. The wave packets propagate in opposite directions
with a relative group velocity v determined by the dis-
persion relation �d(k) + �h(−k) of doublons and holons
(Fig. 1b). The propagation of quasiparticle pairs is re-
flected in the two-point parity correlation functions [21]:

Cd(t) = �ŝj(t)ŝj+d(t)� − �ŝj(t)��ŝj+d(t)� , (2)

where j labels the lattice sites. The operator ŝj(t) =
eiπ[n̂j(t)−n̄] measures the parity of the occupation number
n̂j(t). It yields +1 in the absence of quasiparticles (odd
occupancy) and -1 if a quasiparticle is present (even occu-
pancy). Because the initial state is close to a Fock state
with one atom per lattice site, we expect Cd(t = 0) � 0.
After the quench, the propagation of quasiparticle pairs
with the relative velocity v results in a positive correla-
tion between any pair of sites separated by a distance
d = vt.

The experimental sequence started with the prepara-
tion of a two-dimensional (2d) degenerate gas of 87Rb
confined in a single antinode of a vertical optical lattice
[17, 21] (z-axis, alat = 532nm). The system was then
divided into about 10 decoupled 1d chains by adding a
second optical lattice along the y-axis and by setting both

lattice depths to 20.0(5)Er, where Er = (2π�)2/(8ma2lat)
is the recoil energy of the lattice and m the atomic mass of
87Rb. The effective interaction strength along the chains
was tuned via a third optical lattice along the x-axis. The
number of atoms per chain ranged between 10 and 18, re-
sulting in a lattice filling n̄ = 1 in the Mott-insulating do-
main. The inital state was prepared by adiabatically in-
creasing the x-lattice depth until the interaction strength
reached a value of (U/J)0 = 40(2). We then brought the
system out of equilibrium by lowering the lattice depth
typically within 100 µs, which is fast compared to the
inverse tunnel coupling �/J , but still adiabatic with re-
spect to transitions to higher Bloch bands. The final
lattice depths were in the Mott-insulating regime, close
to the critical point. After a variable evolution time, we
“froze” the density distribution of the many-body state
by rapidly raising the lattice depth in all directions to
∼ 80Er. Finally, the atoms were detected by fluorescence
imaging using a microscope objective with a resolution
on the order of the lattice spacing and a reconstruction
algorithm extracted the occupation number at each lat-
tice site [17]. Because inelastic light-assisted collisions
during the imaging lead to a rapid loss of atom pairs, we
directly detected the parity of the occupation number.

Our experimental results for the time evolution of the
two-point parity correlations after a quench to U/J =
9.0(3) show a clear positive signal propagating with in-
creasing time to larger distances d (Fig. 2). In addition,
the propagation velocity of the correlation signal is con-
stant over the range 2 ≤ d ≤ 6 (inset of Fig. 2). We found
similar dynamics also for quenches to U/J = 5.0(2) and
7.0(3) (Fig. 4). We note that the observed signal can-
not be attributed to a simple density wave because such
an excitation would result in �ŝj ŝj+d� = �ŝj��ŝj+d�. We
compared the experimental results to numerical simula-
tions of an infinite, homogeneous system at T = 0 using
the adaptive time-dependent density matrix renormal-
ization group [22, 23] (t-DMRG). In the simulation, the
initial and final interaction strengths were fixed at the ex-
perimentally determined values and the quench was con-
sidered instantaneous, at t = 0. We found remarkable
agreement between the experiment and theory over all
explored distances and times, despite the finite tempera-
ture T � 0.1U/kb (kb is the Boltzmann constant) and the
harmonic confinement with frequency ν = 68(1)Hz that
characterise the experimental system. The observed dy-
namics is also qualitatively reproduced by our analytical
model for U/J = 9.0. For lower values of U/J , however,
the model breaks down due to the increasing number of
quasiparticles.

We extracted the propagation velocity v from the time
of the correlation peak as a function of the distance
d (Fig. 3a). A linear fit restricted to 2 ≤ d ≤ 6
yields v × �/(Jalat) = 5.0(2), 5.6(5) and 5.0(2) for U/J =
5.0(2), 7.0(3) and 9.0(3), respectively. The points for
d = 1 were excluded from the fit, as they result from the

ŝj(t) = eiπ[n̂j(t)−n̄] number parity
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FIG. 2. Time evolution of the two-point parity cor-
relations. After the quench, a positive correlation signal

propagates with increasing time to larger distances. The ex-

perimental values for a quench from U/J = 40 to U/J = 9.0
(circles) are in good agreement with the corresponding numer-

ical simulation for an infinite, homogeneous system at zero

temperature (continuous line). Our analytical model (dashed

line) also qualitatively reproduces the observed dynamics. In-

set: Experimental data displayed as a colormap, revealing the

propagation of the correlation signal with a well defined ve-

locity. The experimental values result from the average over

the central N sites of more than 1000 chains, where N equals

80% of the length of each chain. Error bars represent the

standard deviation.

interference between propagating and bound quasiparti-

cle pairs (Eq. (1)). A comparison of the experimental

velocities with the ones obtained from numerical simu-

lations (Fig. 3b) shows agreement within the error bars.

The measured velocities can also be compared with two

limiting cases: On the one hand, they are significantly

larger than the spreading velocity of non-interacting par-

ticles, v = 4Jalat/�, and twice the velocity of sound

in the superfluid phase [24]; on the other hand, they re-

main below the maximum velocity predicted by our effec-

tive model, that can be interpreted as a Lieb–Robinson

FIG. 3. Propagation velocity. a, Determination of the

propagation velocity for the quenches to U/J = 5.0, 7.0 and

9.0. The time of the maximum of the correlation signal is

obtained from fits to the traces Cd(t) (circles). Error bars

represent the 68% confidence interval of these fits. We then

extract the propagation velocities from weigthed linear fits

restricted to 2 ≤ d ≤ 6 (lines). The data for U/J = 5.0 and

7.0 have been offset horizontally for clarity. b, Comparison

of the experimental velocities (circles) to the ones obtained

from numerical simulations for an infinite, homogeneous sys-

tem at zero temperature (shaded area). The shaded area and

the vertical error bars denote the 68 % confidence interval of

the fit. The horizontal error bars represent the uncertainty

due to the calibration of the lattice depth. The black line cor-

responds to the bound predicted by our effective model (the

shading indicates the break down of this model). The arrows

mark the maximum velocity expected in the non-interacting

case (left) and the asymptotic value derived from our model

when U/J → ∞ (right).

bound (Fig. 3b). This bound equals 6 Jalat/� in the limit

U/J → ∞, corresponding to doublons and holons propa-

gating with the respective group velocities 4 Jalat/� and

2 Jalat/�. The higher velocity of doublons simply reflects

their Bose-enhanced tunnel coupling.

In conclusion, we have presented the first experimen-

tal observation of an effective light cone for the spread-

ing of correlations in an interacting quantum many-body

system. Although the observed dynamics can be under-

stood within a fermionic quasiparticle picture valid deep

t-DMRG

speed of sound

analyticLieb-Robinson bound

fit


