Light-cone-like spreading of correlations in a quantum many-body system

How fast can correlations spread in a quantum many-body system?

Marc Cheneau, Peter Barmettler, Dario Poletti, Manuel Endres, Peter Schauß, Takeshi Fukuhara, Christian Gross, Immanuel Bloch, Corinna Kollath, and Stefan Kuhr

arXiv:1111.0776

Journal Club 22.11.2011 - Andreas Nunnenkamp

Commun. math. Phys. 28, 251—257 (1972) © by Springer-Verlag 1972

The Finite Group Velocity of Quantum Spin Systems

Elliott H. Lieb*

Dept. of Mathematics, Massachusetts Institute of Technology Cambridge, Massachusetts, USA

Derek W. Robinson**

Dept. of Physics, Univ. Aix-Marseille II, Marseille-Luminy, France

Received May 15, 1972

Cold Bosonic Atoms in Optical Lattices

LETTERS

Single-atom-resolved fluorescence imaging of an atomic Mott insulator

Jacob F. Sherson¹*[†], Christof Weitenberg¹*, Manuel Endres¹, Marc Cheneau¹, Immanuel Bloch^{1,2} & Stefan Kuhr¹

ARTICLE

17 MARCH 2011 | VOL 471 | NATURE | 319

doi:10.1038/nature09827

Single-spin addressing in an atomic Mott insulator

Christof Weitenberg¹, Manuel Endres¹, Jacob F. Sherson¹[†], Marc Cheneau¹, Peter Schauß¹, Takeshi Fukuhara¹, Immanuel Bloch^{1,2} & Stefan Kuhr¹

REPORTS

14 OCTOBER 2011 VOL 334 SCIENCE

Observation of Correlated Particle-Hole Pairs and String Order in Low-Dimensional Mott Insulators

M. Endres,¹* M. Cheneau,¹ T. Fukuhara,¹ C. Weitenberg,¹ P. Schauß,¹ C. Gross,¹ L. Mazza,¹ M. C. Bañuls,¹ L. Pollet,² I. Bloch,^{1,3} S. Kuhr^{1,4}

Experimental sequence

Prepare $(U/J)_0 = 40$ $\bar{n} = 1$ Mott insulator

After the quench initial state is highly excited.

Experimental sequence

Prepare $(U/J)_0 = 40$ $\bar{n} = 1$ Mott insulator

After the quench initial state is highly excited.

 $\begin{aligned} & \mathbf{Quasi-particle\ model} \\ \hat{d}_{j}^{\dagger}| \stackrel{\circ}{\bullet} \rangle_{j} \rightarrow | \stackrel{\bullet}{\bullet} \rangle_{j} \quad \hat{h}_{j}^{\dagger} | \stackrel{\circ}{\bullet} \rangle_{j} \rightarrow | \stackrel{\circ}{\bullet} \rangle_{j} \\ & |\Psi(t)\rangle \simeq |\Psi_{0}\rangle + i\sqrt{8} \frac{J}{U} \sum_{k} \Big\{ \sin(ka_{\text{lat}}) \\ & \cdot \Big[1 - e^{-i[\epsilon_{d}(k) + \epsilon_{h}(-k)]t/\hbar} \Big] \, \hat{d}_{k}^{\dagger} \, \hat{h}_{-k}^{\dagger} \Big\} |\Psi_{0}\rangle \end{aligned}$

Entangled quasi-particle pairs emerge at all sites and propagate in opposite directions.

Observable of choice

$$\begin{split} C_d(t) &= \langle \hat{s}_j(t) \hat{s}_{j+d}(t) \rangle - \langle \hat{s}_j(t) \rangle \langle \hat{s}_{j+d}(t) \rangle \\ \hat{s}_j(t) &= e^{i\pi [\hat{n}_j(t) - \bar{n}]} \quad \text{number parity} \end{split}$$

We expect a positive correlation between any pair of sites separated by a distance d=vt

