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Abstract. In recent years. surface codes have become the preferred method
for guantum error correction in large scale computational and commmunications
architectures. Their comparatively high fault-tolerant thresholds and their natural
2-dimensional nearest neighbour (2DNN) structure make them an obvious choeice for
large scale designs in experimentally realistic systems. While fundamentally hased
on the toric code of Kitaev, there are many variants. two of which are the planar-
and defect- hased codes. Planar codes require fewer qubits to implement (for the
same strength of error correction), but are restricted to encoding a single qubit
of information. Interactions between encoded qubits are achieved wvia transwversal
operations, thus destroying the inherent 2DNN nature of the code. In this paper
we introduce a new technique enabling the coupling of two planar codes without
transversal operations, maintaining the 20N of the encoded computer. Our lattice
surgery technigue comprises splitting and merging planar code surfaces, and enables
us to perform universal quantum computation (including magic state injection) while
remaoving the need for braided logic in a strictly 2DNN design, and hence reduces the
overall qubit resources for logic operations. We show how lattice surgery allows us to
distribute encoded GHZ states in a more direct (and overhead friendly) manner, and
how a demonstration of an encoded CNOT between two distance 3 logical states is
possible with 53 physical qubits, half of that required in any other known construction
in 2D.



Surface Code

* Introduced by Dennis et al. (2002), based on Kitaev's Toric Code (1997)
* Quantum error correcting code, used to encode one logical qubit
- - Z —_ X
- Stabilizer operators Ap= HEF O; By, = HieV O ;
e Can be measured using nearest neighbour interactions

« OQutcome of -1 on a plaquette or vertex can be associated with an anyon



Surface Code

* Information encoded within 2 dimensional space
AF|(//>:|(//> BV|(//>:|(.U>

 This is the space with no anyons on any plaguette or vertex

» Performing operations on the code can create pairs of anyons

*These can be reannihilated, but care must be done to do this without causing logical errors



Surface Code
) X  Logical Pauli operators for logical qubits
’ £ correspond to products of single spin Pauli

operators along lines that traverse the code

» These can be interpreted as operators which
create anyons pairs, and place them off
opposite edges

» The logical |+> state is that where no vertex
anyon exists off the left and right edges

*The |-> state is that where there is a vertex
anyon off each

« Single qubit operations and entangling
operations must be performed transversally, but
this can be hard to realize

» Defect based approaches are an alternative
(Raussendorf et al. (2007) ), but these need
larger codes

* Is there another way?



Lattice merging

« Lattice merging takes two stabilizer codes and makes one

e Can be done either along the 'smooth' or 'rough' edges

« For a rough merge, a line of ancilla spins in state |0> are placed along the join
» The newly formed vertex stabilizers are measured

« Each will yield +1 (vacuum) or -1 (anyon) with equal probability, except with a
parity constraint



Lattice merg

ng

* If both codes are initially in state |+> (or |->), there are no net anyons along the
join. Stabilizer measurements must therefore yield an even number of anyons

* If one is in |[+> and the other in |->, there is one anyon along the join. Stabilizer
measurements must therefore yield an odd number

 Parity of anyon number therefore corresponds to a logical XX measurement

« Any spare anyon can be moved off the right side of the new code



Lattice merging

* In terms of the logical states, such a rough merge corresponds to:
- Measurement of XX
- Z on second qubit iff XX=-1
* Use M=0 to denote the XX=+1 outcome and M=1 to denote XX=-1
» Consider arbitrary states
w|=«lo|+B[1)=al+|+b|-]  |p/=a’|0/+B|1/=a’

 This process results in to the transformation

wllp/ = ald+(—1)"BX|d)=a'|p)+(=1)" B X|y/

Hbl

* In terms of the logical states, a smooth merge corresponds to:
- Measurement of ZZ
- X on second qubit iff ZZ=-1

 This process results in the transformation

wl|lp|—ale) +(=1)"bX|p/=a'|ly|+(=1)"b" X |y,

(this transformation does not seem to be correct)



Lattice splitting

« Lattice splitting takes one stabilizer code and makes two

e Can be done either along the 'smooth' or 'rough' edges

* For a smooth merge, a line of spins are measured in the |+>/|-> basis to remove
them from the codes

» Border plaquettes will have random anyon occupation, and spare anyons can be
disposed of in any way (but consistent for each code)



Lattice splitting

» Process results in two qubits with the same state in the |0>/|1> basis

@) =x|0}+B|1]—>«|00)+B[11]

 Similarly for a rough split

wi=al+/+b|-j=alt++b|-



CNOT

|« Merging and splitting can be used to implement
a CNOT

* First the control qubit is smooth split
w0/ — |00} +B[11]

* The ancilla is then rough merged with the target

—a|0)]p)+(—1)" B|1) (X |p))

0)[p) = |op)
1)|p)—=(—1)" X|¢p)

 Since M is known, the spurious -1 can be
removed (if present) with a Z operation

*The result is a CNOT between the control and
target qubits



State Injection

 For universal quantum computation, the ability to prepare arbitrary logical qubit
states must be shown

* These can be used to perform arbitrary single spin rotations

* The means to map a state from a single spin to a planar code is shown below

lp)=x|0/+B[1]  |p)=«|000/+p[111)

(d) (e)



Conclusions

* A new way of performing operations on qubits stored in planar
codes is proposed

* This removes the need for transversal interactions between codes

* It Is also more efficient than defect based schemes, using less
spins to achieve the same code distance

* However, issues of fault-tolerance are not fully explored
- Do known thresholds apply?
- How are errors removed from ancilla states? What is the
overhead?

 So lattice surgery could be the new way to do planar code based
guantum computation, but more needs to be known about its
capabilities
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