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Surface Code

● Introduced by Dennis et al. (2002), based on Kitaev's Toric Code (1997)

● Quantum error correcting code, used to encode one logical qubit

● Stabilizer operators

● Can be measured using nearest neighbour interactions

● Outcome of -1 on a plaquette or vertex can be associated with an anyon
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Surface Code

● Information encoded within 2 dimensional space

● This is the space with no anyons on any plaquette or vertex

● Performing operations on the code can create pairs of anyons

●These can be reannihilated, but care must be done to do this without causing logical errors

AF∣ 〉=∣ 〉 BV∣ 〉=∣ 〉



  

Surface Code
● Logical Pauli operators for logical qubits 
correspond to products of single spin Pauli 
operators along lines that traverse the code

● These can be interpreted as operators which 
create anyons pairs, and place them off 
opposite edges

● The logical |+> state is that where no vertex 
anyon exists off the left and right edges

●The |-> state is that where there is a vertex 
anyon off each

● Single qubit operations and entangling 
operations must be performed transversally, but 
this can be hard to realize

● Defect based approaches are an alternative 
(Raussendorf et al. (2007) ), but these need 
larger codes

● Is there another way? 



  

Lattice merging

● Lattice merging takes two stabilizer codes and makes one

● Can be done either along the 'smooth' or 'rough' edges

● For a rough merge, a line of ancilla spins in state |0> are placed along the join

● The newly formed vertex stabilizers are measured

● Each will yield +1 (vacuum) or -1 (anyon) with equal probability, except with a 
parity constraint 



  

Lattice merging

● If both codes are initially in state |+> (or |->), there are no net anyons along the 
join. Stabilizer measurements must therefore yield an even number of anyons

● If one is in |+> and the other in |->, there is one anyon along the join. Stabilizer 
measurements must therefore yield an odd number

● Parity of anyon number therefore corresponds to a logical XX measurement

● Any spare anyon can be moved off the right side of the new code



  

Lattice merging
● In terms of the logical states, such a rough merge corresponds to:
          - Measurement of XX
         - Z on second qubit iff XX=-1

● Use M=0 to denote the XX=+1 outcome and M=1 to denote XX=-1

● Consider arbitrary states

● This process results in to the transformation

● In terms of the logical states, a smooth merge corresponds to:
          - Measurement of ZZ
         - X on second qubit iff ZZ=-1

● This process results in the transformation

(this transformation does not seem to be correct)

∣ 〉∣ 〉∣ 〉−1M  X∣ 〉= '∣〉−1M  ' X∣ 〉

∣ 〉= '∣0 〉 '∣1 〉=a '∣+ 〉b '∣- 〉∣ 〉=∣0 〉∣1 〉=a∣+ 〉b∣- 〉

∣ 〉∣ 〉 a∣ 〉−1M b X∣ 〉=a '∣ 〉−1M b ' X∣ 〉



  

Lattice splitting

● Lattice splitting takes one stabilizer code and makes two

● Can be done either along the 'smooth' or 'rough' edges

● For a smooth merge, a line of spins are measured in the |+>/|-> basis to remove 
them from the codes

● Border plaquettes will have random anyon occupation, and spare anyons can be 
disposed of in any way (but consistent for each code)



  

Lattice splitting

● Process results in two qubits with the same state in the |0>/|1> basis

● Similarly for a rough split

∣ 〉=∣0 〉∣1 〉∣00 〉∣11 〉

∣ 〉=a∣+ 〉b∣- 〉 a∣++ 〉b∣-- 〉



  

CNOT
● Merging and splitting can be used to implement 
a CNOT

● First the control qubit is smooth split

● The ancilla is then rough merged with the target

● Since M is known, the spurious -1 can be 
removed (if present) with a Z operation

●The result is a CNOT between the control and 
target qubits

∣ 〉∣0 〉∣00 〉∣11 〉

∣0 〉∣ 〉−1M ∣1 〉 X∣ 〉 

∣0 〉∣ 〉∣ 〉

∣1 〉∣ 〉−1M X∣ 〉



  

State injection
● For universal quantum computation, the ability to prepare arbitrary logical qubit 
states must be shown

● These can be used to perform arbitrary single spin rotations

● The means to map a state from a single spin to a planar code is shown below

∣ 〉=∣0 〉∣1 〉 ∣ 〉=∣000 〉∣111 〉



  

Conclusions

● A new way of performing operations on qubits stored in planar 
codes is proposed

● This removes the need for transversal interactions between codes

● It is also more efficient than defect based schemes, using less 
spins to achieve the same code distance

● However, issues of fault-tolerance are not fully explored
          - Do known thresholds apply?
         - How are errors removed from ancilla states? What is the        

             overhead?

● So lattice surgery could be the new way to do planar code based 
quantum computation, but more needs to be known about its 
capabilities
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