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Physical Property vs. State of Knowledge

Weather: Classical Deterministic System
suppose physical system is in state “white christmas” J

based on:
m much, but incomplete data about initial state
m knowledge of classical mechanics

m elaborate heuristics, vast computer
resources

probability of snow on christmas: 20%
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The Classical Case
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The Classical Case

ontic state of particle (1 D): epistemic state of particle (1 D):
p p
(x0, o)
.
X X
point in phase space probability distribution

probability density
each ontic state possible
in more than one (infi-
nite) epistemic states:




What are Wavefunctions?

three main possibilities:

wavefunctions epistemic, with underlying ontic state.
Quantum mechanics: statistical theory of ontic states

wavefunctions epistemic, no deeper underlying reality

wavefunctions ontic, i.e., describe physical state
(many-worlds, spontaneous collaps)

m position 1 and 3 compatible with scientific realism
m position 2: anti-realism (e.g., Copenhagen approaches)
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three main possibilities:

wavefunctions epistemic, with underlying ontic state.
Quantum mechanics: statistical theory of ontic states

wavefunctions epistemic, no deeper underlying reality

wavefunctions ontic, i.e., describe physical state
(many-worlds, spontaneous collaps)

m position 1 and 3 compatible with scientific realism
m position 2: anti-realism (e.g., Copenhagen approaches)
m theorem of paper attacks position 1:

if quantum theory correct, complete, and free
wave functions are physical properties




Bell Theorem and Local Determinism

Bell Theorem

A (contextual) hidden variable theory reproducing all
predictions of quantum mechanics cannot be locally
deterministic under the assumption of free choice.

in consequence, either

m psi-ontic: objective wave function not supplementable to reach
local determinism
m psi-epistemic: underlying reality is not locally determined



Bell Theorem and Local Determinism

Bell Theorem

A (contextual) hidden variable theory reproducing all
predictions of quantum mechanics cannot be locally
deterministic under the assumption of free choice.

in consequence, either

m psi-ontic: objective wave function not supplementable to reach
local determinism
m psi-epistemic: underlying reality is not locally determined

possible escapes for epistemicists
abandon scientific realism
sacrifice locality (Lorentz invariance)
world could have fundamentally stochastic nature




Why be a psi-epistemicist?

classical epistemic measurement is Bayesian conditioning
= no change of underlying ontic state

m preserve scientific realism (hidden variable theories)

m higher explanatory power (remote steering, quantum
teleportation, interference, ...)

m provides more “homogeneous” world view
(no quantum-classical transition)

prominent advocats: Albert Einstein, Niels Bohr, Rob Spekkens,
Anton Zeilinger (quantum information), ...

epistemic states = states of incomplete knowledge



Explanatory Power of Epistemic Position

toy model (Spekkens, PRA 75, 032110 (2007))

maximal knowledge: for every system, at every time, knowledge
possesed about ontic state equals knowledge lacked

two-level system
(Qubit)
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Claim: Wavefunction is Physical Property

assumptions
QM: quantum mechanics correct (empircally adequate)

FR: freedom of choice (measurement independent of
any prexisting values)

in schematic experimental setup: oo
m measurement setting A ¢ -l
m measurement outcome X ' / --------- S
m =: additional information o "/ ' LN

provided by extended theory b

Colbeck and Renner, Nat. Comm. 2, 411 (2011)
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assumptions
QM: quantum mechanics correct (empircally adequate)

FR: freedom of choice (measurement independent of
any prexisting values)

in schematic experimental setup: oo
m measurement setting A ¢ . -,
m measurement outcome X . / --------- S
m =: additional information o |l/ ' LN

provided by extended theory b

theorem: completeness of quantum mechanics (CPL)

= cannot increase knowledge given by A and wavefunction :
markov chain = < (A4,¢) < X

Colbeck and Renner, Nat. Comm. 2, 411 (2011)
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m bipartite measurement of (spacelike) A and B with
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m additional information = (static) accessed by
measurement C with outcome Z
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Sketched Proof of CPL - Part |
ingredients:
m bipartite measurement of (spacelike) A and B with
outcomes X and Y

m additional information = (static) accessed by
measurement C with outcome Z

cond. prob. CPL FR
Poir = Por/Pr J Vacx : Pzjaex = Pzjac J Paipcyz = Pa

proof of first constraint:
2 is non-signalling: Pyzja = Payz/Pa
Pyziac = Pyzjsc Pajyz = Pavz/Pyz

Pxziapc = Pxzjac )
Pxy|apc = Pxy|aB

FR implies

[ Pyziapc X Pajpc = Pajpcyz X Pyzjpc ]




Sketched Proof Part |l

correlations of bipartite measurement with 2N inputs:

Iy=P(X=Y|A=0,B=2N-1)+ Y, P(X#Y|A=a,B=b).
a,b
la—bl]=1

under non-signalling conditions:

1

E Z ’PZ|abcx(Z) - PZ|abc(Z)‘ < Iy x I/N
Z
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Final Result
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Py=(¢,€) >0and P4(a) >0
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m from CPL E < (¢,A) <> X follows
Pxiz—¢ A=a = Px|z=¢,v=y.A=a = Px|v=y.A=a

for all ¢, ¢, a with Py 5 4(¢,€,a) > 0
m free choice: Py =4 (¢, &, a) = Py =(¥,§) x Ps(a), hence
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Py =(v0,§) > 0and Py =(v1,§)

m it follows Px|g—y.a—a = Px|w—y, a—a fOr all a with P4(a) > 0
) >

m always possible to choose measurement set with P4 (a
(e.g., containing |0)(1o|), from which follows g = 1; .

suppose for fixed = = £ there are 1,1)0, wl with J

>0

ontic nature of wavefunction
For each = = ¢ value of ¥ = ¢ is uniquely determined. J




