
Completeness of quantum theory implies that wave functions are physical properties

Roger Colbeck1, ∗ and Renato Renner2, †

1Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5, Canada
2Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland

(Dated: 28th November 2011)

arXiv1111.6597

Journal Club

Daniel Becker
20 December 2011

1



Physical Property vs. State of Knowledge

Weather: Classical Deterministic System
suppose physical system is in state “white christmas”

Forecast 1: based on:
much, but incomplete data about initial state
knowledge of classical mechanics
elaborate heuristics, vast computer
resources

probability of snow on christmas: 20%

Forecast 2: based on:
counting of days with
temperatures below 0◦C

probability of snow: ∼ 20%
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The Classical Case
ontic state of particle (1 D):

(x0, p0)

x

p

point in phase space

epistemic state of particle (1 D):

x

p

probability distribution

each ontic state possible
in more than one (infi-
nite) epistemic states:

(x, p)

probability density
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What are Wavefunctions?

three main possibilities:
1 wavefunctions epistemic, with underlying ontic state.

Quantum mechanics: statistical theory of ontic states
2 wavefunctions epistemic, no deeper underlying reality
3 wavefunctions ontic, i.e., describe physical state

(many-worlds, spontaneous collaps)

position 1 and 3 compatible with scientific realism
position 2: anti-realism (e.g., Copenhagen approaches)

theorem of paper attacks position 1:

if quantum theory correct, complete, and free
wave functions are physical properties
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Bell Theorem and Local Determinism

Bell Theorem
A (contextual) hidden variable theory reproducing all
predictions of quantum mechanics cannot be locally
deterministic under the assumption of free choice.

in consequence, either

psi-ontic: objective wave function not supplementable to reach
local determinism
psi-epistemic: underlying reality is not locally determined

possible escapes for epistemicists
1 abandon scientific realism
2 sacrifice locality (Lorentz invariance)
3 world could have fundamentally stochastic nature
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Why be a psi-epistemicist?

classical epistemic measurement is Bayesian conditioning
=⇒ no change of underlying ontic state

preserve scientific realism (hidden variable theories)
higher explanatory power (remote steering, quantum
teleportation, interference, . . . )
provides more “homogeneous” world view
(no quantum-classical transition)

prominent advocats: Albert Einstein, Niels Bohr, Rob Spekkens,
Anton Zeilinger (quantum information), . . .

epistemic states =⇒ states of incomplete knowledge
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Explanatory Power of Epistemic Position

toy model (Spekkens, PRA 75, 032110 (2007))
maximal knowledge: for every system, at every time, knowledge

possesed about ontic state equals knowledge lacked

|0〉⇔
|1〉⇔
|+〉⇔
|−〉⇔
|+i〉⇔
|−i〉⇔

two-level system
(Qubit)

1̂/2⇔

transformations on Bloch sphere
⇔ permutations of ontic states

(1342) = (1342)
|0〉 −→ |+〉

interference:
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Claim: Wavefunction is Physical Property
assumptions

1 QM: quantum mechanics correct (empircally adequate)
2 FR: freedom of choice (measurement independent of

any prexisting values)

in schematic experimental setup:

measurement setting A

measurement outcome X

Ξ: additional information
provided by extended theory

iven a system and a set of initial conditions, classical mecha-
nics allows us to calculate the future evolution to arbitrary 
precision. Any uncertainty we might have at a given time  

-
-

ple, position and momentum—cannot both be known precisely.  
Furthermore, if a quantity without a de!ned value is measured, 
quantum theory prescribes only the probabilities with which  
the various outcomes occur, and is silent about the outcomes  

"is raises the important question of whether the outcomes 
could be better predicted within a theory beyond quantum mecha-

. An intuitive step towards its answer is to consider appending 
. "ese are classical variables 

that allow us to determine the experimental outcomes (see later 
for a precise de!nition). Here we ask a new, more general question: 

 

 

 

 

a

b

X = –1

X = 1

A = 0 X = 1

A = 1 X = 1

A

theorem: completeness of quantum mechanics (CPL)
Ξ cannot increase knowledge given by A and wavefunction ψ:

markov chain Ξ↔ (A, ψ)↔ X

Colbeck and Renner, Nat. Comm. 2, 411 (2011)
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Sketched Proof of CPL - Part I
ingredients:

bipartite measurement of (spacelike) A and B with
outcomes X and Y

additional information Ξ (static) accessed by
measurement C with outcome Z

cond. prob.
PQ|R = PQR/PR

CPL
∀acx : PZ|acx = PZ|ac

FR
PA|BCYZ = PA

FR implies
Ξ is non-signalling:

PYZ|ABC = PYZ|BC
PXZ|ABC = PXZ|AC
PXY|ABC = PXY|AB

proof of first constraint:

PYZ|A = PAYZ/PA

PA|YZ = PAYZ/PYZ

PYZ|ABC × PA|BC = PA|BCYZ × PYZ|BC

9



Sketched Proof of CPL - Part I
ingredients:

bipartite measurement of (spacelike) A and B with
outcomes X and Y

additional information Ξ (static) accessed by
measurement C with outcome Z

cond. prob.
PQ|R = PQR/PR

CPL
∀acx : PZ|acx = PZ|ac

FR
PA|BCYZ = PA

FR implies
Ξ is non-signalling:

PYZ|ABC = PYZ|BC
PXZ|ABC = PXZ|AC
PXY|ABC = PXY|AB

proof of first constraint:

PYZ|A = PAYZ/PA

PA|YZ = PAYZ/PYZ

PYZ|ABC × PA|BC = PA|BCYZ × PYZ|BC

9



Sketched Proof of CPL - Part I
ingredients:

bipartite measurement of (spacelike) A and B with
outcomes X and Y

additional information Ξ (static) accessed by
measurement C with outcome Z

cond. prob.
PQ|R = PQR/PR

CPL
∀acx : PZ|acx = PZ|ac

FR
PA|BCYZ = PA

FR implies
Ξ is non-signalling:

PYZ|ABC = PYZ|BC
PXZ|ABC = PXZ|AC
PXY|ABC = PXY|AB

proof of first constraint:

PYZ|A = PAYZ/PA

PA|YZ = PAYZ/PYZ

PYZ|ABC × PA|BC = PA|BCYZ × PYZ|BC

9



Sketched Proof of CPL - Part I
ingredients:

bipartite measurement of (spacelike) A and B with
outcomes X and Y

additional information Ξ (static) accessed by
measurement C with outcome Z

cond. prob.
PQ|R = PQR/PR

CPL
∀acx : PZ|acx = PZ|ac

FR
PA|BCYZ = PA

FR implies
Ξ is non-signalling:

PYZ|ABC = PYZ|BC
PXZ|ABC = PXZ|AC
PXY|ABC = PXY|AB

proof of first constraint:

PYZ|A = PAYZ/PA

PA|YZ = PAYZ/PYZ

PYZ|ABC × PA|BC = PA|BCYZ × PYZ|BC

9



Sketched Proof Part II
correlations of bipartite measurement with 2N inputs:

I P X Y A B N P X Y A a B bN

a b

a b

: ( | , ) ( | , ).
,

| |

0 2 1

1

P I

I N1/

under non-signalling conditions:
1
2

∑
z

|PZ|abcx(z)− PZ|abc(z)| ≤ IN ∝ 1/N

measurement scheme
be considered as unitary evolutions, if one takes into account the 
environment (see the Supplementary Information for more details). 
We remark that the second part of this assumption need only hold 
for microscopic processes on short timescales and does not preclude 

. Consider a measurement that depends on a setting 
. According to quantum theory, we can 

associate a quantum state and measurement operators with this 

-
ory that provides us with further information (which we denote by 

) that is useful to predict the outcome. To keep the description of 
, as general as possible, we do not assume that it 

.
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Final Result
from CPL Ξ↔ (ψ,A)↔ X follows

PX|Ξ=ξ,A=a = PX|Ξ=ξ,Ψ=ψ,A=a = PX|Ψ=ψ,A=a

for all ψ, ξ, a with PΨ,Ξ,A(ψ, ξ, a) > 0
free choice: PΨ,Ξ,A(ψ, ξ, a) = PΨ,Ξ(ψ, ξ)× PA(a), hence

PΨ,Ξ(ψ, ξ) > 0 and PA(a) > 0

suppose for fixed Ξ = ξ there are ψ0, ψ1 with
PΨ,Ξ(ψ0, ξ) > 0 and PΨ,Ξ(ψ1, ξ) > 0

it follows PX|Ψ=ψ0,A=a = PX|Ψ=ψ1,A=a for all a with PA(a) > 0
always possible to choose measurement set with PA(a) > 0
(e.g., containing |ψ0〉〈ψ0|), from which follows ψ0 = ψ1 .

ontic nature of wavefunction
For each Ξ = ξ value of Ψ = ψ is uniquely determined.
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