Completeness of quantum theory implies that wave functions are physical properties

Roger Colbeck^{1,*} and Renato Renner^{2,†}

¹Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5, Canada ²Institute for Theoretical Physics, ETH Zurich, 8993 Zurich, Switzerland (Dated: 28th November 2011)

arXiv1111.6597

Journal Club

Daniel Becker 20 December 2011

Physical Property vs. State of Knowledge

Weather: Classical Deterministic System suppose physical system is in state "white christmas"

Forecast 1:

based on:

- much, but incomplete data about initial state
- knowledge of classical mechanics
- elaborate heuristics, vast computer resources

probability of snow on christmas: 20%

Physical Property vs. State of Knowledge

Weather: Classical Deterministic System suppose physical system is in state "white christmas"

Forecast 1:

based on:

- much, but incomplete data about initial state
- knowledge of classical mechanics
- elaborate heuristics, vast computer resources

probability of snow on christmas: 20%

Forecast 2:

based on:

counting of days with temperatures below 0°C

probability of snow: $\sim 20\%$

The Classical Case

ontic state of particle (1 D):

point in phase space

The Classical Case

ontic state of particle (1 D):

epistemic state of particle (1 D):

point in phase space

probability distribution

ontic state of particle (1 D):

point in phase space

each ontic state possible in more than one (infinite) epistemic states:

The Classical Case epistemic state of particle (1 D):

probability distribution

probability density

What are Wavefunctions?

three main possibilities:

- wavefunctions epistemic, with underlying ontic state.

 Quantum mechanics: statistical theory of ontic states
- 2 wavefunctions epistemic, no deeper underlying reality
- wavefunctions ontic, i.e., describe physical state (many-worlds, spontaneous collaps)
- position 1 and 3 compatible with scientific realism
- position 2: anti-realism (e.g., Copenhagen approaches)

What are Wavefunctions?

three main possibilities:

- wavefunctions epistemic, with underlying ontic state.

 Quantum mechanics: statistical theory of ontic states
- 2 wavefunctions epistemic, no deeper underlying reality
- wavefunctions ontic, i.e., describe physical state (many-worlds, spontaneous collaps)
- position 1 and 3 compatible with scientific realism
- position 2: anti-realism (e.g., Copenhagen approaches)
- theorem of paper attacks position 1:

if quantum theory correct, complete, and free wave functions are physical properties

Bell Theorem and Local Determinism

Bell Theorem

A (contextual) hidden variable theory reproducing all predictions of quantum mechanics cannot be locally deterministic under the assumption of free choice.

in consequence, either

- psi-ontic: objective wave function not supplementable to reach local determinism
- psi-epistemic: underlying reality is not locally determined

Bell Theorem and Local Determinism

Bell Theorem

A (contextual) hidden variable theory reproducing all predictions of quantum mechanics cannot be locally deterministic under the assumption of free choice.

in consequence, either

- psi-ontic: objective wave function not supplementable to reach local determinism
- psi-epistemic: underlying reality is not locally determined

possible escapes for epistemicists

- abandon scientific realism
- sacrifice locality (Lorentz invariance)
- 3 world could have fundamentally stochastic nature

Why be a psi-epistemicist?

classical epistemic measurement is Bayesian conditioning ⇒ no change of underlying ontic state

- preserve scientific realism (hidden variable theories)
- higher explanatory power (remote steering, quantum teleportation, interference, . . .)
- provides more "homogeneous" world view (no quantum-classical transition)

prominent advocats: Albert Einstein, Niels Bohr, Rob Spekkens, Anton Zeilinger (quantum information), ...

epistemic states ⇒ states of incomplete knowledge

toy model (Spekkens, PRA 75, 032110 (2007))

maximal knowledge: for every system, at every time, knowledge possesed about ontic state equals knowledge lacked

two-level system (Qubit)

$$\Leftrightarrow |0\rangle$$

$$\Rightarrow |1\rangle$$

$$\Rightarrow |+\rangle$$

$$\Rightarrow |-\rangle$$

$$\Rightarrow |+i\rangle$$

$$\Rightarrow |-i\rangle$$

$$\Rightarrow \hat{1}/2$$

toy model (Spekkens, PRA 75, 032110 (2007))

maximal knowledge: for every system, at every time, knowledge possesed about ontic state equals knowledge lacked

two-level system (Qubit)

transformations on Bloch sphere ⇔ permutations of ontic states

toy model (Spekkens, PRA 75, 032110 (2007))

maximal knowledge: for every system, at every time, knowledge possesed about ontic state equals knowledge lacked

two-level system (Qubit)

transformations on Bloch sphere
⇔ permutations of ontic states

toy model (Spekkens, PRA 75, 032110 (2007))

maximal knowledge: for every system, at every time, knowledge possesed about ontic state equals knowledge lacked

two-level system (Qubit)

transformations on Bloch sphere
⇔ permutations of ontic states

(1342)
$$=$$
 $=$ $|0\rangle \longrightarrow |+\rangle$

interference:

$$\begin{array}{c|c} \textbf{1} & \text{prep.} & |0\rangle \\ \textbf{2} & \text{prep.} & |1\rangle \\ \textbf{3} & \text{prep.} & |+\rangle \\ \end{array} \end{array} \text{ measure } (|+\rangle, |-\rangle) \left\{ \begin{array}{c} (1/2, 1/2) \\ (1/2, 1/2) \\ (1, 0) \end{array} \right.$$

toy model (Spekkens, PRA 75, 032110 (2007))

maximal knowledge: for every system, at every time, knowledge possesed about ontic state equals knowledge lacked

two-level system (Qubit)

transformations on Bloch sphere

⇔ permutations of ontic states

interference:

Claim: Wavefunction is Physical Property

assumptions

- **11 QM:** quantum mechanics correct (empircally adequate)
- **2** FR: freedom of choice (measurement independent of any prexisting values)

in schematic experimental setup:

- measurement setting A
- measurement outcome X
- \(\mathbb{E}\): additional information provided by extended theory

Colbeck and Renner, Nat. Comm. 2, 411 (2011)

Claim: Wavefunction is Physical Property

assumptions

- **1** QM: quantum mechanics correct (empircally adequate)
- **2** FR: freedom of choice (measurement independent of any prexisting values)

in schematic experimental setup:

- measurement setting A
- measurement outcome X
- \(\mathbb{E}\): additional information provided by extended theory

theorem: completeness of quantum mechanics (CPL)

 Ξ cannot increase knowledge given by A and wavefunction ψ : markov chain $\Xi \leftrightarrow (A, \psi) \leftrightarrow X$

Colbeck and Renner, Nat. Comm. 2, 411 (2011)

ingredients:

- bipartite measurement of (spacelike) A and B with outcomes X and Y
- **a** additional information Ξ (static) accessed by measurement C with outcome Z

cond. prob.

 $P_{Q|R} = P_{QR}/P_R$

CPL

 $\forall_{acx}: P_{Z|acx} = P_{Z|ac}$

FR

 $P_{A|BCYZ} = P_A$

ingredients:

- bipartite measurement of (spacelike) A and B with outcomes X and Y
- additional information Ξ (static) accessed by measurement C with outcome Z

cond. prob.
$$P_{O|R} = P_{QR}/P_R$$

$$\forall_{acx}: P_{Z|acx} = P_{Z|ac}$$

FR implies

 Ξ is non-signalling:

$$P_{YZ|ABC} = P_{YZ|BC}$$

$$P_{XZ|ABC} = P_{XZ|AC}$$

$$P_{XY|ABC} = P_{XY|AB}$$

ingredients:

- bipartite measurement of (spacelike) A and B with outcomes X and Y
- additional information Ξ (static) accessed by measurement C with outcome Z

cond. prob.
$$P_{O|R} = P_{OR}/P_R$$

$$\forall_{acx}: P_{Z|acx} = P_{Z|ac}$$

$$\begin{array}{c} \mathsf{FR} \\ P_{A|BCYZ} = P_A \end{array}$$

FR implies

Ξ is non-signalling:

$$P_{YZ|ABC} = P_{YZ|BC}$$

$$P_{XZ|ABC} = P_{XZ|AC}$$

$$P_{XY|ABC} = P_{XY|AB}$$

proof of first constraint:

$$egin{pmatrix} P_{YZ|A} = P_{AYZ}/P_A \ P_{A|YZ} = P_{AYZ}/P_{YZ} \end{pmatrix}$$

ingredients:

- bipartite measurement of (spacelike) A and B with outcomes X and Y
- additional information Ξ (static) accessed by measurement C with outcome Z

cond. prob.
$$P_{Q|R} = P_{QR}/P_R$$

$$\begin{array}{c} \mathsf{FR} \\ P_{A|BCYZ} = P_A \end{array}$$

FR implies

 Ξ is non-signalling:

 $P_{YZ|ABC} = P_{YZ|BC}$

 $P_{XZ|ABC} = P_{XZ|AC}$

 $P_{XY|ABC} = P_{XY|AB}$

proof of first constraint:

$$P_{YZ|A} = P_{AYZ}/P_A$$

$$P_{A|YZ} = P_{AYZ}/P_{YZ}$$

$$\downarrow$$

$$P_{YZ|ABC} \times P_{A|BC} = P_{A|BCYZ} \times P_{YZ|BC}$$

Sketched Proof Part II

correlations of bipartite measurement with 2N inputs:

$$I_N := P(X = Y \mid A = 0, B = 2N - 1) + \sum_{\substack{a,b \\ |a-b| = 1}} P(X \neq Y \mid A = a, B = b).$$

under non-signalling conditions:

$$\frac{1}{2} \sum_{z} |P_{Z|abcx}(z) - P_{Z|abc}(z)| \le I_N \propto 1/N$$

maximally entangled states:

$$\{ \left| \right. \theta_{+}^{j} \left. \right\rangle, \left| \right. \theta_{-}^{j} \left. \right\rangle \} = \left\{ \cos \frac{\theta^{j}}{2} \left| \right. 0 \right\rangle + \sin \frac{\theta^{j}}{2} \left| \right. 1 \right\rangle, \\ \sin \frac{\theta^{j}}{2} \left| \right. 0 \right\rangle - \cos \frac{\theta^{j}}{2} \left| \right. 1 \right\rangle \right\}.$$

lacksquare from CPL $\Xi \leftrightarrow (\psi, A) \leftrightarrow X$ follows

$$P_{X|\Xi=\xi,A=a} = P_{X|\Xi=\xi,\Psi=\psi,A=a} = P_{X|\Psi=\psi,A=a}$$

for all ψ, ξ, a with $P_{\Psi,\Xi,A}(\psi, \xi, a) > 0$

• free choice: $P_{\Psi,\Xi,A}(\psi,\xi,a) = P_{\Psi,\Xi}(\psi,\xi) \times P_A(a)$, hence

$$P_{\Psi,\Xi}(\psi,\xi)>0$$
 and $P_A(a)>0$

• from CPL $\Xi \leftrightarrow (\psi, A) \leftrightarrow X$ follows

$$P_{X|\Xi=\xi,A=a}=P_{X|\Xi=\xi,\Psi=\psi,A=a}=P_{X|\Psi=\psi,A=a}$$
 for all ψ,ξ,a with $P_{\Psi,\Xi,A}(\psi,\xi,a)>0$

 $\blacksquare \text{ free choice: } P_{\Psi,\Xi,A}(\psi,\xi,a) = P_{\Psi,\Xi}(\psi,\xi) \times P_A(a), \text{ hence}$ $P_{\Psi,\Xi}(\psi,\xi) > 0 \text{ and } P_A(a) > 0$

suppose for fixed
$$\Xi=\xi$$
 there are $\psi_0,\,\psi_1$ with $P_{\Psi,\Xi}(\psi_0,\xi)>0$ and $P_{\Psi,\Xi}(\psi_1,\xi)>0$

■ from CPL $\Xi \leftrightarrow (\psi, A) \leftrightarrow X$ follows

$$P_{X|\Xi=\xi,A=a}=P_{X|\Xi=\xi,\Psi=\psi,A=a}=P_{X|\Psi=\psi,A=a}$$
 for all ψ,ξ,a with $P_{\Psi,\Xi,A}(\psi,\xi,a)>0$

suppose for fixed
$$\Xi=\xi$$
 there are $\psi_0,\,\psi_1$ with $P_{\Psi,\Xi}(\psi_0,\xi)>0$ and $P_{\Psi,\Xi}(\psi_1,\xi)>0$

• it follows $P_{X|\Psi=\psi_0,A=a}=P_{X|\Psi=\psi_1,A=a}$ for all a with $P_A(a)>0$

• from CPL $\Xi \leftrightarrow (\psi, A) \leftrightarrow X$ follows

$$P_{X|\Xi=\xi,A=a}=P_{X|\Xi=\xi,\Psi=\psi,A=a}=P_{X|\Psi=\psi,A=a}$$
 for all ψ,ξ,a with $P_{\Psi,\Xi,A}(\psi,\xi,a)>0$

 $\blacksquare \text{ free choice: } P_{\Psi,\Xi,A}(\psi,\xi,a) = P_{\Psi,\Xi}(\psi,\xi) \times P_A(a), \text{ hence}$ $P_{\Psi,\Xi}(\psi,\xi) > 0 \text{ and } P_A(a) > 0$

suppose for fixed
$$\Xi=\xi$$
 there are $\psi_0,\,\psi_1$ with $P_{\Psi,\Xi}(\psi_0,\xi)>0$ and $P_{\Psi,\Xi}(\psi_1,\xi)>0$

- it follows $P_{X|\Psi=\psi_0,A=a}=P_{X|\Psi=\psi_1,A=a}$ for all a with $P_A(a)>0$
- always possible to choose measurement set with $P_A(a)>0$ (e.g., containing $|\psi_0\rangle\langle\psi_0|$), from which follows $\psi_0=\psi_1$.

■ from CPL $\Xi \leftrightarrow (\psi, A) \leftrightarrow X$ follows

$$P_{X|\Xi=\xi,A=a} = P_{X|\Xi=\xi,\Psi=\psi,A=a} = P_{X|\Psi=\psi,A=a}$$

for all ψ, ξ, a with $P_{\Psi, \Xi, A}(\psi, \xi, a) > 0$

• free choice: $P_{\Psi,\Xi,A}(\psi,\xi,a)=P_{\Psi,\Xi}(\psi,\xi)\times P_A(a)$, hence $P_{\Psi,\Xi}(\psi,\xi)>0$ and $P_A(a)>0$

suppose for fixed $\Xi=\xi$ there are $\psi_0,\,\psi_1$ with $P_{\Psi,\Xi}(\psi_0,\xi)>0$ and $P_{\Psi,\Xi}(\psi_1,\xi)>0$

- \blacksquare it follows $P_{X|\Psi=\psi_0,A=a}=P_{X|\Psi=\psi_1,A=a}$ for all a with $P_A(a)>0$
- always possible to choose measurement set with $P_A(a) > 0$ (e.g., containing $|\psi_0\rangle\langle\psi_0|$), from which follows $\psi_0 = \psi_1$.

ontic nature of wavefunction

For each $\Xi = \xi$ value of $\Psi = \psi$ is uniquely determined.