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The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color

Ramsey numbers Rðm; nÞ with m, n # 3, only nine are currently known. We present a quantum algorithm

for the computation of the Ramsey numbers Rðm; nÞ. We show how the computation of Rðm; nÞ can be

mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum

evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly

determines the Ramsey numbers Rð3; 3Þ and Rð2; sÞ for 5 $ s $ 7. We then discuss the algorithm’s

experimental implementation, and close by showing that Ramsey number computation belongs to the

quantum complexity class quantum Merlin Arthur.
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In an arbitrary party of N people, one might ask whether
there is a group of m people who are all mutually ac-
quainted, or a group of n people who are all mutual
strangers. Using Ramsey theory [1,2], it can be shown
that a threshold value Rðm; nÞ exists for the party size N
so that when N # Rðm; nÞ, all parties of N people will
either containmmutual acquaintances, or nmutual strang-
ers. The threshold value Rðm; nÞ is an example of a two-
color Ramsey number. Other types of Ramsey numbers
exist, though we will focus on two-color Ramsey numbers
in this Letter.

One can represent the N-person party problem by an
N-vertex graph. Here each person is associated with a
vertex, and an edge is drawn between a pair of vertices
only when the corresponding people know each other. In
the case where m people are mutual acquaintances, there
will be an edge connecting any pair of them corresponding
vertices. Similarly, if n people are mutual strangers, there
will be no edge between any of the n corresponding
vertices. In the language of graph theory [3], them vertices
form anm clique, and the n vertices form an n-independent
set. The party problem is now a statement in graph theory:
if N # Rðm; nÞ, every graph with N vertices will contain
either an m clique, or an n-independent set. Ramsey num-
bers can also be introduced using colorings of complete
graphs, and Rðm; nÞ corresponds to the case where only
two colors are used.

Ramsey theory has found applications in mathematics,
information theory, and theoretical computer science [4].
An application of fundamental significance appears in the
Paris-Harrington (PH) theorem of mathematical logic [5]
which established that a particular statement in Ramsey
theory related to graph colorings and natural numbers is
true, though unprovable within the axioms of Peano arith-
metic. Such statements are known to exist as a consequence
of Godel’s incompleteness theorem, though the PH theorem
provided the first natural example. Deep connections have

also been shown to exist between Ramsey theory, topologi-
cal dynamics, and ergodic theory [6].
Ramsey numbers grow extremely quickly and so are

notoriously difficult to calculate. In fact, for two-color
Ramsey numbers Rðm; nÞ with m, n # 3, only nine are
presently known [3]. To check whether N¼? Rðm; nÞ re-
quires examining all 2NðN&1Þ=2 N-vertex graphs. The num-
ber of graphs to be checked thus grows superexponentially
with N, and so the task quickly becomes intractable.
Ketonen and Solovay [7] have shown that this is the root
cause for why the statement in the PH theorem cannot be
proved within Peano arithmetic.
In this Letter, we (i) present a quantum algorithm for

calculating Ramsey numbers based on adiabatic quantum
evolution, (ii) numerically simulate the algorithm to verify
that it correctly calculates small Ramsey numbers,
(iii) discuss its experimental implementation, and
(iv) show that Ramsey number computation belongs to the
quantum complexity class quantum Merlin Arthur (QMA).
Optimization problem.—We begin by establishing a 1-1

correspondence between the set of N-vertex graphs and
binary strings of length L ¼ NðN & 1Þ=2. To each
N-vertex graph G there corresponds a unique adjacency
matrix AðGÞ which is an N ' N symmetric matrix with
vanishing diagonal matrix elements, and with the off-
diagonal element ai;j ¼ 1ð0Þ when distinct vertices i and
j are (are not) joined by an edge. It follows that AðGÞ is
determined by its lower triangular part. By concatenating
columnwise the matrix elements ai;j appearing below the
principal diagonal, we can construct a unique binary string
gðGÞ of length L for each graph G:

gðGÞ ( a2;1 ) ) )aN;1a3;2 ) ) ) aN;2 ) ) )aN;N&1: (1)

Given the string gðGÞ, the following procedure deter-
mines the number of m cliques in G. Choose m vertices
S! ¼ fv1; . . . ; vmg from the N vertices of G and form the
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RAMSEY NUMBERS

Consider a group of N people.

Ramsey’s theorem states that:
There is a lower bound R(n,m) such that when N≥R(n,m) 

all parties of N people will either contain m mutual 
acquaintances, or n mutual strangers.

R(n,m) is a two-color Ramsey number.

Example: R(2,2) = 2



REPRESENTATION

Every person is represented by a vertex on a graph

A red line denotes that two people are strangers

A blue line denotes that two people are acquainted



RAMSEY’S THEOREM IN OTHER 
WORDS

For every pair of positive integers (n,m) there exists a 
least positive integer R(n,m) such that for any 

complete graph on R(n,m) vertices, whose edges are 
colored red or blue, there exists either a complete 
subgraph on n vertices which is entirely blue, or a 

complete subgraph on m vertices which is entirely red.



EXAMPLE: R(3,3) = 6
- Pick a vertex v.
- Either ≥3 edges are red, or ≥3 blue.
- Assume red, connected to r,s,t.
- Either any of (r,s),(s,t),(t,r) is red,
which gives a red triangle
- If they are all blue we have a blue 
triangle

v r

s

t

One can make a graph with 5 vertices 
that has no closed triangles.



PROBLEM

Ramsey number are very hard to calculate.

To check whether N = R(n,m) you need to check all 
2N(N-1)/2 N-vertex graphs.

This grows superexponentially.

For example:
N = 2 gives 2 graphs

N = 5 gives 1024 graphs
N =10 gives 1013 graphs



MAPPING
The problem is mapped on a string of bits in 2 steps

1 2

3

45

6

0

BBBBBB@

0
0 0
0 0 0
0 1 1 0
1 0 1 1 0
1 1 1 1 0

1

CCCCCCA

g(G) = a2,1 . . . aN,1a3,2 . . . aN,2 . . . aN,N�1

0

BBBBBB@

0
0 0
0 0 0
0 1 1 0
1 0 1 1 0
1 1 1 1 0

1

CCCCCCA

N(N-1)/2 unique elements

Length is N(N-1)/2



OPTIMIZATION PROBLEM
Given a string g(G), how to determine # blue complete 

subgraph on m vertices for graph with N vertices?

Choose m vertices: S↵ = {v1, . . . , vm}

C↵ = ⇧j 6=k
vj ,vk2S↵

avj ,vkCalculate the product:

If              then      is a complete subgraph, otherwise not C↵ = 1 S↵

Repeat this for all r possible ways of choosing m from N.

C(G) =
rX

↵=1

C↵ gives the # you are after.



Can do the same for red subgraphs

T↵ = {v1, . . . , vn}

OPTIMIZATION PROBLEM

Choose n vertices: 

Calculate the product:

If              then      is a complete subgraph, otherwise not 

Repeat this for all s possible ways of choosing n from N.

gives the # you are after.

I↵ = ⇧j 6=k
vj ,vk2S↵

āvj ,vk

I↵ = 1 T↵

I(G) =
sX

↵=1

I↵



Check all graphs G and find the G* with the global minimum

OPTIMIZATION PROBLEM

h(G⇤) = I(G⇤) + C(G⇤) � 0

If the global minimum is 0, there is a graph without complete 
subgraphs on m and n vertices. 

Can determine R(m,n) by 
- start from N < R(n,m)
- Increase N by 1 until you find an N for which h(G*) > 0
- This N = R(m,n)



GS of Hp must solve the problem. Hi is a simple Hamiltonian

ADIABATIC QUANTUM 
COMPUTING

H(t) =

✓
1� t

T

◆
Hi +

t

T
Hp

�0
z ⌦ �1

z ⌦ · · ·⌦ �L�1
z

Use the computational basis

Hp|g(G)i = h(G)|g(G)i

g(G) ! |g(G)iIdentify                         and take a Hamiltonian where 

Then increase N until h(G) > 0. This gives R(m,n).



WHAT DOES HP LOOK LIKE?

E↵ = {e↵k : k = 1, . . . , C(m, 2)}

H↵ = ⇧e2E↵P
e
1

Given a set of vertices,                              define the ‘edge set’ S↵ = {v1, . . . , vm}

P e
1 =

1

2
(Ie � �e

z)Define the Hamiltonian (                            )

Then the Hamiltonian                         counts C(G).Hm =

C(N,m)X

↵=1

H↵

With                         one can make Hn which counts I(G) P e
0 =

1

2
(Ie + �e

z)



WHAT DOES HP LOOK LIKE?
Since                                       it follows thatHp|g(G)i = h(G)|g(G)i

Hp = Hn +Hm

So in principle the authors have shown a way to calculate 
Ramsey numbers using adiabatic quantum computation.

We simulated the AQE computation of Rð3; 3Þ and
Rð2; sÞ for 5 # s # 7. Straightforward arguments [3] give
Rð3; 3Þ ¼ 6 and Rð2; sÞ ¼ s. We present our simulation
results in Table I. We see that for all m, n considered, the
threshold valueNt where Egs > 0 first occurs is precisely at
the Ramsey number: Nt ¼ Rðm; nÞ.

For Rð2; sÞ and N ¼ s, Table I gives Egs ¼ 1. For these
cases, graphs corresponding to ground-states of HP will
thus contain either a single s-independent set or a single 2
clique. There is only one s-vertex graph with an
s-independent set, and there are Cðs; 2Þ ¼ sðs% 1Þ=2
graphs with one 2 clique (viz. edge). Thus, the ground-
state degeneracy D ¼ 1þ Cðs; 2Þ, in agreement with the
Rð2; sÞ degeneracies in Table I for N ¼ s ¼ 5, 6, 7. For
Rð3; 3Þ and N ¼ 6, Table I gives Egs ¼ 2. Thus, graphs
corresponding to ground-states are those with (i) two 3
cliques, (ii) two 3-independent sets, or (iii) one 3 clique
and one 3-independent set. Ref. [11] derived the minimum
number of 3 cliques and 3-independent sets that can be
present in an N-vertex graph. This minimum is precisely
our Egs for Rð3; 3Þ and a givenN. ForN ¼ 6, the minimum
value is 2, in agreement with Egs ¼ 2 in Table I. We
carried out both analytical [12] and numerical counts of
the ground-state graphs for Rð3; 3Þ and N ¼ 6. Both ap-
proaches found 1760 graphs giving a ground-state degen-
eracy D ¼ 1760. In all cases appearing in Table I, the
upward jump in D seen upon reaching the Ramsey thresh-
old N ¼ Rðm; nÞ (from below) is responsible for the jump
in the success probability Ps also seen at this threshold.

Although we would like to have calculated larger
Ramsey numbers, this was simply not practical. Note that
the N ¼ 7 simulations use L ¼ 21 qubits. These simula-
tions are at the upper limit of 20–22 qubits at which
simulation of the full AQE Schrödinger dynamics is prac-
tical [10,13,14]. The next smallest Ramsey number is
Rð2; 8Þ ¼ 8 which requires a 28 qubit simulation, well
beyond what can be done practically.

Experimental implementation.—We begin by determin-
ing an operator expression for the problem Hamiltonian
HP which then fixes the AQE Hamiltonian HðtÞ through
Eqs. (3) and (5). Recall that the eigenvalue hðGÞ ¼ CðGÞ þ
IðGÞ counts the total number of m cliques and
n-independent sets in a graph G. For an m-vertex set
S! ¼ fv1; . . . ; vmg, we define the edge set E! ¼ fe!k : k ¼
1; . . . ; Cðm; 2Þg as the set of all edges connecting pairs of

vertices vi, vj 2 S!, and Cðm; 2Þ is the number of ways of
choosing 2 vertices out of m. If S! corresponds to an m
clique in the graph G, the graph string gðGÞ must have 1’s
at all bit positions associated with the edges of E!. Let the
states j0i and j1i satisfy "zjai ¼ ð%1Þajai. Then the op-
eratorH! ¼ Q

e2E!
Pe
1 {where P

e
1 ¼ ð1=2Þ½Ie % "e

z(, and e
labels the qubit associated with edge egwill have jgðGÞi as
an eigenstate with eigenvalue 1 when S! is an m clique,
and zero otherwise. The operator that counts all m cliques

in a graph G is then Hm
cl ¼

PCðN;mÞ
!¼1 H!, and by construc-

tion, Hm
cljgðGÞi ¼ CðGÞjgðGÞi. A similar analysis can be

carried out for n-independent sets. Let T! ¼ fv1; . . . ; vng
be an arbitrary n-vertex set, and !E! its corresponding edge
set. If T! is an n-independent set in a graph G, then the
graph string gðGÞ must have 0’s at all bit-positions asso-
ciated with the edges of !E!. The operator !H! ¼ Q

e2E!
Pe
0

{where Pe
0 ¼ ð1=2Þ½Ie þ "e

z(, and e labels the qubit asso-
ciated with edge eg will have eigenstate jgðGÞi with eigen-
value 1 (0) when T! is (is not) an n-independent set. The
operator that counts all n-independent sets in an arbitrary

graph G is then Hn
is ¼

PCðN;nÞ
!¼1

!H!, and by construction,
Hn

isjgðGÞi ¼ IðGÞjgðGÞi. For calculation of Rðm; nÞ, the
problem Hamiltonian HNmn

P is then

HNmn
P ¼ Hm

cl þHn
is: (6)

Note that HNmn
P contains OðNsÞ terms, where N is the

number of vertices and s ¼ maxfCðN;mÞ; CðN; nÞg. Since
each H! and !H! is a projection operator, their operator
norm will be unity and their matrix elements, being 0’s
and 1’s, are specified with a single bit. Lastly, note
that each term in HNmn

P is a product of at most t ¼
maxfCðm; 2Þ; Cðn; 2Þg "z operators so that HNmn

P is a
t-local Hamiltonian [15]. By using perturbative gadgets,
it can be reduced to a 2-local Hamiltonian [16–18].
For a given HamiltonianHðtÞ, two approaches have been

demonstrated to experimentally implement AQE [19–21].
Refs. [19], [20] partitioned the full evolution into N
subintervals of duration "t ¼ T=N which are sufficiently
short that the propagator Ul for each subinterval l can be
factored via a Trotter expansion. This approach was ap-
plied to three-qubit systems, though it can be used for
arbitrary size qubit systems. Ref. [21] describes experi-
ments using a quantum annealing device designed to im-
plement adiabatic quantum optimization algorithms.

TABLE I. Simulation results for Ramsey numbers Rð3; 3Þ and Rð2; sÞ for 5 # s # 7. Here N is the number of graph vertices, Egs and
D are the ground-state energy and degeneracy, respectively, for the problem Hamiltonian HP, and T and Ps are, respectively, the
algorithm runtime and success probability.

Rð2; 5Þ Rð2; 6Þ Rð3; 3Þ Rð2; 7Þ
N Egs D T Ps N Egs D T Ps N Egs D T Ps N Egs D T Ps

3 0.0 1 5.0 0.591 4 0.0 1 5.0 0.349 4 0.0 18 5.0 0.769 5 0.0 1 8.0 0.865
4 0.0 1 5.0 0.349 5 0.0 1 5.0 0.173 5 0.0 12 5.0 0.194 6 0.0 1 8.0 0.805
5 1.0 11 5.0 0.518 6 1.0 16 5.0 0.286 6 2.0 1760 5.0 0.693 7 1.0 22 8.0 0.938
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THE END


