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Quantum computer

Basic requirements for universal set of quantum gates:
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For each qubit:
Full control over the Bloch sphere

Arbitrary two-qubit gate : z-axis
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two different axes

X-0xis n




Motivation

Quantum computer

Basic requirements for universal set of quantum gates:

/I

For each qubit:
Full control over the Bloch sphere

Arbitrary two-qubit gate : z-axis
(CNOT, SWAP, ...) Rotations around 11>

two different axes

How to implement )|
the qubits?




Motivation

Spin states of SINGLE electrons > Z-axis
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N back gates magnetized or heterostructure
high-g layer quantum well

D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998)
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Two-qubit operations via the isotropic (Heisenberg) exchange interaction

Hex (t) p— J(t)sl . 82 J. R. Petta et al., Science (2005):

SWAP operation within 350 ps



Motivation

Spin states of SINGLE electrons : Z-axis
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back gates magnetized or heterostructure
high-g layer quantum well

D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998)

1)

Two-qubit operations via the isotropic (Heisenberg) exchange interaction

Hex (t) p— J(t)sl . 82 J. R. Petta et al., Science (2005):

SWAP operation within 350 ps

Rotation about z axis: Static magnetic field

Rotation about x axis: Oscillating (effective) magnetic field  currently about 20 ns
ESR, EDSR for a rotation of it



Motivation

Spin states of SINGLE electrons

) z-rotation: (static) magnetic field

x-rotation: ESR, EDSR, ...
Two-qubit gate: exchange interaction



Motivation

1) Spin states of SINGLE electrons
1) = [4) )+ [1) z-rotation: (static) magnetic field
V2 V2 x-rotation: ESR, EDSR, ...
o Two-qubit gate: exchange interaction
4 — 1) .
51 ="17 Spin states of TWO electrons
z-rotation: exchange interaction
[41) ) x-rotation: magnetic field gradient
Two-qubit gate: Coulomb interaction (CPHASE), ...
T4+ 1)
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Motivation

1) Spin states of SINGLE electrons
) — [4) )+ [4) z-rotation: (static) magnetic field
V2 V2 x-rotation: ESR, EDSR, ...
o Two-qubit gate: exchange interaction
14 — 1) .
5 ="17 Spin states of TWO electrons
z-rotation: exchange interaction
|11) 4) x-rotation: magnetic field gradient
Two-qubit gate: Coulomb interaction (CPHASE), ...
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Spin states of THREE electrons ;|
Exchange only!
D. P. DiVincenzo et al., Nature 408, 339 (2000) | /_J
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Figure from Laird et al., PRB 82, 075403 (2010) Ds1r2



Motivation

Further motivation:

Three-spin states useful for qguantum error correction

Fundamental research,
multipartite entanglement in the solid state

Spin states of THREE electrons

|611/2 )\

Exchange only!
D. P. DiVincenzo et al., Nature 408, 339 (2000)

Figure from Laird et al., PRB 82, 075403 (2010)
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2DEG within
GaAs/AlGaAs

heterostructure



Left Right

QPC QPC
2DEG within
GaAs/AlGaAs
heterostructure

Width of (111) region can be
tuned via the voltage on gate C

(111) configuration

/ @M?U

Figure from
Granger et al., PRB 82, 075304 (2010) Laird et al., PRB 82, 075403 (2010)




Left Right

QPC QPC
2DEG within
GaAs/AlGaAs
heterostructure

Operation in the
Width of (111) region can be (102)-(111)-(201) regime,
tuned via the voltage on gate C where € denotes the detuning

Granger et al., PRB 82, 075304 (2010)



Hamiltonian:

Three-Spin Eigenstates

H=J (S -S —l)+J (S - S —l)—E(SZ+SZ+SZ)
12\ 517527 [ 03| 92783 791 T35 + 53

Notation:
J12=Jic

23 = Jre




Three-Spin Eigenstates

Hamiltonian: Notation:
1 1 F 2 2 J.. =]
H=J12 Sl‘SZ—Z +J23 SQ'S3—Z _EZ(SI+SZ+S3) 12 LC
Jy3 = Jrc
Quadruplet: (0.2 =[117) N

\Q+1,2>=\}—§(|m>+|m>+|m>)
1 > Eo =—E;S,
0.1 = LD+ D +1111)
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Three-Spin Eigenstates

Hamiltonian: Notation:
1 1 Z Z Z J.,=J
H=J12 Sl'SZ__ +J23 SQ'S3—_ _EZ(SI+SZ+S3) 12 — JLC
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23 — JRC
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Hamiltonian:

Quadruplet:

Doublet T,:

Doublet S:

|Q+3/2> =

|Q—3/2> =

|A+1/2> =

‘A—l/2> =

‘Ai1/2> =

|A’-1/2> =

Three-Spin Eigenstates

\"1402 + 29(]]2 - 2J23)
+ (/a3 —Q)HLT) —J12|lTT>)

1
r Jiz=Jas+ Q
\-'4QZ+2Q(J12—2J23)(( 2=+ DL

| | Notation:
H=J12(Sl . Sz— _) +J23(82 'S3— _) —Ez(Sﬁ‘FSg‘FSg) JlZ =‘ILC
4 4 Jy3 = Jrc
1T11) N\
0u) =111+ LD+ 111D
Vl >EQ :_EZSZ
S
|Q_uz)=E(HHHHH)HHL)) ¢
L1 Y
Q:N/Jf2+J§3—J12123
((-]12—-]23+Q)|TT1> \

> EA&:_ (J12+J23=Q)/2 - E4S,

J
((-112"']23"‘9)””) \

+(Ja3 —Q)HTU —le|Tll>)
1
\:4;402 + 20(2.’23 _JIZ)
—Un+D[TID+TplLTT))
1 (T + T+ QUL LD)

> EA§~=— (J12+J23 +Q)/2 —Ezsz

VAO? + 20025 — T 1)
= U+ Q)T+l T L))



Three-Spin Spectrum

102 m 201 .
Calculated spectrum 4 Notation:
for a wide (111) region: A Qs W Ji= )¢
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Three-Spin Spectrum

102 m 201 ._
Calculated spectrum 4 Notation:
for a wide (111) region: | Qs I Ji,= ¢
2 / - e . Jr3 = Jrc
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Calculated spectrum
for a wide (111) region:

Resulting J - and Jg. for

Three-Spin Spectrum

different (111) regions:
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When (111) is wide,
one spin is always decoupled

When (111) is narrow,
both J,. and J;. are finite



Three-Spin Spectrum
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Experiment
Part B

Experiment
Part A
le4 —e—|=22 mV
0.4
_JTQD
_JLC
%:: _JRC
0.0 :
-15 0 15
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When (111) is wide,
one spin is always decoupled
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0.0 v
-2 0
e (MV)
When (111) is narrow,
both J,. and J;. are finite



Spectrum with Hyperfine Interaction

102 m 201

QW;"? + A'\/Z

11Q2- 4y,

Hyperfine interaction with
underlying nuclear spin bath
leads to anti-crossings

Energy (ueV)




Experiment

102 m 201
QA
17Q,,- 4,

Hyperfine interaction with
underlying nuclear spin bath

Energy (ueV)

leads to anti-crossings oy
-3 | A’V2 | |
-6 £ 0 £, 6

Experiment: SA‘IIIIIIIII e(mV) IIIIIIII’SA

IIIIIIIIIIIIIIIIIIII’ DA

1. Startin the (102) [or (201)] configuration, where the system is in state |4A" >

2. Apply a voltage pulse to the gates, which increases [or decreases] € for a short time
SA: a single anti-crossing is passed (PART A)
DA: all anti-crossings are passed (PART B)

3. As a function of pulse duration t, measure probability of |4, ,> via the QPC
& ),> —> (102) [or (201)]
other states ——> (111), because of Pauli exclusion



Pulse Shape

Rectangular pulses of duration T (typically < 25 ns)

Low-pass filter

Pulses with finite rise time (typically around 6 ns)

Theoretical description:

;‘ Convolution of rectangular pulse
S (duration t) with Gaussian
> 1 —t2 /252
——
“ 21s

10 20 30
t (ns)

Calculated pulse shapes for Tt = 10 ns after Gaussian
convolution, leading to rise times of 6.6 ns, 3.5 ns, and 0.4 ns



Pulse Shape

Figure lex —e_|] (0V1,0Va) |Duration 7|Period T,,|Rise time|Filtered |Numerically convoluted
(mV) (mV) (ns) (ps) (ns)

M1d 0.0 (-8.8,11) 16 2 6.6 Yes No
M2a 27 (4.0-1.7) 1-16 2 6.6 Yes No
M2c 41.5 (-4.11,7) 1-16 2 6.6 Yes No
M2b, S5a 50 (4.0-1.7) 0-25 5 6.6 Yes No
M2d, S5b 27 (-3.75,6.6) 0-25 5 5.3 Yes No
M3a 5 (-5.4,6) 16 2 6.6 No Yes
M3c,d, M4b (40 mT)| 5.6 (-5,4.6) 0-25 2 6.6 No Yes
M4b (5 mT) 3.9 (-5.4.6) 0-25 2 6.6 No Yes
M4b (25 mT) 5.1 (-5.4.6) 0-25 2 6.6 No Yes
M4b (60 m'T) 4.6 (-5.4.6) 0-25 2 6.6 No Yes
S3a, S4b (left) 50 (4.0-1.7) 100 5 6.6 Yes No
S3b, S4b (right) 27 (-3.75,6.6) 100 5 3.3 Yes No
S6 (top) 24 (4.0-1.7) 0-25 5 6.6 Yes No
S7 34 | (-3.75,6.6) - 10 0.4 No No
S8a,b 9 (-8,10) 16 2 6.6 Yes No
S8c 9 (-8,10) 1-16 2 6.6 Yes No
S9 9 0V1=-0.80V2 10 2 6.6 Yes No

TABLE I: Pulse details for the experiments. In the Figure column, an M signifies Main text and an S, Suppl. Info.




Experiment

102 m 201
QA
17Q,,- 4,

Hyperfine interaction with
underlying nuclear spin bath

Energy (ueV)

leads to anti-crossings oy
-3 | A’V2 | |
-6 £ 0 £, 6

Experiment: SA‘IIIIIIIII e(mV) IIIIIIII’SA

IIIIIIIIIIIIIIIIIIII’ DA

1. Startin the (102) [or (201)] configuration, where the system is in state |4A" >

2. Apply a voltage pulse to the gates, which increases [or decreases] € for a short time
SA: a single anti-crossing is passed (PART A)
DA: all anti-crossings are passed (PART B)

3. As a function of pulse duration t, measure probability of |4, ,> via the QPC
& ),> —> (102) [or (201)]
other states——> (111), because of Pauli exclusion



Energy (neV)

Part A— Wide (111)

Results:
SA Pulse
(102) A (111) -0.753
102 m 201
Qi ot A,
11 Qw.f;‘x‘-:ﬂvz g
~
_2 -
Qs [ \ -0.757
5l Ay . . 7 (ns)
-6 & 0 & 6
SA ﬁ £ (mV)
Jic=0

Left spin always decoupled

B=60mT

Pulse reaches
further into
(111) region



Part A— Wide (111)

SA Pulse
(201) « (111)

102 m 201
Qi2tay,

17Q,- Ay

Energy (neV)

Right spin always decoupled

V, (V)

Results:
e —e_|=41.5mV

B=60mT

-1.186
A
Pulse reaches
further into
(111) region
-1.192
7 (ns)
ey —e_|=27mV

7(ns)



Comparison: Experiment in Double Quantum Dot

For wide (111), the results resemble those from
experiments on two-spin states in a double quantum dot

1.0

.0.2{Mimorl 50 731> Be= 100 mT
U, Det.
ul| wu, T

-> irror

0.8

0 5 10 15 20 25
Tg (Ns)

J. R. Petta, H. Lu, and A. C. Gossard, Science 327, 669 (2010)



Why Oscillations? Qualitative Explanation

Q > ’
| 3/2 |A 12>

Pr,g = e—27rA2/(th)

1Q;/,>

When tuning back, also the phase is important!



Why Oscillations? Qualitative Explanation
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Slmple representation:

Beam splitter T) t,f’r >0
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Why Oscillations? Qualitative Explanation

2> | 1>
Slmple representation:

Beam splitter T) 275’7" >0
¢

/ )

+r°=1
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a) Pass through anti-crossing ( ) ( ) (_T)




Why Oscillations? Qualitative Explanation

i0
t e |1>

Slmple representation:

Beam splitter T) 2“’" >0
¢

\ _t :
N

+r°=1
: . t r 1 t
a) Pass through anti-crossing (_,r t) (0) = (_T)

t ) . (te“’b) Due to energy difference

b) Accumulate phase ’
.y —r between |A 1/2> and |Q3/2>



Why Oscillations? Qualitative Explanation
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Simple representation:

Beam splitter " tr >0
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|1> -r |2>

: . t r 1 t
a) Pass through anti-crossing (_,r t) (0) = (_T)

t ) . (te“’b) Due to energy difference

b) Accumulate phase
) P ( between IA’1/2> and |Q3/2>

—T —Tr

c) Tune back through anti-crossing toor\ (te” _ t2e'? — re
—r t)\ —r —rt(1 + €'?)



Why Oscillations? Qualitative Explanation

i®
|2> te |1>

rt (1 + €9) {

Simple representation:

Beam splitter " tr >0
P t) 2 +r2=1

t2 eiCD - r-2 \

|1> -r |2>

: . t r 1 t
a) Pass through anti-crossing (_T t) (0) = (_T)

t ) . (te“b) Due to energy difference

b) Accumulate phase
) P ( between IA’1/2> and |Q3/2>

—T —Tr

c) Tune back through anti-crossing toor\ (te” _ t2e'? — re
—r t)\ —r —rt(1 + €'?)

—> “Landau-Zener-Stiickelberg oscillations” as function of pulse duration



So far:

Recap

Only SA pulses for wide (111)
Resembles previous experiments in double quantum dots

Also DA?
Not of interest, because more than two states are involved
(thus not a good system for qubits)

102 111

Calculated spectrum
for a wide (111)

Energy (ueV)




Part B— Narrow (111)

So far: Only SA pulses for wide (111)
Resembles previous experiments in double quantum dots

Also DA?
Not of interest, because more than two states are involved
(thus not a good system for qubits)

SA/DA pulses for narrow (111),

Now: .
where all spins are coupled

Calculated spectrum
for a narrow (111)




Part B— Narrow (111)

So far: Only SA pulses for wide (111)
Resembles previous experiments in double quantum dots

Also DA?
Not of interest, because more than two states are involved
(thus not a good system for qubits)

SA/DA pulses for narrow (111),

Now: .
where all spins are coupled

Calculated spectrum
for a narrow (111)

NEW Experiment!
What does one expect??

— SIMULATION!




Simulation

Brief outline:

Pulse shape — €(t) — J(t) — eigenenergies(t)

Hamiltonian with parameter for hyperfine coupling

Inclusion of other states:

EQ3/2 FA”QW

Z’aQS/Q EAll/2 H—

H = EQ1/2 UPNCIE 0 Tavaus
A Q12 EAl/z 0 0

0 0 EQB/'Z FA"QW
FZ’.QW 0 PTA',Q.-;/Q EA’1/2

Master equation for the density matrix

Cfi_i =3 [p, H/h] (+ decoherence)

Resulting differential equations are
solved numerically via the Runge-Kutta method



Runge-Kutta Method

Excerpt from lecture notes on “Computational Physics” by Haye Hinrichsen

Euler Runge-Kutta (2" order)

“Runge-Kutta method”: Usually means the extension to 4" order



Parameters for Simulation

Figure lex —e_| J%lclilD % &re | Tre | Cre | are | Toe | Cre FAITQS/Q FA"Ql/Q FA‘Ql/Q

(V) [ (peV) | (peV) (20| (V)| (Z5) | (2590 [ (e V)| (Zp) | (neV) | (eV) | (peV)
Ml1d, S2b 9.0 |0.116 | 0.0751 | 62.5 | 8.20 |0.1627| 38.0 | 5.28 | 0.061 ] ] ]
Miec, S8d.e.f, SOb 9.0 |o0.116| 00751 | 625 | 820 |0.1627| 38.0 | 5.28 [ 0.061 | 0.2 0.2 0.2
Mda (5 mT) 39 |0628| 0418 | 57.8 | 15.8 [0.4995] 30.0 | 13.4 | 0.380 ] ] ]
Mda (25 mT), S2c 51 [0309] 0191 | 57.8 | 15.8 [0.4995] 39.0 | 13.4 | 0.380 - _ _
Md4a (40 mT) 56 (0229 0140 | 57.8 | 15.8 [0.4995] 39.0 | 13.4 | 0.380 - _ _
M4a (60 mT) 4.6 0394 ] 0262 | 57.8 | 15.8 [0.4995] 39.0 | 13.4 | 0.380 _ _ _
Mdc (5 mT) 3.9 0628 | 0418 | 57.8 | 15.8 [0.4995] 39.0 | 13.4 [0.380| 0.2 0.2 0.2
M3b, Mdc (25 mT) 51 (0309 0191 | 57.8 | 15.8 [0.4995| 39.0 | 13.4 [ 0380 | 0.2 0.2 0.2
M3c,d, M4c (40 mT) 56 (0220 0140 | 57.8 | 15.8 [0.4995| 39.0 | 13.4 [ 0380 | 0.2 0.2 0.2
M4c (60 mT) 46 [0394] 0262 |57.8 | 158 [0.4995] 30.0 | 134 0380 ] 02 0.2 0.2
S2a, Sda 22 0.0057| 0.0037 | 54.0 | 9.39 |0.3414| 40.0 | 9.96 |0.1154| - _ _
S4b(left) ~50 - - 425100 00 | - ] - - - -
M2b, S5a ~50 _ - 425100 00 | - _ - 0.15 0.0 0.0
S4b(right) 27 - - - - - 35.9 [ 5.89 | 0.0 - - -
M2d, S5b(mid & bottom) 27 - - - - - 35.9 [ 9.96 [0.1154] 0.12 0.0 0.0
S5b(top) 27 ] ] ] ] - | 359 | 9.96 [0.1154] o0.17 0.0 0.0

S6 (bottom) 24 - - 42.5 | 9.39 |0.3414] - - - 0.2 0.0 0.0




Pulse starts

from (201) Results — Narrow (111)
e —e_|=3.9mV ey —e_|=5TmV ey —e_|=5.6mV ey —e_|=4.6mV
4 7 | T/ R /] .
Calculated % °] K / /
spectrum & ° m /\\ — ﬁ\
Experiment i
Simulation

(no decoherence)




Pulse starts

from (201) Results — Narrow (111)
lex —e_|=51mV le; —e_|=5.6mV lex —e_|=4.6mV
J \| V/ N V] N
2N 7= /\\
AN INaE m
Comparison to effective e (mV) £ (mV)

two-spin result

oL —e_|=41.5mV

-1.186 =

V, (V)




Pulse starts

from (201) Results — Narrow (111)

white line blue line

dP, /dV,(a.u)

7(ns) 7 (ns)

The fits use B =60 mT (not B =40 mT) due to dynamic nuclear polarization



Pulse starts

from (201) Results — Narrow (111)

Dephasing times similar to those of two-spin states

Fluctuations in the underlying nuclear spin bath
seem to be the dominant mechanism for dephasing

7(ns) 7 (ns)

The fits use B =60 mT (not B =40 mT) due to dynamic nuclear polarization



Summary

* Formed three-spin states in a triple quantum dot



Summary

 Formed three-spin states in a triple quantum dot
 Demonstrated coherent evolution for a three-spin qubit

Drawback: The generated qubit is not a proper exchange-only qubit
(basis states differ in both the total spin and S,)



Comment: Exchange-Only Qubit

Hex(t) = J(t)S1 - S5
The Heisenberg interaction commutes

with the total spin and its projection on the z axis

— It can only rotate among states with the same quantum numbers S, S,

Suitable bases for an exchange-only qubit with three spins:
|A1,>, | ,> or  |A,,> [& >



Comment: Exchange-Only Qubit

Hex(t) = J(t)S1 - S5
The Heisenberg interaction commutes

with the total spin and its projection on the z axis

— It can only rotate among states with the same quantum numbers S, S,

Suitable bases for an exchange-only qubit with three spins:
|A1,>, | ,> or  |A,,> [& >

’ —> D.;
|841/2> 11, =0 IC__|1/2>> J23
/ ‘6i1/2 >\

|A41/5>,J,3=0

\/JQ |A'41/2> 153=0

+1/2
Figure from

. N | AJ_r1/2
Laird et al., PRB 82, 075403 (2010) IDy1/2)

>,11,=0

In contrast, Gaudreau et al. work with the qubit basis |Q;,,>, [4A";/,>



Summary

 Formed three-spin states in a triple quantum dot
 Demonstrated coherent evolution for a three-spin qubit

Drawback: The generated qubit is not a proper exchange-only qubit
(basis states differ in both the total spin and S,)



Summary

Formed three-spin states in a triple quantum dot
Demonstrated coherent evolution for a three-spin qubit

Drawback: The generated qubit is not a proper exchange-only qubit
(basis states differ in both the total spin and S,)

Measured dephasing times around 10 ns, both for the two-spin states
and the three-spin states. Thus no additional decoherence was
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(basis states differ in both the total spin and S,)

Measured dephasing times around 10 ns, both for the two-spin states
and the three-spin states. Thus no additional decoherence was
observed, and (apparently) nuclear-spin fluctuations remain the
dominant source for dephasing.

Demonstrated pairwise control of the exchange interaction, an
essential requirement for most quantum computer architectures
— Experimental proof of scalability

“This is good news for the future: now nothing is holding us back from building an
all-electrically controlled quantum chip made up of large numbers of electron spins”
Frank Koppens, news & views



