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How to implement 
the qubits? 
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D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998) 

x-axis 

z-axis 

Two-qubit operations via the isotropic (Heisenberg) exchange interaction  

J. R. Petta et al., Science (2005): 
SWAP operation within 350 ps 

Rotation about z axis:   Static magnetic field 

Rotation about x axis:   Oscillating (effective) magnetic field  
                                          ESR, EDSR 

Currently about 20 ns  
for a rotation of π 
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Motivation 

Spin states of THREE electrons 

Exchange only! 
D. P. DiVincenzo et al., Nature 408, 339 (2000) 

Figure from Laird et al., PRB 82, 075403 (2010) 

Further motivation: 

Three-spin states useful for quantum error correction 

Fundamental research, 
multipartite entanglement in the solid state 
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Setup 

2DEG within 
GaAs/AlGaAs 

heterostructure  

Left 
QPC  

Right 
QPC  

V1  V2  

Granger et al., PRB 82, 075304 (2010) 

Width of (111) region can be  
tuned via the voltage on gate C 

Operation in the  
(102)-(111)-(201) regime, 

where ε denotes the detuning 
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Three-Spin Spectrum 

Calculated spectrum 
for a wide (111) region: 

Notation: 

J12 = JLC 

J23 = JRC 

Resulting JLC and JRC for 
different (111) regions: 

When (111) is wide,  
one spin is always decoupled 

When (111) is narrow,  
both JLC and JRC are finite 



Three-Spin Spectrum 

Experiment 
Part A 

When (111) is wide,  
one spin is always decoupled 

When (111) is narrow,  
both JLC and JRC are finite 

Experiment  
Part B 

Sz > 0 
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Experiment 

Hyperfine interaction with 
underlying nuclear spin bath 
leads to anti-crossings 

Experiment: 

1.  Start in the (102) [or (201)] configuration, where the system is in state |Δ’1/2> 
 

2.  Apply a voltage pulse to the gates, which increases [or decreases] ε for a short time  
        SA:  a single anti-crossing is passed (PART A) 
 DA: all anti-crossings are passed (PART B) 
 

3.  As a function of pulse duration τ, measure probability of |Δ’1/2> via the QPC 
      |Δ’1/2>          (102) [or (201)] 
 other states (111), because of Pauli exclusion 



Pulse Shape 

Rectangular pulses of duration τ  (typically < 25 ns) 

Low-pass filter 

Pulses with finite rise time (typically around 6 ns) 

Calculated pulse shapes for τ = 10 ns after Gaussian 
convolution, leading to rise times of 6.6 ns, 3.5 ns, and 0.4 ns 

Theoretical description: 
Convolution of rectangular pulse 
(duration τ) with Gaussian   
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Part A – Wide (111) 

JLC = 0 
Left spin always decoupled 

SA Pulse 
(102) ↔ (111) 

Results: 

Pulse reaches 
further into 
(111) region 

B = 60 mT 



Part A – Wide (111) 

JRC = 0 
Right spin always decoupled 

SA Pulse 
(201) ↔ (111) 

Results: 

Pulse reaches 
further into 
(111) region 

B = 60 mT 



Comparison: Experiment in Double Quantum Dot 

For wide (111), the results resemble those from 
experiments on two-spin states in a double quantum dot 

J. R. Petta, H. Lu, and A. C. Gossard, Science 327, 669 (2010) 
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2Δ 

|Δ’1/2>  

|Δ’1/2>  |Q3/2>  

|Q3/2>  

v 

P 

1-P 

When tuning back, also the phase is important! 
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Why Oscillations?  Qualitative Explanation 

|1>  

|1>  |2>  

|2>  

Beam splitter 

Simple representation: 

a)  Pass through anti-crossing 

t eiΦ 

b)  Accumulate phase  

c)  Tune back through anti-crossing 

Due to energy difference 
between |Δ’1/2> and |Q3/2> 

t2 eiΦ - r2 

-rt (1 + eiΦ) 

“Landau-Zener-Stückelberg oscillations” as function of pulse duration 

- r 
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Part B – Narrow (111) 

Only SA pulses for wide (111) 
Resembles previous experiments in double quantum dots 

 
Also DA? 

Not of interest, because more than two states are involved 
(thus not a good system for qubits) 

So far: 

Now: 

Calculated spectrum 
for a narrow (111) 

SA/DA pulses for narrow (111),  
where all spins are coupled 

NEW Experiment! 
What does one expect?? 

 

        → SIMULATION! 



Simulation 

Pulse shape → ε(t) → J(t) → eigenenergies(t)  

Brief outline: 

Hamiltonian with parameter for hyperfine coupling 

Inclusion of other states: 

Master equation for the density matrix  

(+ decoherence) 

Resulting differential equations are  
solved numerically via the Runge-Kutta method 



Runge-Kutta Method 

Excerpt from lecture notes on “Computational Physics” by Haye Hinrichsen  

Euler Runge-Kutta (2nd order) 

“Runge-Kutta method”: Usually means the extension to 4th order  



Parameters for Simulation 
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Results – Narrow (111) 
Pulse starts  
from (201)   

Calculated 
spectrum 

Experiment 

Simulation 
(no decoherence) 

Comparison to effective 
two-spin result 



Results – Narrow (111) 
Pulse starts  
from (201)   

white line blue line 

The fits use B = 60 mT (not B = 40 mT) due to dynamic nuclear polarization 



Results – Narrow (111) 
Pulse starts  
from (201)   

Dephasing times similar to those of two-spin states 
 

Fluctuations in the underlying nuclear spin bath  
seem to be the dominant mechanism for dephasing 

The fits use B = 60 mT (not B = 40 mT) due to dynamic nuclear polarization 
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The Heisenberg interaction commutes  
with the total spin and its projection on the z axis 

→ It can only rotate among states with the same quantum numbers S, Sz 

Suitable bases for an exchange-only qubit with three spins:     
|Δ1/2>, |Δ’1/2>     or     |Δ-1/2>, |Δ’-1/2>  

Figure from  
Laird et al., PRB 82, 075403 (2010) 

|Δ’±1/2>, J12 = 0 

|Δ±1/2>, J23 = 0 

|Δ’±1/2>, J23 = 0 

|Δ±1/2>, J12 = 0 

In contrast, Gaudreau et al. work with the qubit basis |Q3/2>, |Δ’1/2> 
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• Measured dephasing times around 10 ns, both for the two-spin states 
and the three-spin states. Thus no additional decoherence was 
observed, and (apparently) nuclear-spin fluctuations remain the 
dominant source for dephasing.  

 

• Demonstrated pairwise control of the exchange interaction, an 
essential requirement for most quantum computer architectures 

      → Experimental proof of scalability 
 

“This is good news for the future: now nothing is holding us back from building an  
all-electrically controlled quantum chip made up of large numbers of electron spins” 
Frank Koppens, news & views 

Drawback: The generated qubit is not a proper exchange-only qubit 
                    (basis states differ in both the total spin and Sz) 


