Handout

Resistively detected nuclear magnetic resonance:

Electron spins in the v = 5/2 quantum Hall state are fully polarized

17 Jan 2012

NMR probing of the spin polarization of the v = 5/2 quantum Hall state

M. Stern, B. A. Piot, Y. Vardi, V. Umansky, P. Plochocka,

D. K. Maude, and I. Bar-Joseph

18 Jan 2012

Unraveling the spin polarization of the v = 5/2 fractional quantum Hall state

L. Tiemann, G. Gamez, N. Kumada, and K. Muraki

Srecan Rodjendan!

Birthday

Vladimir!!

Nature Physics **8**, 54 (2012)

Coherent Control of Three-Spin States in a Triple Quantum Dot

```
L. Gaudreau,<sup>1,2</sup> G. Granger,<sup>1</sup> A. Kam,<sup>1</sup> G. C. Aers,<sup>1</sup> S. A. Studenikin,<sup>1</sup> P. Zawadzki,<sup>1</sup> M. Pioro-Ladrière,<sup>2</sup> Z. R. Wasilewski,<sup>1</sup> and A. S. Sachrajda<sup>1</sup>
```

¹Institute for Microstructural Sciences, National Research Council Canada; Ottawa, Ontario, Canada ²Département de physique, Université de Sherbrooke; Sherbrooke, Québec, Canada

Quantum computer

... Qubit Qubit Qubit ...

Quantum computer

Basic requirements for universal set of quantum gates:

Arbitrary two-qubit gate (CNOT, SWAP, ...)

Quantum computer

Basic requirements for universal set of quantum gates:

Arbitrary two-qubit gate (CNOT, SWAP, ...)

How to implement the qubits?

Two-qubit operations via the isotropic (Heisenberg) exchange interaction

$$H_{\mathrm{ex}}(t) = J(t) \boldsymbol{S}_1 \cdot \boldsymbol{S}_2$$

J. R. Petta *et al.*, Science (2005): SWAP operation within 350 ps

Two-qubit operations via the isotropic (Heisenberg) exchange interaction

$$H_{\mathrm{ex}}(t) = J(t) \boldsymbol{S}_1 \cdot \boldsymbol{S}_2$$

J. R. Petta *et al.*, Science (2005): SWAP operation within 350 ps

Rotation about z axis: Static magnetic field

Rotation about x axis: Oscillating (effective) magnetic field

ESR, EDSR

Currently about 20 ns for a rotation of π

Spin states of SINGLE electrons

z-rotation: (static) magnetic field

x-rotation: ESR, EDSR, ...

Two-qubit gate: exchange interaction

Spin states of SINGLE electrons

z-rotation: (static) magnetic field

x-rotation: ESR, EDSR, ...

Two-qubit gate: exchange interaction

Spin states of TWO electrons

z-rotation: **exchange interaction**

x-rotation: magnetic field gradient

Two-qubit gate: Coulomb interaction (CPHASE), ...

Spin states of SINGLE electrons

z-rotation: (static) magnetic field

x-rotation: ESR, EDSR, ...

Two-qubit gate: exchange interaction

Spin states of TWO electrons

z-rotation: exchange interaction

x-rotation: magnetic field gradient

Two-qubit gate: Coulomb interaction (CPHASE), ...

Spin states of THREE electrons

Exchange only!

D. P. DiVincenzo et al., Nature 408, 339 (2000)

Figure from Laird et al., PRB 82, 075403 (2010)

Further motivation:

Three-spin states useful for quantum error correction

Fundamental research, multipartite entanglement in the solid state

Spin states of THREE electrons

Exchange only!

D. P. DiVincenzo *et al.*, Nature **408**, 339 (2000)

Figure from Laird et al., PRB **82**, 075403 (2010)

Setup

Setup

Width of (111) region can be tuned via the voltage on gate C

(111) configuration

Figure from Laird *et al.*, PRB **82**, 075403 (2010)

Setup

Hamiltonian:

$$H = J_{12} \left(\mathbf{S}_1 \cdot \mathbf{S}_2 - \frac{1}{4} \right) + J_{23} \left(\mathbf{S}_2 \cdot \mathbf{S}_3 - \frac{1}{4} \right) - E_Z (S_1^z + S_2^z + S_3^z)$$
 Notation:
$$J_{12} = J_{LC}$$

$$J_{23} = J_{RC}$$

Notation:

$$J_{12} = J_{LC}$$
$$J_{23} = J_{RC}$$

Hamiltonian:

$$H = J_{12} \left(\mathbf{S}_1 \cdot \mathbf{S}_2 - \frac{1}{4} \right) + J_{23} \left(\mathbf{S}_2 \cdot \mathbf{S}_3 - \frac{1}{4} \right) - E_Z (S_1^z + S_2^z + S_3^z)$$
 Notation:
$$J_{12} = J_{LC}$$

$$J_{23} = J_{RC}$$

Notation:

$$J_{12} = J_{LC}$$
$$J_{23} = J_{RC}$$

Quadruplet:
$$|Q_{+3/2}\rangle = |\uparrow\uparrow\uparrow\rangle$$

Hamiltonian:

$$H = J_{12} \left(\mathbf{S}_1 \cdot \mathbf{S}_2 - \frac{1}{4} \right) + J_{23} \left(\mathbf{S}_2 \cdot \mathbf{S}_3 - \frac{1}{4} \right) - E_Z (S_1^z + S_2^z + S_3^z)$$
 Notation:
$$J_{12} = J_{LC}$$

$$J_{23} = J_{RC}$$

Notation:

$$J_{12} = J_{LC}$$
$$J_{23} = J_{RC}$$

$$\begin{aligned} |Q_{+3/2}\rangle &= |\uparrow\uparrow\uparrow\rangle \\ |Q_{+1/2}\rangle &= \frac{1}{\sqrt{3}}(|\uparrow\uparrow\downarrow\rangle + |\uparrow\downarrow\uparrow\rangle + |\downarrow\uparrow\uparrow\rangle) \\ |Q_{-1/2}\rangle &= \frac{1}{\sqrt{3}}(|\downarrow\downarrow\uparrow\rangle + |\downarrow\uparrow\downarrow\rangle + |\uparrow\downarrow\downarrow\rangle) \\ |Q_{-3/2}\rangle &= |\downarrow\downarrow\downarrow\rangle \end{aligned} \right\} E_{Q_{S_z}} = -E_Z S_z$$

 $\Omega = \sqrt{J_{12}^2 + J_{23}^2 - J_{12}J_{23}}$

$$\begin{aligned} \textbf{Doublet T_0:} \quad |\Delta_{+1/2}\rangle &= \frac{1}{\sqrt{4\Omega^2 + 2\Omega(J_{12} - 2J_{23})}} ((J_{12} - J_{23} + \Omega)|\uparrow\uparrow\downarrow\rangle \\ &\quad + (J_{23} - \Omega)|\uparrow\downarrow\uparrow\rangle - J_{12}|\downarrow\uparrow\uparrow\rangle) \\ |\Delta_{-1/2}\rangle &= \frac{1}{\sqrt{4\Omega^2 + 2\Omega(J_{12} - 2J_{23})}} ((J_{12} - J_{23} + \Omega)|\downarrow\downarrow\uparrow\rangle \\ &\quad + (J_{23} - \Omega)|\downarrow\uparrow\downarrow\rangle - J_{12}|\uparrow\downarrow\downarrow\rangle) \end{aligned} \end{aligned}$$

Hamiltonian:

$$H = J_{12} \left(\mathbf{S}_1 \cdot \mathbf{S}_2 - \frac{1}{4} \right) + J_{23} \left(\mathbf{S}_2 \cdot \mathbf{S}_3 - \frac{1}{4} \right) - E_Z (S_1^z + S_2^z + S_3^z)$$
 Notation:
$$J_{12} = J_{LC}$$

$$J_{23} = J_{RC}$$

Notation:

Quadruplet:
$$|Q_{+3/2}\rangle = |\uparrow\uparrow\uparrow\rangle$$

$$E_{Q_{S_z}} = -E_Z S_z$$

$$\mathbf{Doublet} \, \mathbf{T_0:} \quad |\Delta_{+1/2}\rangle = \frac{1}{\sqrt{4\Omega^2 + 2\Omega(J_{12} - 2J_{23})}} ((J_{12} - J_{23} + \Omega)|\uparrow\uparrow\downarrow\rangle) \\ + (J_{23} - \Omega)|\uparrow\downarrow\uparrow\rangle - J_{12}|\downarrow\uparrow\uparrow\rangle) \\ |\Delta_{-1/2}\rangle = \frac{1}{\sqrt{4\Omega^2 + 2\Omega(J_{12} - 2J_{23})}} ((J_{12} - J_{23} + \Omega)|\downarrow\downarrow\uparrow\rangle) \\ + (J_{23} - \Omega)|\downarrow\uparrow\downarrow\rangle - J_{12}|\uparrow\downarrow\downarrow\rangle)$$

$$E_{\Delta_{S_z}} = -(J_{12} + J_{23} - \Omega)/2 - E_Z S_z$$

$$\Omega = \sqrt{J_{12}^2 + J_{23}^2 - J_{12}J_{23}}$$

$$E_{\Delta_{S_z}} = -(J_{12} + J_{23} - \Omega)/2 - E_Z S_z$$

$$|\Delta'_{+1/2}\rangle = \frac{1}{\sqrt{4\Omega^2 + 2\Omega(2J_{23} - J_{12})}} ((-J_{12} + J_{23} + \Omega)|\uparrow\uparrow\downarrow\rangle)$$

$$-(J_{23} + \Omega)|\uparrow\downarrow\uparrow\rangle + J_{12}|\downarrow\uparrow\uparrow\rangle)$$

$$|\Delta'_{-1/2}\rangle = \frac{1}{\sqrt{4\Omega^2 + 2\Omega(2J_{23} - J_{12})}} ((-J_{12} + J_{23} + \Omega)|\downarrow\downarrow\uparrow\rangle)$$

$$-(J_{23} + \Omega)|\downarrow\uparrow\downarrow\rangle + J_{12}|\uparrow\downarrow\downarrow\rangle)$$

$$E_{\Delta'_{S_z}} = -(J_{12} + J_{23} + \Omega)/2 - E_Z S_z$$

$$E_{\Delta'_{S_z}} = -(J_{12} + J_{23} + \Omega)/2 - E_Z S_z$$

Calculated spectrum for a wide (111) region:

$$\frac{J_{LC}}{\tilde{\alpha}_{LC}} = (\epsilon - \epsilon_{+})/2 + \sqrt{[(\epsilon - \epsilon_{+})/2]^{2} + \left(\frac{T_{LC}}{\tilde{\alpha}_{LC}}\right)^{2}}$$

$$\frac{J_{RC}}{\tilde{\alpha}_{RC}} = (\epsilon_{-} - \epsilon)/2 + \sqrt{[(\epsilon_{-} - \epsilon)/2]^{2} + \left(\frac{T_{RC}}{\tilde{\alpha}_{RC}}\right)^{2}}$$

$$T_{LC}(\epsilon) = \begin{cases} T_{LC} \exp[C_{LC}(\epsilon - \epsilon_{+})], & \epsilon < \epsilon_{+} \\ T_{LC}, & \epsilon \ge \epsilon_{+} \end{cases}$$
$$T_{RC}(\epsilon) = \begin{cases} T_{RC} \exp[C_{RC}(\epsilon_{-} - \epsilon)], & \epsilon > \epsilon_{-} \\ T_{RC}, & \epsilon \le \epsilon_{-} \end{cases}$$

Notation: $J_{12} = J_{LC}$ $J_{22} = J_{RC}$

Calculated spectrum for a wide (111) region:

Notation: $J_{12} = J_{LC}$ $J_{23} = J_{RC}$

$$\frac{J_{LC}}{\tilde{\alpha}_{LC}} = (\epsilon - \epsilon_{+})/2 + \sqrt{[(\epsilon - \epsilon_{+})/2]^{2} + \left(\frac{T_{LC}}{\tilde{\alpha}_{LC}}\right)^{2}}$$

$$\frac{J_{RC}}{\tilde{\alpha}_{RC}} = (\epsilon_{-} - \epsilon)/2 + \sqrt{[(\epsilon_{-} - \epsilon)/2]^{2} + \left(\frac{T_{RC}}{\tilde{\alpha}_{RC}}\right)^{2}}$$

$$T_{LC}(\epsilon) = \begin{cases} T_{LC} \exp[C_{LC}(\epsilon - \epsilon_{+})], & \epsilon < \epsilon_{+} \\ T_{LC}, & \epsilon \ge \epsilon_{+} \end{cases}$$
$$T_{RC}(\epsilon) = \begin{cases} T_{RC} \exp[C_{RC}(\epsilon_{-} - \epsilon)], & \epsilon > \epsilon_{-} \\ T_{RC}, & \epsilon \le \epsilon_{-} \end{cases}$$

Parameters from fits to experiment:

Calculated spectrum for a wide (111) region:

Notation: $J_{12} = J_{LC}$ $J_{23} = J_{RC}$

Resulting J_{LC} and J_{RC} for different (111) regions:

When (111) is wide, one spin is always decoupled

When (111) is narrow, both J_{LC} and J_{RC} are finite

Spectrum with Hyperfine Interaction

Hyperfine interaction with underlying nuclear spin bath leads to anti-crossings

Experiment

Hyperfine interaction with underlying nuclear spin bath leads to anti-crossings

Experiment:

- 1. Start in the (102) [or (201)] configuration, where the system is in state $|\Delta'_{1/2}\rangle$
- Apply a voltage pulse to the gates, which increases [or decreases] ε for a short time
 SA: a single anti-crossing is passed (PART A)
 DA: all anti-crossings are passed (PART B)
- 3. As a function of pulse duration τ , measure probability of $|\Delta'_{1/2}\rangle$ via the QPC $|\Delta'_{1/2}\rangle$ \longrightarrow (102) [or (201)] other states \longrightarrow (111), because of Pauli exclusion

Pulse Shape

Rectangular pulses of duration τ (typically < 25 ns)

Low-pass filter

Pulses with finite rise time (typically around 6 ns)

Theoretical description: Convolution of rectangular pulse (duration τ) with Gaussian

$$\frac{1}{\sqrt{2\pi s}}e^{-t^2/2s^2}$$

Calculated pulse shapes for τ = 10 ns after Gaussian convolution, leading to rise times of 6.6 ns, 3.5 ns, and 0.4 ns

Pulse Shape

Figure	$ \epsilon_+ - \epsilon $	$(\delta V_1, \delta V_2)$	Duration τ	Period T_m	Rise time	Filtered	Numerically convoluted
	(mV)	(mV)	(ns)	(μs)	(ns)		
M1d	9.0	(-8.8,11)	16	2	6.6	Yes	No
M2a	27	(4.0, -1.7)	1-16	2	6.6	Yes	No
M2c	41.5	(-4.11,7)	1-16	2	6.6	Yes	No
M2b, S5a	50	(4.0,-1.7)	0-25	5	6.6	Yes	No
M2d, S5b	27	(-3.75,6.6)	0-25	5	5.3	Yes	No
M3a	5	(-5.4,6)	16	2	6.6	No	Yes
M3c,d, M4b (40 mT)	5.6	(-5,4.6)	0-25	2	6.6	No	Yes
M4b (5 mT)	3.9	(-5.4.6)	0-25	2	6.6	No	Yes
M4b (25 mT)	5.1	(-5.4.6)	0-25	2	6.6	No	Yes
M4b (60 mT)	4.6	(-5.4.6)	0-25	2	6.6	No	Yes
S3a, S4b (left)	50	(4.0,-1.7)	100	5	6.6	Yes	No
S3b, S4b (right)	27	(-3.75,6.6)	100	5	3.3	Yes	No
S6 (top)	24	(4.0,-1.7)	0-25	5	6.6	Yes	No
S7	34	(-3.75,6.6)	_	10	0.4	No	No
S8a,b	9	(-8,10)	16	2	6.6	Yes	No
S8c	9	(-8,10)	1-16	2	6.6	Yes	No
S9	9	$\delta V_1 = -0.8 \delta V_2$	10	2	6.6	Yes	No

TABLE I: Pulse details for the experiments. In the Figure column, an M signifies Main text and an S, Suppl. Info.

Experiment

Hyperfine interaction with underlying nuclear spin bath leads to anti-crossings

Experiment:

- 1. Start in the (102) [or (201)] configuration, where the system is in state $|\Delta'_{1/2}\rangle$
- Apply a voltage pulse to the gates, which increases [or decreases] ε for a short time
 SA: a single anti-crossing is passed (PART A)
 DA: all anti-crossings are passed (PART B)
- 3. As a function of pulse duration τ , measure probability of $|\Delta'_{1/2}\rangle$ via the QPC $|\Delta'_{1/2}\rangle$ \longrightarrow (102) [or (201)] other states \longrightarrow (111), because of Pauli exclusion

Part A – Wide (111)

 $J_{LC} = 0$ Left spin always decoupled

Part A – Wide (111)

 $J_{RC} = 0$ Right spin always decoupled

Comparison: Experiment in Double Quantum Dot

For wide (111), the results resemble those from experiments on two-spin states in a double quantum dot

J. R. Petta, H. Lu, and A. C. Gossard, Science **327**, 669 (2010)

When tuning back, also the phase is important!

a) Pass through anti-crossing
$$\begin{pmatrix} t & r \\ -r & t \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} t \\ -r \end{pmatrix}$$

- a) Pass through anti-crossing $\begin{pmatrix} t & r \\ -r & t \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} t \\ -r \end{pmatrix}$
- b) Accumulate phase $\begin{pmatrix} t \\ -r \end{pmatrix} \rightarrow \begin{pmatrix} te^{i\phi} \\ -r \end{pmatrix}$ Due to energy difference between $|\Delta'_{1/2}\rangle$ and $|Q_{3/2}\rangle$

- a) Pass through anti-crossing $\begin{pmatrix} t & r \\ -r & t \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} t \\ -r \end{pmatrix}$
- b) Accumulate phase $\begin{pmatrix} t \\ -r \end{pmatrix} \rightarrow \begin{pmatrix} te^{i\phi} \\ -r \end{pmatrix}$ Due to energy difference between $|\Delta'_{1/2}\rangle$ and $|Q_{3/2}\rangle$
- c) Tune back through anti-crossing $\begin{pmatrix} t & r \\ -r & t \end{pmatrix} \begin{pmatrix} te^{i\phi} \\ -r \end{pmatrix} = \begin{pmatrix} t^2e^{i\phi} r^2 \\ -rt(1+e^{i\phi}) \end{pmatrix}$

Why Oscillations? Qualitative Explanation

- a) Pass through anti-crossing $\begin{pmatrix} t & r \\ -r & t \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} t \\ -r \end{pmatrix}$
- b) Accumulate phase $\begin{pmatrix} t \\ -r \end{pmatrix} \rightarrow \begin{pmatrix} te^{i\phi} \\ -r \end{pmatrix}$ Due to energy difference between $|\Delta'_{1/2}\rangle$ and $|Q_{3/2}\rangle$
- c) Tune back through anti-crossing $\begin{pmatrix} t & r \\ -r & t \end{pmatrix} \begin{pmatrix} te^{i\phi} \\ -r \end{pmatrix} = \begin{pmatrix} t^2e^{i\phi} r^2 \\ -rt(1+e^{i\phi}) \end{pmatrix}$

Recap

So far:

Only SA pulses for wide (111)
Resembles previous experiments in double quantum dots

Also DA?

Not of interest, because more than two states are involved (thus not a good system for qubits)

Calculated spectrum for a wide (111)

Part B – Narrow (111)

So far:

Only SA pulses for wide (111)
Resembles previous experiments in double quantum dots

Also DA?

Not of interest, because more than two states are involved (thus not a good system for qubits)

Now:

SA/DA pulses for narrow (111), where all spins are coupled

Calculated spectrum for a narrow (111)

Part B – Narrow (111)

So far:

Only SA pulses for wide (111)
Resembles previous experiments in double quantum dots

Also DA?

Not of interest, because more than two states are involved (thus not a good system for qubits)

Now:

SA/DA pulses for narrow (111), where all spins are coupled

Calculated spectrum for a narrow (111)

NEW Experiment! What does one expect??

→ SIMULATION!

Simulation

Brief outline:

Pulse shape $\rightarrow \varepsilon(t) \rightarrow J(t) \rightarrow eigenenergies(t)$

Hamiltonian with parameter for hyperfine coupling

$$H = \begin{pmatrix} E_{Q_{3/2}} & \Gamma_{\Delta',Q_{3/2}} \\ \Gamma^*_{\Delta',Q_{3/2}} & E_{\Delta'_{1/2}} \end{pmatrix}$$

Inclusion of other states:

$$H = \begin{pmatrix} E_{\mathbf{Q}_{3/2}} & \Gamma_{\Delta',Q_{3/2}} \\ \Gamma_{\Delta',Q_{3/2}}^* & E_{\Delta'_{1/2}} \end{pmatrix} \qquad \text{Inclusion of other states:} \\ H = \begin{pmatrix} E_{\mathbf{Q}_{1/2}} & \Gamma_{\Delta,Q_{1/2}} & 0 & \Gamma_{\Delta',Q_{1/2}} \\ \Gamma_{\Delta,Q_{1/2}}^* & E_{\Delta_{1/2}} & 0 & 0 \\ 0 & 0 & E_{\mathbf{Q}_{3/2}} & \Gamma_{\Delta',Q_{3/2}} \\ \Gamma_{\Delta',Q_{1/2}}^* & 0 & \Gamma_{\Delta',Q_{3/2}}^* & E_{\Delta'_{1/2}} \end{pmatrix}$$

Master equation for the density matrix

$$\frac{d\rho}{dt}=i\left[
ho,H/\hbar
ight]$$
 (+ decoherence)

Resulting differential equations are solved numerically via the Runge-Kutta method

Runge-Kutta Method

Excerpt from lecture notes on "Computational Physics" by Haye Hinrichsen

"Runge-Kutta method": Usually means the extension to 4th order

Parameters for Simulation

Figure	$ \epsilon_+ - \epsilon $	$J_{ m TQD}^{ m min}$	$\frac{J_{LC}+J_{RC}}{2}$	$ ilde{lpha}_{RC}$	T_{RC}	C_{RC}	$ ilde{lpha}_{LC}$	T_{LC}	C_{LC}	$\Gamma_{\Delta',Q_{3/2}}$	$\Gamma_{\Delta',Q_{1/2}}$	$\Gamma_{\Delta,Q_{1/2}}$
	(mV)	(μeV)	$(\mu \mathrm{eV})$	$\left(\frac{\mu eV}{mV}\right)$	(μeV)	$\left(\frac{1}{\text{mV}}\right)$	$\left(\frac{\mu eV}{mV}\right)$	(μeV)		$(\mu \mathrm{eV})$	(μeV)	$(\mu \mathrm{eV})$
M1d, S2b	9.0	0.116	0.0751	62.5	8.20	0.1627	38.0	5.28	0.061	-	-	-
M1c, S8d,e,f, S9b	9.0	0.116	0.0751	62.5	8.20	0.1627	38.0	5.28	0.061	0.2	0.2	0.2
M4a (5 mT)	3.9	0.628	0.418	57.8	15.8	0.4995	39.0	13.4	0.380	-	-	1
M4a (25 mT), S2c	5.1	0.309	0.191	57.8	15.8	0.4995	39.0	13.4	0.380	-	-	1
M4a (40 mT)	5.6	0.229	0.140	57.8	15.8	0.4995	39.0	13.4	0.380	-	-	1
M4a (60 mT)	4.6	0.394	0.262	57.8	15.8	0.4995	39.0	13.4	0.380	-	-	ı
M4c (5 mT)	3.9	0.628	0.418	57.8	15.8	0.4995	39.0	13.4	0.380	0.2	0.2	0.2
M3b, M4c (25 mT)	5.1	0.309	0.191	57.8	15.8	0.4995	39.0	13.4	0.380	0.2	0.2	0.2
M3c,d, M4c (40 mT)	5.6	0.229	0.140	57.8	15.8	0.4995	39.0	13.4	0.380	0.2	0.2	0.2
M4c (60 mT)	4.6	0.394	0.262	57.8	15.8	0.4995	39.0	13.4	0.380	0.2	0.2	0.2
S2a, S4a	22	0.0057	0.0037	54.0	9.39	0.3414	40.0	9.96	0.1154	-	-	1
S4b(left)	~ 50	-	1	42.5	10.0	0.0	-	-	-	-	-	1
M2b, S5a	~ 50	-	1	42.5	10.0	0.0	-	-	_	0.15	0.0	0.0
S4b(right)	27	-	1	-	ı	-	35.9	5.89	0.0	-	-	1
M2d, S5b(mid & bottom)	27	_	-	-	ı	-	35.9	9.96	0.1154	0.12	0.0	0.0
S5b(top)	27	-	-	-	-	-	35.9	9.96	0.1154	0.17	0.0	0.0
S6 (bottom)	24	-	-	42.5	9.39	0.3414	-	-	-	0.2	0.0	0.0

The fits use B = 60 mT (not B = 40 mT) due to dynamic nuclear polarization

Dephasing times similar to those of two-spin states

Fluctuations in the underlying nuclear spin bath seem to be the dominant mechanism for dephasing

The fits use B = 60 mT (not B = 40 mT) due to dynamic nuclear polarization

• Formed three-spin states in a triple quantum dot

- Formed three-spin states in a triple quantum dot
- Demonstrated coherent evolution for a three-spin qubit

Drawback: The generated qubit is **not** a proper exchange-only qubit (basis states differ in both the total spin and S_7)

Comment: Exchange-Only Qubit

$$H_{\mathrm{ex}}(t) = J(t) \boldsymbol{S}_1 \cdot \boldsymbol{S}_2$$

The Heisenberg interaction commutes with the total spin and its projection on the z axis

 \rightarrow It can only rotate among states with the same quantum numbers S, S_z

Suitable bases for an exchange-only qubit with three spins:

$$|\Delta_{1/2}\rangle$$
, $|\Delta'_{1/2}\rangle$ or $|\Delta_{-1/2}\rangle$, $|\Delta'_{-1/2}\rangle$

Comment: Exchange-Only Qubit

$$H_{\mathrm{ex}}(t) = J(t) \boldsymbol{S}_1 \cdot \boldsymbol{S}_2$$

The Heisenberg interaction commutes with the total spin and its projection on the z axis

 \rightarrow It can only rotate among states with the same quantum numbers S, S_z

Suitable bases for an exchange-only qubit with three spins:

$$|\Delta_{1/2}\rangle, |\Delta'_{1/2}\rangle \quad \text{or} \quad |\Delta_{-1/2}\rangle, |\Delta'_{-1/2}\rangle$$

$$|\Delta'_{\pm 1/2}\rangle, J_{12} = 0$$

$$|\Delta_{\pm 1/2}\rangle, J_{23} = 0$$

$$|\Delta_{\pm 1/2}\rangle, J_{23} = 0$$
Figure from Laird *et al.*, PRB **82**, 075403 (2010)
$$|D_{\pm 1/2}\rangle \leftarrow |\Delta_{\pm 1/2}\rangle, J_{12} = 0$$

In contrast, Gaudreau et al. work with the qubit basis $|Q_{3/2}\rangle$, $|\Delta'_{1/2}\rangle$

- Formed three-spin states in a triple quantum dot
- Demonstrated coherent evolution for a three-spin qubit

Drawback: The generated qubit is **not** a proper exchange-only qubit (basis states differ in both the total spin and S_7)

- Formed three-spin states in a triple quantum dot
- Demonstrated coherent evolution for a three-spin qubit

Drawback: The generated qubit is **not** a proper exchange-only qubit (basis states differ in both the total spin and S_7)

 Measured dephasing times around 10 ns, both for the two-spin states and the three-spin states. Thus no additional decoherence was observed, and (apparently) nuclear-spin fluctuations remain the dominant source for dephasing.

- Formed three-spin states in a triple quantum dot
- Demonstrated coherent evolution for a three-spin qubit

Drawback: The generated qubit is **not** a proper exchange-only qubit (basis states differ in both the total spin and S_7)

- Measured dephasing times around 10 ns, both for the two-spin states and the three-spin states. Thus no additional decoherence was observed, and (apparently) nuclear-spin fluctuations remain the dominant source for dephasing.
- Demonstrated pairwise control of the exchange interaction, an essential requirement for most quantum computer architectures
 - → Experimental proof of scalability

- Formed three-spin states in a triple quantum dot
- Demonstrated coherent evolution for a three-spin qubit

Drawback: The generated qubit is **not** a proper exchange-only qubit (basis states differ in both the total spin and S_7)

- Measured dephasing times around 10 ns, both for the two-spin states and the three-spin states. Thus no additional decoherence was observed, and (apparently) nuclear-spin fluctuations remain the dominant source for dephasing.
- Demonstrated pairwise control of the exchange interaction, an essential requirement for most quantum computer architectures
 - → Experimental proof of scalability

"This is good news for the future: now nothing is holding us back from building an all-electrically controlled quantum chip made up of large numbers of electron spins" Frank Koppens, news & views