


Overview

Study transport in a clean and well-controlled environment:
No impurities, no lattice defects and no phonons.

Study transport in strongly correlated, out-of equilibrium
systems

Create a quantum simulator for condensed-matter systems

Transport in a homogeneous Hubbard model:
two component Fermi gas:

Ĥ = −J
∑

<i ,j>,σ

â†σâσ + U
∑
i

n̂i↓n̂i↑





Tuning the Scattering Length

Interaction between two atoms:

V (r1, r2) =
4π~2

M
asδ(r1 − r2)

as(B) = abg

[
1− ∆B

B − B0

]
abg is the off-resonant scattering
length and ∆B and B0 describe
the width and position of the
resonance.

Figure: Rev.Mod. 80, pp.892



Magnetic Feshbach Resonances

Figure: Rev.Mod. 80, pp.893

The two channels
have a different
magnetic moment:
You can change the
relative distance
∆E between them.



Expansion of non-interacting fermions



Expansion of interacting fermions



Observations

Already small interactions cause a drastic reduction of mass
transport

For strong interactions the core of the atomic cloud does not
expand, but shrinks

Bimodal system: Like melting a melting ball of ice

Only the magnitude but not the sign of the interaction matters



Figure: From Science 322 / 1520



Expansion of non-interacting particles

Ĥ = −J
∑

<i ,j>,σ â
†
σâσ

⇒ Ĥ =
∑

q,σ εqâ
†
qσâqσ

with
εq = −2J

∑
i cos(qialat)

Use group velocity
vq = 1

~
∂εq
∂q

⇒ vexp =
√
〈v2q〉

=
√

2d
J

~
alat



U ↔ −U symmetry

Figure: (b) U=0 (initial state); (c) momentum distribution after some
time when U 6= 0

Initially: atoms are at rest

During the expansion interaction energy is converted into
kinetic energy



U ↔ −U symmetry

The sign of kinetic energy of the Hubbard model

εq = − 2J
∑
i

cos(qialat)

can be changed by shifting all momenta q→ q + π̃/alat

Initial state and observable are time reversal invariant and
invariant under the shift of the momenta

⇒ U ↔ −U symmetry



Dublon protection

Figure: PRL 104, 080401



Boltzmann equation

Use the quasi-classical momentum distribution fq

∂t fq + vq∇rfq + F(r)∇qfq = − 1

τ(n)

(
fq − f 0q (n)

)
where τ(n) is the transport scattering time, f 0q the equilibrium
Fermi distribution.

The mass transport is driven by density gradients (not
external potentials)

τ(n) is determined from microscopic calculations.



Simulated density distribution





Conclusions

Study non-equilibrium dynamics with full control of almost all
parameters.

The Dynamics is independent of the sign of the interactions
due to the symmetry of the kinetic energy.

Outlook: Study dynamics in disordered lattices.

Outlook: Bose/Fermi mixture to study ohmic transport.



Experimental sequence



Diffusion equation

Define ~n = (n, e) where n(~r , t) is the local density and e(~r , t) the
local energy

Continuity equation ∂t~n +∇~j = 0 with j = −D(~n)∇~n

⇒ ∂t~n = ∇(D(~n)∇~n)

D(n) = τ(n)
〈v2q〉
alat



Solution of the Boltzmann equation

Use variational approach

fq = f 0q −
∂f 0q
∂εq

∑
i

αic
(i)
n

where c
(1)
q = v xq , c

(2)
q = εqv

x
q , c

(3)
q = qx and c

(4)
q = (π/a− qx)



Experimental sequence


