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Anderson localization: the basics

“Absence of diffusion in certain random lattices”,
P. W. Anderson, Phys. Rev. 109, 1492 (1958)

a wave-packet (or a particle) moving in a spatially-disordered,
( time-independent ) potential exhibits localization!

After: Lagendijk et al., Phys. Today (2009)

A. L. most easily demonstrated in optical- and matter-wave systems



What is this paper about?

Q: Can a closed quantum system of many interacting particles
be localized by disorder?

Recent studies: in the absence of other degrees of freedom
(e.g., phonons), e-e interaction may give rise to
a “many-body localization transition” even in 1d!

Goal of this paper: show that the “many-body localized” phase
differs qualitatively from the conventional
(non-interacting) localized phase even in 1d!

Outcome: entanglement entropy and particle-number fluctuation
show slow logarithmic evolution in time!

entanglement entropy does not saturate in the
thermodynamic limit, even for very weak interactions!
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Random-field (s = 1/2) XX Hamiltonian in 1d

H0 = J⊥
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hi – uniform random numbers ∈ [−η, η]

Reminder: the Jordan-Wigner (JW) transformation

S−
1 = c1 , S−

i = exp[iπ

i−1∑
l=1

c†l cl]ci (i ≥ 2)

maps H0 onto a Hamiltonian for free fermions with
n.n. hopping and random on-site potential (Sz

i = c†ici − 1/2)
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Methodology

study time-evolution of an initially unentangled pure state

the von Neumann entropy: S = −TrA(ρ̂A ln ρ̂A) = −TrB(ρ̂B ln ρ̂B)

bipartition H = HA ⊗ HB by dividing the system at the center bond!

for asymptotic behavior (t → ∞) use exact diagonalization:

H =
∑
j

λj Pj =⇒ U(t) =
∑
j

e−iλjt Pj

results obtained by averaging over > 104 field configurations {hi},
starting from a random state |Ψt=0〉 = |m1〉 ⊗ |m2〉 . . . ⊗ |mL〉

mj ∈ {↑, ↓}
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Adding the z (Ising) coupling (fermion interactions)

H =
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Q: Is there any qualitative change in the behaviour of physical
quantities when a small interaction (Jz) is added?

Already known (almost...problem to approach the TD limit!)
V. Oganesyan and D. Huse, PRB 75, 155111 (2007)

for J⊥ = Jz (Heisenberg case) the system undergoes a
dynamical transition as a function of η/Jz (in all eigenstates):

for small enough η/Jz (strong-enough interactions)
localization is destroyed (i.e., spin conductivity is nonzero)!
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Entanglement growth after a quench

for Jz = 0 (no interactions) the “half-chain” entanglement entropy
saturates; saturation sets in at times ∼ J−1

⊥

expectation: ...weak interaction leads to a small delay in saturation
and a small increase in final entanglement...

instead, entanglement growth shows a qualitative change of behavior
already for infinitesimal Jz!

It grows logarithmically even after times >> J−1
⊥ !



Entanglement growth after a quench

data for η = 5 and L = 10



Saturation value of entropy as a function of the system size

saturation values for finite L are essentially independent of Jz!

the entanglement entropy does not saturate in the TD limit!



Half-chain particle number fluctuations

i.e., the variance of the total spin on half the chain

unlike entanglement, it saturates already at finite size!(JC) JC March 6, 2012 10 / 11



Saturation values of the half-chain particle-number variance

unlike for entanglement, saturation values depend on the interaction
strength!
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