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• realization of Kitaev chain in driven-
dissipative nonlinear cavity array

• Majorana end-modes in Kitaev chain

• detection of Majorana modes by 
photon correlation measurement
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On-chip quantum simulation with
superconducting circuits
Andrew A. Houck1*, Hakan E. Türeci1 and Jens Koch2

Using a well-controlled quantum system to simulate complex quantum matter is an idea that has been around for 30 years

and put into practice in systems of ultracold atoms for more than a decade. Much recent excitement has focused on a new

implementation of quantumsimulators using superconducting circuits, where conventionalmicrochip fabrication can be used to

take design concepts to experimental reality, quickly andflexibly. Because the quantum ‘particles’ in these simulators are circuit

excitations rather than physical particles subject to conservation laws, superconducting simulators provide a complement to

ultracold atoms by naturally accessing non-equilibrium physics. Here, we review the recent wealth of theoretical explorations

and experimental prospects of realizing these new devices.

I
n the context of quantum mechanics, it is common that
physical problems of a seemingly simple nature turn out to
be extremely difficult, if not impossible, to simulate on a

classical computer1. Examples are plenty, going far beyond the
paradigmatic study of quantum phase transitions2, and include
a wide range of challenges such as computing molecular energy
levels3,4, predicting the critical temperatures in superconductors,
and understanding matter in a neutron star. The same mechanism
that drives emergent behaviour—the exponential proliferation of
quantum states characterizing a large system—is also what makes
the simulation of it on a classical computer intractable. Quantum
simulation fights fire with fire, in a manner of speaking, employing
a controlled quantum-mechanical device to mimic and investigate
other quantum systems.

The idea of quantum simulation is not tied to any particular
physical implementation5. Indeed, the earliest realizations of
systems exhibiting these characteristics range from ultracold atoms
in traps and optical lattices6–8, measurement-based linear optics9,10,
and trapped ions11,12, to Josephson-junction arrays13–15. Proposals
also exist for electrons in quantum-dot arrays16 and on the
surface of liquid helium17.

The focus of this paper is to review the potential of
superconducting circuits18–20, for which experiments have
demonstrated manipulation and measurement at the level of
a few qubits and microwave photons, as quantum simulators.
Superconducting-circuit-based quantum simulators stand apart
from the systems considered as quantum simulators so far, both
because of their flexibility in fabrication and their suitability
for non-equilibrium simulation. These circuits are fabricated
with optical and electron-beam lithography and can therefore
access a wide range of geometries for large-scale quantum
simulators. Moreover, because the ‘particles’ being simulated
are just circuit excitations, particle number is not necessarily
conserved. Unavoidable photon loss, coupled with the ease
of feeding in additional photons through continuous external
driving, makes such lattices open quantum systems, which can
be studied in a non-equilibrium steady state. Thus, the physics
that can be accessed with these open quantum simulators is
different from what is typically studied, for example, in ultracold-
atom experiments.
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Building blocks of superconducting quantum simulators
Superconducting circuits provide a number of useful building
blocks for quantum simulation, including harmonic oscillators
and different qubit-forming anharmonic multi-level systems18–21.
Superconducting qubits come in a variety of types, often classified
as charge22–26, flux27–29, or phase qubits30, depending on the
underlying circuit and methods of coupling; in their essence,
however, they are all similar (Box 1). Today, such qubits can
reliably achieve coherence times on the order of a fewmicroseconds
with high yield31, making fabrication of large systems a feasible
goal. Qubits can be coupled to neighbouring qubits through
mutual capacitance32,33 or inductance34, through special elements
allowing for tunable coupling35–41, or over long distances by using a
shared photonic mode42–44.

Photonic modes can be realized with on-chip microwave
resonators, essentially Fabry–Perot type cavities made from fi-
nite sections of transmission line. A qubit coupled to such a
transmission-line resonator21,42 can faithfully realize the Jaynes–
Cummings model (Fig. 1):

H
JC = ωr a

†
a+εσ+σ− +g (aσ+ +a

†σ−)

Here, ωr and ε are the the photon and qubit excitation frequencies,
and a†, a, σ+ and σ− denote the corresponding raising and lowering
operators. As the lateral dimension of such transmission lines is
typically a few micrometres and, thus, much smaller than one
wavelength, the electric field in the cavity is relatively large and
strong dipole coupling between qubits and photons can be readily
achieved. Strong coupling cavity quantum electrodynamics (QED)
has fuelled a great deal of research in superconducting quantum
systems over the past decade21, and is a key component of many
of the proposed quantum simulators.

One of the primary advantages of using superconducting cir-
cuitry is the great flexibility afforded by the nature of a nanofab-
ricated system. Nearly every parameter involved is widely tunable
with conventional lithography. Qubit frequencies can be readily
set anywhere from 2 to 15GHz, and couplings can range from
a few kilohertz to nearly 1GHz, merely by changing geometries.
Capacitors at the ends of the cavity control photon leakage rates and,
in multi-cavity systems, the hopping rates between neighbouring
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Figure 1 | Elementary circuit-QED building block for a quantum simulator. a, Standard fabrication techniques are used for patterning the simplest

circuit-QED elements onto a chip: transmission-line resonators, superconducting qubits, and coupling capacitors. b, Capacitive coupling between a qubit

and a resonator produces the simplest model for a single-lattice site. c, The Jaynes–Cummings model.

half-integer spins under 2π rotations can be directly observed for

these simulated spins.

Simulations of small spin chains are also possible by directly

coupling a number of superconducting qubits
49
. In this experi-

ment, a chain of eight ferromagnetically coupled spins in a one-

dimensional chain was simulated with uniform coupling between

nearest-neighbour spins. The ends of the chain were polarized in

opposite directions, and an effective magnetic field gradient was in-

duced by locally tuning each qubit transition energy, preferentially

shifting the resulting domainwall towards one end of the chain. The

system was annealed to the ground state, and reached the expected

state on a timescale consistent with quantum annealing.

As well as simulating spin physics, a great hope of

superconducting circuits is that they can be used to simulate

condensed-matter physics with photons and polaritons far from

equilibrium. In recent experiments in this direction, strong qubit-

mediated photon–photon interactions have been observed using

only a few quantum elements; these experiments include direct

spectroscopy
50,51

, collapse-and-revival experiments
52

and correla-

tion measurements
53
. A single-qubit cavity system with large inter-

actions has been used to emulate electronic transport in a quantum

dot, with the typical control knobs of source–drain voltage and gate

voltage mapped onto the spectral properties of a photonic bath.

Wideband incoherent radiation replaces the Fermi sea in the source

lead, with the bandwidth giving the effective source–drain voltage.

As the bandwidth of incident radiation is increased, a staircase in

transmitted power emerges, matching expectations frommore con-

ventional transport experiments involving interacting particles
54
.

Two such circuit-QED systems can be coupled together to build

a system that emulates a Josephson junction for photons with

the Hamiltonian
55
:

H =
�

i=L,R

H
JC

i
− J

�
a

†
L
aR +a

†
R
aL

�

where H
JC

i
denotes the Jaynes–Cummings system on site i= L,R,

and a
†
i
and ai are the photon creation and annihilation operators

for site i. Here, one can begin to study the emergence of

correlated behaviour, because the system is expected to undergo

a non-equilibrium localization transition from a regime where

the initial photon population imbalance between two resonators

coherently oscillates between the two resonators (delocalized

regime) to another regime where it becomes self-trapped (localized

regime) as the photon–qubit interaction is increased beyond a

critical value gc(J ). This transition is driven by the competition

between tunnelling and on-site interaction. Furthermore, because

of photon leakage and qubit dissipation, this is an inherently

dissipative system. The effective interactions in the Jaynes–

Cummings Hamiltonian are weaker at higher photon numbers;

therefore, dissipation favours the localized regime and can give

rise to dynamical switching from the delocalized to the localized

regime. A numerical analysis of the master equation of the system

shows that the localization transition is not washed out by quantum

fluctuations, even down to an initial occupation as small as 20

photons, and should be readily accessible in experiments
55
.

From here, the realization of circuit-QED arrays with a few

resonators and qubits is relatively close. Their prominence in the

recent body of literature
56–64

is owed in part to their tractability in

terms of brute-force numerics. Exact solutions for time evolution,

steady states, and correlators of small-size systems have been

obtained this way. In many cases, they already capture traces of the

quantum phase transition or strongly correlated dynamics expected

for the infinite-size system, even with as few as four lattice sites
58
.

These will provide an invaluable testbed for future experiments

beforemoving to larger superconducting circuit networks.

From an experimental standpoint, moderate increases in the

system size (that is, in the number of superconducting qubits

and resonators) can be obtained naturally by extending samples

currently in use in experiments aimed at quantum computation
21
.

First experiments with such ‘mesoscale’ samples are currently

underway. Beyond providing a proof of principle, they will allow

characterization of the systemparameters crucial for all future steps,

and gather statistics on possible disorder in the system parameters

caused byminor imperfections in fabrication.

The computationally accessible mesoscale regime is important

from the point of view of benchmarking experimental systems. As

systems grow, however, the exponential increase in Hilbert-space

dimension may create theory ‘badlands’, where the computational

cost for brute-force numerical solutions exceeds all reasonable

limits, and yet system size remains too small for a statistical

description based on the thermodynamic limit. This challenge of the

mesoscale has been a central theme in condensedmatter physics
65,66

,

nuclear physics and quantum chemistry of larger molecules, and

gave birth to the statistical theory of mesoscopic systems
67,68

.

Incidentally, quantum simulation has recently been suggested as

a practical way to tackle the challenge of predicting molecular

spectra
3,4
. Indeed, this computational intractability is the very

reason why quantum simulators are necessary, although it renders

performance verification extremely difficult.

Simulation with circuit-QED arrays
In large lattices of superconducting resonators, far beyond the

mesocale regime, it again becomes possible to develop an intuition

for what a quantum simulator might reveal. Still, large interacting

photon lattices challenge our understanding and modelling of

strongly correlated systems, their quantum phases and their

dynamics
57,58,69–72

. These lattices ideally illustrate the potential

of circuit-QED arrays for the purpose of quantum simulation,

and continue to provide new impulses for the development of

theoretical techniques capable of describing strongly correlated

systems both in and out of equilibrium.
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Using a well-controlled quantum system to simulate complex quantum matter is an idea that has been around for 30 years

and put into practice in systems of ultracold atoms for more than a decade. Much recent excitement has focused on a new

implementation of quantumsimulators using superconducting circuits, where conventionalmicrochip fabrication can be used to

take design concepts to experimental reality, quickly andflexibly. Because the quantum ‘particles’ in these simulators are circuit

excitations rather than physical particles subject to conservation laws, superconducting simulators provide a complement to

ultracold atoms by naturally accessing non-equilibrium physics. Here, we review the recent wealth of theoretical explorations

and experimental prospects of realizing these new devices.

I
n the context of quantum mechanics, it is common that
physical problems of a seemingly simple nature turn out to
be extremely difficult, if not impossible, to simulate on a

classical computer1. Examples are plenty, going far beyond the
paradigmatic study of quantum phase transitions2, and include
a wide range of challenges such as computing molecular energy
levels3,4, predicting the critical temperatures in superconductors,
and understanding matter in a neutron star. The same mechanism
that drives emergent behaviour—the exponential proliferation of
quantum states characterizing a large system—is also what makes
the simulation of it on a classical computer intractable. Quantum
simulation fights fire with fire, in a manner of speaking, employing
a controlled quantum-mechanical device to mimic and investigate
other quantum systems.

The idea of quantum simulation is not tied to any particular
physical implementation5. Indeed, the earliest realizations of
systems exhibiting these characteristics range from ultracold atoms
in traps and optical lattices6–8, measurement-based linear optics9,10,
and trapped ions11,12, to Josephson-junction arrays13–15. Proposals
also exist for electrons in quantum-dot arrays16 and on the
surface of liquid helium17.

The focus of this paper is to review the potential of
superconducting circuits18–20, for which experiments have
demonstrated manipulation and measurement at the level of
a few qubits and microwave photons, as quantum simulators.
Superconducting-circuit-based quantum simulators stand apart
from the systems considered as quantum simulators so far, both
because of their flexibility in fabrication and their suitability
for non-equilibrium simulation. These circuits are fabricated
with optical and electron-beam lithography and can therefore
access a wide range of geometries for large-scale quantum
simulators. Moreover, because the ‘particles’ being simulated
are just circuit excitations, particle number is not necessarily
conserved. Unavoidable photon loss, coupled with the ease
of feeding in additional photons through continuous external
driving, makes such lattices open quantum systems, which can
be studied in a non-equilibrium steady state. Thus, the physics
that can be accessed with these open quantum simulators is
different from what is typically studied, for example, in ultracold-
atom experiments.
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Building blocks of superconducting quantum simulators
Superconducting circuits provide a number of useful building
blocks for quantum simulation, including harmonic oscillators
and different qubit-forming anharmonic multi-level systems18–21.
Superconducting qubits come in a variety of types, often classified
as charge22–26, flux27–29, or phase qubits30, depending on the
underlying circuit and methods of coupling; in their essence,
however, they are all similar (Box 1). Today, such qubits can
reliably achieve coherence times on the order of a fewmicroseconds
with high yield31, making fabrication of large systems a feasible
goal. Qubits can be coupled to neighbouring qubits through
mutual capacitance32,33 or inductance34, through special elements
allowing for tunable coupling35–41, or over long distances by using a
shared photonic mode42–44.

Photonic modes can be realized with on-chip microwave
resonators, essentially Fabry–Perot type cavities made from fi-
nite sections of transmission line. A qubit coupled to such a
transmission-line resonator21,42 can faithfully realize the Jaynes–
Cummings model (Fig. 1):

H
JC = ωr a

†
a+εσ+σ− +g (aσ+ +a

†σ−)

Here, ωr and ε are the the photon and qubit excitation frequencies,
and a†, a, σ+ and σ− denote the corresponding raising and lowering
operators. As the lateral dimension of such transmission lines is
typically a few micrometres and, thus, much smaller than one
wavelength, the electric field in the cavity is relatively large and
strong dipole coupling between qubits and photons can be readily
achieved. Strong coupling cavity quantum electrodynamics (QED)
has fuelled a great deal of research in superconducting quantum
systems over the past decade21, and is a key component of many
of the proposed quantum simulators.

One of the primary advantages of using superconducting cir-
cuitry is the great flexibility afforded by the nature of a nanofab-
ricated system. Nearly every parameter involved is widely tunable
with conventional lithography. Qubit frequencies can be readily
set anywhere from 2 to 15GHz, and couplings can range from
a few kilohertz to nearly 1GHz, merely by changing geometries.
Capacitors at the ends of the cavity control photon leakage rates and,
in multi-cavity systems, the hopping rates between neighbouring
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Figure 1 | Elementary circuit-QED building block for a quantum simulator. a, Standard fabrication techniques are used for patterning the simplest

circuit-QED elements onto a chip: transmission-line resonators, superconducting qubits, and coupling capacitors. b, Capacitive coupling between a qubit

and a resonator produces the simplest model for a single-lattice site. c, The Jaynes–Cummings model.

half-integer spins under 2π rotations can be directly observed for

these simulated spins.

Simulations of small spin chains are also possible by directly

coupling a number of superconducting qubits
49
. In this experi-

ment, a chain of eight ferromagnetically coupled spins in a one-

dimensional chain was simulated with uniform coupling between

nearest-neighbour spins. The ends of the chain were polarized in

opposite directions, and an effective magnetic field gradient was in-

duced by locally tuning each qubit transition energy, preferentially

shifting the resulting domainwall towards one end of the chain. The

system was annealed to the ground state, and reached the expected

state on a timescale consistent with quantum annealing.

As well as simulating spin physics, a great hope of

superconducting circuits is that they can be used to simulate

condensed-matter physics with photons and polaritons far from

equilibrium. In recent experiments in this direction, strong qubit-

mediated photon–photon interactions have been observed using

only a few quantum elements; these experiments include direct

spectroscopy
50,51

, collapse-and-revival experiments
52

and correla-

tion measurements
53
. A single-qubit cavity system with large inter-

actions has been used to emulate electronic transport in a quantum

dot, with the typical control knobs of source–drain voltage and gate

voltage mapped onto the spectral properties of a photonic bath.

Wideband incoherent radiation replaces the Fermi sea in the source

lead, with the bandwidth giving the effective source–drain voltage.

As the bandwidth of incident radiation is increased, a staircase in

transmitted power emerges, matching expectations frommore con-

ventional transport experiments involving interacting particles
54
.

Two such circuit-QED systems can be coupled together to build

a system that emulates a Josephson junction for photons with

the Hamiltonian
55
:

H =
�

i=L,R

H
JC

i
− J

�
a

†
L
aR +a

†
R
aL

�

where H
JC

i
denotes the Jaynes–Cummings system on site i= L,R,

and a
†
i
and ai are the photon creation and annihilation operators

for site i. Here, one can begin to study the emergence of

correlated behaviour, because the system is expected to undergo

a non-equilibrium localization transition from a regime where

the initial photon population imbalance between two resonators

coherently oscillates between the two resonators (delocalized

regime) to another regime where it becomes self-trapped (localized

regime) as the photon–qubit interaction is increased beyond a

critical value gc(J ). This transition is driven by the competition

between tunnelling and on-site interaction. Furthermore, because

of photon leakage and qubit dissipation, this is an inherently

dissipative system. The effective interactions in the Jaynes–

Cummings Hamiltonian are weaker at higher photon numbers;

therefore, dissipation favours the localized regime and can give

rise to dynamical switching from the delocalized to the localized

regime. A numerical analysis of the master equation of the system

shows that the localization transition is not washed out by quantum

fluctuations, even down to an initial occupation as small as 20

photons, and should be readily accessible in experiments
55
.

From here, the realization of circuit-QED arrays with a few

resonators and qubits is relatively close. Their prominence in the

recent body of literature
56–64

is owed in part to their tractability in

terms of brute-force numerics. Exact solutions for time evolution,

steady states, and correlators of small-size systems have been

obtained this way. In many cases, they already capture traces of the

quantum phase transition or strongly correlated dynamics expected

for the infinite-size system, even with as few as four lattice sites
58
.

These will provide an invaluable testbed for future experiments

beforemoving to larger superconducting circuit networks.

From an experimental standpoint, moderate increases in the

system size (that is, in the number of superconducting qubits

and resonators) can be obtained naturally by extending samples

currently in use in experiments aimed at quantum computation
21
.

First experiments with such ‘mesoscale’ samples are currently

underway. Beyond providing a proof of principle, they will allow

characterization of the systemparameters crucial for all future steps,

and gather statistics on possible disorder in the system parameters

caused byminor imperfections in fabrication.

The computationally accessible mesoscale regime is important

from the point of view of benchmarking experimental systems. As

systems grow, however, the exponential increase in Hilbert-space

dimension may create theory ‘badlands’, where the computational

cost for brute-force numerical solutions exceeds all reasonable

limits, and yet system size remains too small for a statistical

description based on the thermodynamic limit. This challenge of the

mesoscale has been a central theme in condensedmatter physics
65,66

,

nuclear physics and quantum chemistry of larger molecules, and

gave birth to the statistical theory of mesoscopic systems
67,68

.

Incidentally, quantum simulation has recently been suggested as

a practical way to tackle the challenge of predicting molecular

spectra
3,4
. Indeed, this computational intractability is the very

reason why quantum simulators are necessary, although it renders

performance verification extremely difficult.

Simulation with circuit-QED arrays
In large lattices of superconducting resonators, far beyond the

mesocale regime, it again becomes possible to develop an intuition

for what a quantum simulator might reveal. Still, large interacting

photon lattices challenge our understanding and modelling of

strongly correlated systems, their quantum phases and their

dynamics
57,58,69–72

. These lattices ideally illustrate the potential

of circuit-QED arrays for the purpose of quantum simulation,

and continue to provide new impulses for the development of

theoretical techniques capable of describing strongly correlated

systems both in and out of equilibrium.
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Figure 2 | Cavity lattice for quantum simulation. a, More than two hundred
7GHz microwave cavities are coupled in a Kagome lattice, a natural
two-dimensional lattice for these long, one-dimensional structures. To
provide the necessary photon–photon interaction, qubits must be added to
each cavity using an additional lithography layer. b, Each individual
transmission-line cavity is nearly 10mm long and only 20 µm across, and is
folded to pack cavities densely on a chip. c, At each end, the cavities are
capacitively coupled to two neighbours, enabling photon hopping. The
symmetry of this three-way capacitor ensures uniform hopping rates
throughout the array. (Device image: courtesy of D. Underwood and
A. A. Houck.)

As qubits and cavities are made lithographically, it is possible to

fabricate large arrays to observe many-body physics of interacting

polaritons. With a 32mm×32mm sample, it is feasible to couple

over 200 cavities in a two-dimensional lattice. This number can

easily be extended to more than 1,000 cavities on a full two-

inch wafer. Disorder in the cavities alone can be small, on the

order of a few parts in 10
4
, because each cavity is ∼1 cm long

and optical lithography is typically precise to the level of only

a few micrometres. Preliminary experimental work suggests that

this is indeed feasible (A. A. Houck, private communication).

The geometry of transmission-line cavities also dictates the types

of lattice that are natural. Each ‘site’ in a simple lattice is

essentially two-dimensional, with two distinct endpoints where

photons may enter. The real-space sketch of a resonator lattice,

depicting resonators as a line segment, is thus the dual, or line

graph of the actual lattice. The 200-cavity sample in Fig. 2,

for instance, is an array of resonators forming a honeycomb

pattern. The resulting lattice is the kagome lattice (of which the

honeycomb lattice is the line graph). Qubits, not yet included

in the sample of Fig. 2, can be added in a further step of

electron-beam lithography. Without individual tunability of qubit

frequencies, disorder in qubit parameters must be expected

to be larger than cavity disorder. However, because a strong

photon–photon interaction can be realized when qubits are far

off resonance, the effects of this disorder will be mitigated,

and many-body behaviour could potentially be observed using

only global control
54
.

From a theoretical standpoint, the infinite-system limit is

particularly appealing owing to the availability of tools that are

appropriate for large systems, ranging from ‘pedestrian’ mean-field

theory to powerful methods such as variational cluster techniques.

Depending on the specific method, approximate—and sometimes

exact—results can be obtained that reveal important properties of

the ground state, the elementary excitations, or relevant correlation

functions. The paradigmatic model exhibiting a quantum phase

transition akin to the superfluid–Mott insulator transition in the

Bose–Hubbard model
2,73

is the Jaynes–Cummings lattice with

nearest-neighbour photon hopping (at rate κ):

H =
�

j

H
JC

j
−κ

�

�i,j�
(a

†
j
ai +a

†
i
aj) (1)

Despite the apparent lack of interaction terms such as (a
†
j
aj)

2
,

the Jaynes–Cummings lattice is an interacting model equivalent

to a Bose–Hubbard-like model with two species of bosons, one of

which has an infinite Hubbard parameterU →∞ to reproduce the

pseudo-spin 1/2. Analogous to the Bose–Hubbard model, the key

physics of the Jaynes–Cummings lattice consists of the competition

between polariton delocalization, induced by photon hopping,

and on-site interaction, which tends to freeze out hopping and

localize polaritons.

For an array of equivalent cavities, the Jaynes–Cummings lattice

described by equation (2) has a global U (1) symmetry, so that the

total polariton number N = �
j
(a

†
j
aj + σ+

j
σ−
j
) is conserved. It is

convenient to employ a grand-canonical description, where the

Hamiltonian is replaced by H = H − µN , where µ denotes the

chemical potential, although experimental procedures for realizing

such an effective chemical potential will need to be developed.

Much of the qualitative physics contained in the Jaynes–Cummings
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Figure 3 | Superfluid-to-Mott-insulator transition in the Jaynes–Cummings lattice. Polaritons in an infinite lattice of Jaynes–Cummings sites with
nearest-neighbour photon hopping can undergo a quantum phase transition from a compressible superfluid (SF) phase to Mott insulating (MI) phases
with integer polariton number n on each site. a, The critical region can be accessed by tuning the photon hopping κ , the qubit–resonator detuning ∆, or the
chemical potential µ (here denoted as µ� = µ−ωr). b, The transition follows the universality class of the Bose–Hubbard model, including the characteristic
switch of the dynamic critical exponent at the multicritical points located at the tips of each lobe. c, Within the canonical ensemble, the total polariton
number remains fixed, Mott lobes reduce to line segments at integer filling factor in the phase diagram.
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Figure 2 | Cavity lattice for quantum simulation. a, More than two hundred
7GHz microwave cavities are coupled in a Kagome lattice, a natural
two-dimensional lattice for these long, one-dimensional structures. To
provide the necessary photon–photon interaction, qubits must be added to
each cavity using an additional lithography layer. b, Each individual
transmission-line cavity is nearly 10mm long and only 20 µm across, and is
folded to pack cavities densely on a chip. c, At each end, the cavities are
capacitively coupled to two neighbours, enabling photon hopping. The
symmetry of this three-way capacitor ensures uniform hopping rates
throughout the array. (Device image: courtesy of D. Underwood and
A. A. Houck.)

As qubits and cavities are made lithographically, it is possible to

fabricate large arrays to observe many-body physics of interacting

polaritons. With a 32mm×32mm sample, it is feasible to couple

over 200 cavities in a two-dimensional lattice. This number can

easily be extended to more than 1,000 cavities on a full two-

inch wafer. Disorder in the cavities alone can be small, on the

order of a few parts in 10
4
, because each cavity is ∼1 cm long

and optical lithography is typically precise to the level of only

a few micrometres. Preliminary experimental work suggests that

this is indeed feasible (A. A. Houck, private communication).

The geometry of transmission-line cavities also dictates the types

of lattice that are natural. Each ‘site’ in a simple lattice is

essentially two-dimensional, with two distinct endpoints where

photons may enter. The real-space sketch of a resonator lattice,

depicting resonators as a line segment, is thus the dual, or line

graph of the actual lattice. The 200-cavity sample in Fig. 2,

for instance, is an array of resonators forming a honeycomb

pattern. The resulting lattice is the kagome lattice (of which the

honeycomb lattice is the line graph). Qubits, not yet included

in the sample of Fig. 2, can be added in a further step of

electron-beam lithography. Without individual tunability of qubit

frequencies, disorder in qubit parameters must be expected

to be larger than cavity disorder. However, because a strong

photon–photon interaction can be realized when qubits are far

off resonance, the effects of this disorder will be mitigated,

and many-body behaviour could potentially be observed using

only global control
54
.

From a theoretical standpoint, the infinite-system limit is

particularly appealing owing to the availability of tools that are

appropriate for large systems, ranging from ‘pedestrian’ mean-field

theory to powerful methods such as variational cluster techniques.

Depending on the specific method, approximate—and sometimes

exact—results can be obtained that reveal important properties of

the ground state, the elementary excitations, or relevant correlation

functions. The paradigmatic model exhibiting a quantum phase

transition akin to the superfluid–Mott insulator transition in the

Bose–Hubbard model
2,73

is the Jaynes–Cummings lattice with

nearest-neighbour photon hopping (at rate κ):

H =
�

j

H
JC

j
−κ

�

�i,j�
(a

†
j
ai +a

†
i
aj) (1)

Despite the apparent lack of interaction terms such as (a
†
j
aj)

2
,

the Jaynes–Cummings lattice is an interacting model equivalent

to a Bose–Hubbard-like model with two species of bosons, one of

which has an infinite Hubbard parameterU →∞ to reproduce the

pseudo-spin 1/2. Analogous to the Bose–Hubbard model, the key

physics of the Jaynes–Cummings lattice consists of the competition

between polariton delocalization, induced by photon hopping,

and on-site interaction, which tends to freeze out hopping and

localize polaritons.

For an array of equivalent cavities, the Jaynes–Cummings lattice

described by equation (2) has a global U (1) symmetry, so that the

total polariton number N = �
j
(a

†
j
aj + σ+

j
σ−
j
) is conserved. It is

convenient to employ a grand-canonical description, where the

Hamiltonian is replaced by H = H − µN , where µ denotes the

chemical potential, although experimental procedures for realizing

such an effective chemical potential will need to be developed.

Much of the qualitative physics contained in the Jaynes–Cummings
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Figure 3 | Superfluid-to-Mott-insulator transition in the Jaynes–Cummings lattice. Polaritons in an infinite lattice of Jaynes–Cummings sites with
nearest-neighbour photon hopping can undergo a quantum phase transition from a compressible superfluid (SF) phase to Mott insulating (MI) phases
with integer polariton number n on each site. a, The critical region can be accessed by tuning the photon hopping κ , the qubit–resonator detuning ∆, or the
chemical potential µ (here denoted as µ� = µ−ωr). b, The transition follows the universality class of the Bose–Hubbard model, including the characteristic
switch of the dynamic critical exponent at the multicritical points located at the tips of each lobe. c, Within the canonical ensemble, the total polariton
number remains fixed, Mott lobes reduce to line segments at integer filling factor in the phase diagram.
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On-chip quantum simulation with
superconducting circuits
Andrew A. Houck1*, Hakan E. Türeci1 and Jens Koch2

Using a well-controlled quantum system to simulate complex quantum matter is an idea that has been around for 30 years

and put into practice in systems of ultracold atoms for more than a decade. Much recent excitement has focused on a new

implementation of quantumsimulators using superconducting circuits, where conventionalmicrochip fabrication can be used to

take design concepts to experimental reality, quickly andflexibly. Because the quantum ‘particles’ in these simulators are circuit

excitations rather than physical particles subject to conservation laws, superconducting simulators provide a complement to

ultracold atoms by naturally accessing non-equilibrium physics. Here, we review the recent wealth of theoretical explorations

and experimental prospects of realizing these new devices.

I
n the context of quantum mechanics, it is common that
physical problems of a seemingly simple nature turn out to
be extremely difficult, if not impossible, to simulate on a

classical computer1. Examples are plenty, going far beyond the
paradigmatic study of quantum phase transitions2, and include
a wide range of challenges such as computing molecular energy
levels3,4, predicting the critical temperatures in superconductors,
and understanding matter in a neutron star. The same mechanism
that drives emergent behaviour—the exponential proliferation of
quantum states characterizing a large system—is also what makes
the simulation of it on a classical computer intractable. Quantum
simulation fights fire with fire, in a manner of speaking, employing
a controlled quantum-mechanical device to mimic and investigate
other quantum systems.

The idea of quantum simulation is not tied to any particular
physical implementation5. Indeed, the earliest realizations of
systems exhibiting these characteristics range from ultracold atoms
in traps and optical lattices6–8, measurement-based linear optics9,10,
and trapped ions11,12, to Josephson-junction arrays13–15. Proposals
also exist for electrons in quantum-dot arrays16 and on the
surface of liquid helium17.

The focus of this paper is to review the potential of
superconducting circuits18–20, for which experiments have
demonstrated manipulation and measurement at the level of
a few qubits and microwave photons, as quantum simulators.
Superconducting-circuit-based quantum simulators stand apart
from the systems considered as quantum simulators so far, both
because of their flexibility in fabrication and their suitability
for non-equilibrium simulation. These circuits are fabricated
with optical and electron-beam lithography and can therefore
access a wide range of geometries for large-scale quantum
simulators. Moreover, because the ‘particles’ being simulated
are just circuit excitations, particle number is not necessarily
conserved. Unavoidable photon loss, coupled with the ease
of feeding in additional photons through continuous external
driving, makes such lattices open quantum systems, which can
be studied in a non-equilibrium steady state. Thus, the physics
that can be accessed with these open quantum simulators is
different from what is typically studied, for example, in ultracold-
atom experiments.

1
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA,

2
Department of Physics and Astronomy, Northwestern

University, Evanston, Illinois 60208, USA. *e-mail: aahouck@princeton.edu.

Building blocks of superconducting quantum simulators
Superconducting circuits provide a number of useful building
blocks for quantum simulation, including harmonic oscillators
and different qubit-forming anharmonic multi-level systems18–21.
Superconducting qubits come in a variety of types, often classified
as charge22–26, flux27–29, or phase qubits30, depending on the
underlying circuit and methods of coupling; in their essence,
however, they are all similar (Box 1). Today, such qubits can
reliably achieve coherence times on the order of a fewmicroseconds
with high yield31, making fabrication of large systems a feasible
goal. Qubits can be coupled to neighbouring qubits through
mutual capacitance32,33 or inductance34, through special elements
allowing for tunable coupling35–41, or over long distances by using a
shared photonic mode42–44.

Photonic modes can be realized with on-chip microwave
resonators, essentially Fabry–Perot type cavities made from fi-
nite sections of transmission line. A qubit coupled to such a
transmission-line resonator21,42 can faithfully realize the Jaynes–
Cummings model (Fig. 1):

H
JC = ωr a

†
a+εσ+σ− +g (aσ+ +a

†σ−)

Here, ωr and ε are the the photon and qubit excitation frequencies,
and a†, a, σ+ and σ− denote the corresponding raising and lowering
operators. As the lateral dimension of such transmission lines is
typically a few micrometres and, thus, much smaller than one
wavelength, the electric field in the cavity is relatively large and
strong dipole coupling between qubits and photons can be readily
achieved. Strong coupling cavity quantum electrodynamics (QED)
has fuelled a great deal of research in superconducting quantum
systems over the past decade21, and is a key component of many
of the proposed quantum simulators.

One of the primary advantages of using superconducting cir-
cuitry is the great flexibility afforded by the nature of a nanofab-
ricated system. Nearly every parameter involved is widely tunable
with conventional lithography. Qubit frequencies can be readily
set anywhere from 2 to 15GHz, and couplings can range from
a few kilohertz to nearly 1GHz, merely by changing geometries.
Capacitors at the ends of the cavity control photon leakage rates and,
in multi-cavity systems, the hopping rates between neighbouring
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Figure 1 | Elementary circuit-QED building block for a quantum simulator. a, Standard fabrication techniques are used for patterning the simplest

circuit-QED elements onto a chip: transmission-line resonators, superconducting qubits, and coupling capacitors. b, Capacitive coupling between a qubit

and a resonator produces the simplest model for a single-lattice site. c, The Jaynes–Cummings model.

half-integer spins under 2π rotations can be directly observed for

these simulated spins.

Simulations of small spin chains are also possible by directly

coupling a number of superconducting qubits
49
. In this experi-

ment, a chain of eight ferromagnetically coupled spins in a one-

dimensional chain was simulated with uniform coupling between

nearest-neighbour spins. The ends of the chain were polarized in

opposite directions, and an effective magnetic field gradient was in-

duced by locally tuning each qubit transition energy, preferentially

shifting the resulting domainwall towards one end of the chain. The

system was annealed to the ground state, and reached the expected

state on a timescale consistent with quantum annealing.

As well as simulating spin physics, a great hope of

superconducting circuits is that they can be used to simulate

condensed-matter physics with photons and polaritons far from

equilibrium. In recent experiments in this direction, strong qubit-

mediated photon–photon interactions have been observed using

only a few quantum elements; these experiments include direct

spectroscopy
50,51

, collapse-and-revival experiments
52

and correla-

tion measurements
53
. A single-qubit cavity system with large inter-

actions has been used to emulate electronic transport in a quantum

dot, with the typical control knobs of source–drain voltage and gate

voltage mapped onto the spectral properties of a photonic bath.

Wideband incoherent radiation replaces the Fermi sea in the source

lead, with the bandwidth giving the effective source–drain voltage.

As the bandwidth of incident radiation is increased, a staircase in

transmitted power emerges, matching expectations frommore con-

ventional transport experiments involving interacting particles
54
.

Two such circuit-QED systems can be coupled together to build

a system that emulates a Josephson junction for photons with

the Hamiltonian
55
:

H =
�

i=L,R

H
JC

i
− J

�
a

†
L
aR +a

†
R
aL

�

where H
JC

i
denotes the Jaynes–Cummings system on site i= L,R,

and a
†
i
and ai are the photon creation and annihilation operators

for site i. Here, one can begin to study the emergence of

correlated behaviour, because the system is expected to undergo

a non-equilibrium localization transition from a regime where

the initial photon population imbalance between two resonators

coherently oscillates between the two resonators (delocalized

regime) to another regime where it becomes self-trapped (localized

regime) as the photon–qubit interaction is increased beyond a

critical value gc(J ). This transition is driven by the competition

between tunnelling and on-site interaction. Furthermore, because

of photon leakage and qubit dissipation, this is an inherently

dissipative system. The effective interactions in the Jaynes–

Cummings Hamiltonian are weaker at higher photon numbers;

therefore, dissipation favours the localized regime and can give

rise to dynamical switching from the delocalized to the localized

regime. A numerical analysis of the master equation of the system

shows that the localization transition is not washed out by quantum

fluctuations, even down to an initial occupation as small as 20

photons, and should be readily accessible in experiments
55
.

From here, the realization of circuit-QED arrays with a few

resonators and qubits is relatively close. Their prominence in the

recent body of literature
56–64

is owed in part to their tractability in

terms of brute-force numerics. Exact solutions for time evolution,

steady states, and correlators of small-size systems have been

obtained this way. In many cases, they already capture traces of the

quantum phase transition or strongly correlated dynamics expected

for the infinite-size system, even with as few as four lattice sites
58
.

These will provide an invaluable testbed for future experiments

beforemoving to larger superconducting circuit networks.

From an experimental standpoint, moderate increases in the

system size (that is, in the number of superconducting qubits

and resonators) can be obtained naturally by extending samples

currently in use in experiments aimed at quantum computation
21
.

First experiments with such ‘mesoscale’ samples are currently

underway. Beyond providing a proof of principle, they will allow

characterization of the systemparameters crucial for all future steps,

and gather statistics on possible disorder in the system parameters

caused byminor imperfections in fabrication.

The computationally accessible mesoscale regime is important

from the point of view of benchmarking experimental systems. As

systems grow, however, the exponential increase in Hilbert-space

dimension may create theory ‘badlands’, where the computational

cost for brute-force numerical solutions exceeds all reasonable

limits, and yet system size remains too small for a statistical

description based on the thermodynamic limit. This challenge of the

mesoscale has been a central theme in condensedmatter physics
65,66

,

nuclear physics and quantum chemistry of larger molecules, and

gave birth to the statistical theory of mesoscopic systems
67,68

.

Incidentally, quantum simulation has recently been suggested as

a practical way to tackle the challenge of predicting molecular

spectra
3,4
. Indeed, this computational intractability is the very

reason why quantum simulators are necessary, although it renders

performance verification extremely difficult.

Simulation with circuit-QED arrays
In large lattices of superconducting resonators, far beyond the

mesocale regime, it again becomes possible to develop an intuition

for what a quantum simulator might reveal. Still, large interacting

photon lattices challenge our understanding and modelling of

strongly correlated systems, their quantum phases and their

dynamics
57,58,69–72

. These lattices ideally illustrate the potential

of circuit-QED arrays for the purpose of quantum simulation,

and continue to provide new impulses for the development of

theoretical techniques capable of describing strongly correlated

systems both in and out of equilibrium.
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Majorana Bound States of Light in a One-Dimensional Array of Nonlinear Cavities
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The search for Majorana fermions in p-wave paired fermionic systems has recently moved to the
forefront of condensed-matter research. Here we propose an alternative route and show theoretically
that Majorana modes can be realized and probed in a driven-dissipative system of strongly correlated
photons consisting of a chain of tunnel-coupled cavities, where p-wave pairing effectively arises
from the interplay between strong on-site interactions and two-photon parametric driving. Cross-
correlation measurements carried out at the ends of the chain would reveal a strong photon bunching
signature, demonstrating the nonlocal nature of these photonic Majorana modes.

In recent years, strongly correlated photons have

proved to be a remarkably rich platform for investigating

phenomena traditionally regarded as pertaining to con-

densed matter physics. Tremendous theoretical and ex-

perimental efforts have made it possible to achieve strong

optical nonlinearities at the single-photon level [1, 2] and

to demonstrate photon blockade effects [3–8]. Meanwhile,

the pursuit of Majorana fermions has become a new focus

of condensed matter research [9, 10], and p-wave paired

superfluids and superconductors have been promoted as

paradigmatic systems for investigating the physics of Ma-

jorana modes [11]. However, even though strongly inter-

acting photons have been predicted to exhibit a typical

fermionic behavior [12, 13], optical systems have never

been considered as potential candidates for realizing such

exotic physics.

In this letter, we show that Majorana bound states of

light can be obtained in a strongly correlated system of

impenetrable (or “fermionized”) photons. More specifi-

cally, we consider a one-dimensional (1D) chain of cou-

pled cavities with strong nonlinearities, and introduce a

drive mechanism based on parametric pumping which, in

stark contrast to previous works, gives rise to an effective
p-wave pairing between (fermionized) photons. Mapping

our system to the 1D chain originally proposed by Kitaev

as a toy model for Majorana fermions [14], we demon-

strate the existence of Majorana bound states of light

with properties similar to those predicted in solid-state

systems.

Although our optical system effectively consists of

fermions, its intrinsic dissipative nature does not allow for

Majorana modes to be topologically protected [15, 16].

Nevertheless, and most crucially, we claim that the

mere existence of Majorana bound states of light can

be demonstrated via some simple detection schemes,

as long as photon losses can be reasonably suppressed.

As an illustrative example, we propose a realistic ex-

periment that takes full advantage of the optical na-

ture of our system and allows for the direct observation

of Majorana modes through second-order photon cross-

correlation measurements.

The model – The backbone of our system consists of a

1D chain of N optical cavities coupled through nearest-

neighbor photon tunneling (Fig. 1). Each cavity exhibits

a large optical nonlinearity (i.e. is strongly coupled to

an artificial atom) and supports a single mode that can

be described as a Wannier function localized on site i

around the cavity center. Photon tunneling occurs as

a result of the non-vanishing spatial overlap between

nearest-neighboring Wannier modes [17], and the system

Hamiltonian takes the generic form of a generalized Bose-

Hubbard model [18]:

H0 = ωc

N�

i=1

b
†
i bi +

U
2

N�

i=1

b
†
i b

†
i bibi − J

N−1�

i=1

(b
†
i bi+1 + h.c.),

(1)

where bi (b
†
i ) are annihilation (creation) operators associ-

ated with the i
th

cavity of the chain with bare frequency

ωc, U is the strength of the on-site photon-photon repul-

sion (Kerr energy) due to the large optical nonlinearities,

and J denotes the tunneling strength between nearest-

neighboring sites. In this work, we exclusively focus on

the strong-interaction regime, in which the energy cost U

of adding an extra photon to an occupied cavity is by far

the largest of all relevant energy scales in the system [19].

In this so-called hard-core limit, the occupancy of each

site is effectively restricted to 0 or 1, and the photons

exhibit a characteristic fermionic behavior [13].

i = 1 2 … N 

FIG. 1. (Color online). Illustration of the driven-dissipative
chain of coupled cavities studied in this work. Each cavity ex-
hibits a large optical nonlinearity and sustains a single Wan-
nier mode that weakly overlaps with its nearest neighbors,
thereby allowing for photon hopping between sites. In addi-
tion, parametric pumps (depicted by arrows) couple to the
weak inter-cavity field to inject photon pairs into the system.
Owing to the strong photon-photon repulsion, photons from
the same pair end up into different cavities, and the nonlinear
pumping processes effectively give rise to p-wave pairing.
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Bose-Hubbard model

has large similarities with

In this work we focus on hard-core bosons U � J

H0 = ωc

N�

i=1

b
†
i bi − J

N−1�

i=1

(b†i bi+1 + h.c.) b2j =
�
b†j

�2
= 0



i = 1 2 … N 

Crucial ingredient: p-wave pairing from parametric pump

pump signal signalnonlinearity

P -WAVE PAIRING OF STRONGLY CORRELATED PHOTONS

In this section, we demonstrate explicitly that p-wave pairing generally emerges as a

result of the interplay between two-photon parametric pumping and strong on-site photon-

photon repulsion, and derive the effective drive Hamiltonian of Eq. (2) in the main text.

Although multiple schemes can be envisioned to realize the key nonlinear pumping process

that takes photons from a pump field and injects coherent photon pairs into the system, we

will illustrate the general mechanism that leads to p-wave pairing in a model based on a

theoretical description of coupled cavity arrays that was developed in [1].

We start by assuming that the parametric pumps act locally in between the nearest-

neighboring cavities corresponding to the sites i and i+1 according to the standard Hamil-

tonian [2]

Hdrive,i =

�
d
3
r χ(2)

(r)E(+)
p,i (r, t)E

(−)
s,i (r)E

(−)
s,i (r) + h.c. (1)

where E
(+)
p,i (r, t) is the positive-frequency part of the pump (index “p”) optical field, E

(−)
s,i (r)

the negative-frequency part of the generated signal (index “s”) optical fields, and χ(2)
(r)

the effective second-order optical nonlinearity of the system (which takes into account the

polarization vectors of the three interacting fields). We assume that the pump field can be

treated as a classical monochromatic field of frequency 2ωp,i and complex amplitude E
0
p,i,

and that there is no significant depletion of the latter such that E
0
p,i can be considered as

constant. Denoting the spatial mode function of the pump as ϕp,i(r), E
(+)
p,i (r, t) then takes

the form

E
(+)
p,i (r, t) = E

0
p,iϕp,i(r)e

−2iωpt (2)

The generated signal optical fields, on the other hand, can generally be expanded in terms

of the Wannier modes φi(r) of the coupled cavity array. Assuming that these modes decay

sufficiently fast so that only nearest-neighboring modes have a non-vanishing overlap, we

can write

E
(−)
s,i (r) = −i

√
ωc

�
φ∗
i (r)b

†
i + φ∗

i+1(r)b
†
i+1

�
(3)

where ωc is the bare-cavity frequency (assumed to be the same for all cavities). Plugging (2)

2

2

In order to achieve p-wave pairing, we introduce para-
metric pumps which, in stark contrast to usual coherent
drives, are tailored to inject pairs of photons into the sys-
tem through nonlinear optical processes (see Supplemen-
tary Information). We assume that these pumps drive
the system locally through the inter-cavity field which
can be seen as a superposition of two neighboring Wan-
nier modes. Two photons from a single pair can then ei-
ther be emitted into the same cavity (or Wannier mode),
or settle into different, nearest-neighboring cavities. In
the strong-interaction regime assumed throughout this
work, the second process is strongly favored, and the
drive Hamiltonian effectively reduces to

Hdrive = ∆
N−1�

i=1

(b†i b
†
i+1e

−2iωpt + h.c.), (2)

where ∆ = |∆|eiφ defines the amplitude and phase of the
parametric pumps, and ωp their frequency. We note that
the strength |∆| of the parametric drive is determined by
the overlap of the Wannier modes in a similar way as the
tunneling strength J defined above. We thus expect to
be able to reach a regime in which the two quantities are
of the same order. Physically, the drive Hamiltonian de-
scribes the coherent exchange of p-wave paired photons
between the system and the classical pump field(s). In
addition to providing the optical counterpart of p-wave
superconductivity that is crucial to access the Majorana
physics, Hdrive also compensates for losses by continu-
ously replenishing the system with photons. Taking into
account the photon losses and the drive, the time evolu-
tion of the system is governed by the following Lindblad
master equation:

∂tρ = −i [H0 +Hdrive, ρ] + Γ
N�

i=1

�
biρ b

†
i − 1

2{b
†
i bi, ρ}

�
,

(3)

where ρ is the density matrix of the system and Γ the
decay rate associated with the system cavities. Although
photon losses clearly cannot be avoided, we will assume
a sufficient suppression of dissipation so that the photon
lifetime ∼ 1/Γ is the longest of all relevant timescales in
the system.

Mapping to a 1D Kitaev chain – In the strong-
interaction regime (U � J, |∆|), the Hilbert space of the
system effectively reduces to that of hard-core photons
b̃i = PbiP, b̃†i = Pb

†
iP, where P is a projector onto the

subspace of single-site occupancy 0, 1. Owing to their
two-level nature, hard-core photons can be described as
spin- 12 particles through the mapping σ−

i = 2b̃i, σ
+
i =

2b̃†i , where σ±
i = σx

i ± iσy
i . Defining µ = ωc − ωp and

moving to a rotating frame defined by H1 = ωp
�

i b̃
†
i b̃i,

the Hamiltonian H = H0 +Hdrive of the full system be-

comes [20]

H = −Jx

N−1�

i=1

σx
i σ

x
i+1 − Jy

N−1�

i=1

σy
i σ

y
i+1 +

µ
2

N�

i=1

(σz
i + 1),

(4)

where Jx = 1
2 (J −∆) and Jy = 1

2 (J +∆). The fermionic
nature of the hard-core photons can then be revealed by
mapping the spin- 12 particles to spinless fermions ai, a

†
i

through a Jordan-Wigner transformation [21] of the form
ai =

1
2e

−iφ/2(
�i−1

j=1 σ
z
j )σ

+
i , where the string-like operator�i−1

j=1 σ
z
j crucially ensures that ai, a

†
i obey canonical an-

ticommutation relations. In this fermionic picture, the
Hamiltonian takes the form

H =− J

N−1�

i=1

(a†iai+1 + h.c.) + |∆|
N−1�

i=1

(a†ia
†
i+1 + h.c.)

− µ

N�

i=1

(a†iai − 1
2 ), (5)

which corresponds to the 1D p-wave superconductor of
spinless fermions originally introduced by Kitaev [14] as
a toy model for Majorana fermions. We note that the
bare-cavity frequency ωc plays the role of a Fermi level,
whereas the detuning µ = ωc − ωp between the cavity
and pump frequencies can be viewed as a chemical poten-
tial. Assuming that |∆| �= 0, two topologically distinct
(gapped) phases can be identified [14]: a trivial phase
corresponding to |µ| > |2J | and a non-trivial phase cor-
responding to |µ| < |2J | in which the system supports
Majorana modes that are exponentially localized at both
ends of the chain.
The topological phenomena associated with the 1D

Kitaev chain (5) can be most easily understood when
|∆| = −J > 0 and µ = 0 (i.e. ωp = ωc). In this ideal
case, the Hamiltonian takes the form

H = −J

N−1�

i=1

σx
i σ

x
i+1 = iJ

N−1�

i=1

c2ic2i+1 (6)

with Majorana operators defined as

�
c2i−1 = (

�i−1
j=1 σ

z
j )σ

x
i = e

+iφ/2
ai + e

−iφ/2
a
†
i

c2i = (
�i−1

j=1 σ
z
j )σ
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tary Information). We assume that these pumps drive
the system locally through the inter-cavity field which
can be seen as a superposition of two neighboring Wan-
nier modes. Two photons from a single pair can then ei-
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where ρ is the density matrix of the system and Γ the
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two-level nature, hard-core photons can be described as
spin- 12 particles through the mapping σ−

i = 2b̃i, σ
+
i =

2b̃†i , where σ±
i = σx

i ± iσy
i . Defining µ = ωc − ωp and

moving to a rotating frame defined by H1 = ωp
�

i b̃
†
i b̃i,

the Hamiltonian H = H0 +Hdrive of the full system be-

comes [20]

H = −Jx

N−1�

i=1

σx
i σ

x
i+1 − Jy

N−1�

i=1

σy
i σ

y
i+1 +

µ
2

N�

i=1

(σz
i + 1),

(4)

where Jx = 1
2 (J −∆) and Jy = 1

2 (J +∆). The fermionic
nature of the hard-core photons can then be revealed by
mapping the spin- 12 particles to spinless fermions ai, a

†
i

through a Jordan-Wigner transformation [21] of the form
ai =

1
2e

−iφ/2(
�i−1

j=1 σ
z
j )σ

+
i , where the string-like operator�i−1

j=1 σ
z
j crucially ensures that ai, a

†
i obey canonical an-

ticommutation relations. In this fermionic picture, the
Hamiltonian takes the form

H =− J

N−1�

i=1

(a†iai+1 + h.c.) + |∆|
N−1�

i=1

(a†ia
†
i+1 + h.c.)

− µ

N�

i=1

(a†iai − 1
2 ), (5)

which corresponds to the 1D p-wave superconductor of
spinless fermions originally introduced by Kitaev [14] as
a toy model for Majorana fermions. We note that the
bare-cavity frequency ωc plays the role of a Fermi level,
whereas the detuning µ = ωc − ωp between the cavity
and pump frequencies can be viewed as a chemical poten-
tial. Assuming that |∆| �= 0, two topologically distinct
(gapped) phases can be identified [14]: a trivial phase
corresponding to |µ| > |2J | and a non-trivial phase cor-
responding to |µ| < |2J | in which the system supports
Majorana modes that are exponentially localized at both
ends of the chain.
The topological phenomena associated with the 1D

Kitaev chain (5) can be most easily understood when
|∆| = −J > 0 and µ = 0 (i.e. ωp = ωc). In this ideal
case, the Hamiltonian takes the form

H = −J

N−1�

i=1

σx
i σ

x
i+1 = iJ

N−1�

i=1

c2ic2i+1 (6)

with Majorana operators defined as

�
c2i−1 = (

�i−1
j=1 σ

z
j )σ

x
i = e

+iφ/2
ai + e

−iφ/2
a
†
i

c2i = (
�i−1

j=1 σ
z
j )σ

y
i = −i(e+iφ/2

ai − e
−iφ/2

a
†
i ),

(7)

and can readily be diagonalized in terms of Bogoliubov-
Valatin quasiparticle operators ãi =

1
2 (c2i + ic2i+1), such

that H = 2J
�N−1

i=1 (ã†i ãi − 1
2 ). Clearly, the correspond-

ing spectrum features a gap 2J and is symmetric about
the Fermi level. Most importantly, it exhibits two Majo-
rana zero-energy modes that correspond to the Majorana
operators c1 and c2N localized at the ends of the chain
which do not appear in the Hamiltonian. These modes

with 3

define a two-dimensional, nonlocal zero-energy subspace
which we refer to as a Majorana qubit, with an associated
parity operator that reads

σz
M = −ic1c2N = (

N�

j=1

σz
j )σ

x
1σ

x
N . (8)

We note that the string-like operator P =
�N

j=1 σ
z
j ap-

pearing here corresponds to the parity operator associ-
ated with the total number of (fermionized) photons. Al-
though fermion parity is conserved in any fermionic sys-
tem that interacts with a bosonic environment, there is
no such superselection rule in the photonic system that
we are considering since fermionized photons can leak out
of the latter [22]. As a result, the Majorana qubit (8) is
subject to decoherence, and this decoherence increases
with the size of the system, i.e. with the length of the
string corresponding to P . There is therefore no sensi-
ble notion of topological protection for Majorana bound
states of light, and the latter cannot be used for prac-
tical applications such as topological quantum memories
or topological quantum computation [14]. Nevertheless,
the existence of such modes can still be demonstrated in
small systems where dissipation remains relatively unim-
portant within the dynamical timescales of interest.

Optical detection scheme – A multitude of schemes
have been proposed for detecting Majorana fermions in
solid-state systems (see [10] for an extensive review). Al-
though we believe that most of these schemes can be
transposed to our optical setting, we will focus on de-
tecting signatures due to Majorana-mediated “photonic
Cooper pair” splitting –an analog of nonlocal Andreev re-
flection. Following the proposals of Ref. [23, 24], we start
with the 1D Kitaev chain (5) in a topologically non-trivial
regime defined by J , |∆| > 0, and 0 ≤ µ < 2J , without
loss of generality. In such a parameter range, exponen-
tially localized Majorana modes are expected on each side
of the chain, with a localization length that increases with
µ and diverges as µ → 2J [14]. For finite µ < 2J and
small enough system sizes, these modes weakly couple
according to the Hamiltonian δMσz

M , where δM denotes
their energy splitting. As a key ingredient, we assume
that |δM | � Eg, where Eg denotes the gap of the system,
with Eg ∼ J close to the ideal case. Next we introduce
two additional cavities –one on each side of the Kitaev
chain, which we refer to as the left (L) and right (R)
probe cavities. We assume that the latter couple to the
end cavities of the Kitaev chain through weak tunneling
only, and have resonance frequencies ωL,R = ωp + 2δL,R

with |δL,R| � |δM |. In the rotating frame defined above,
the Hamiltonian describing the probes can then be writ-
ten as

Hprobe = δLσ
z
L + δRσ

z
R

− JL(σ
x
Lσ

x
1 + σy

Lσ
y
1 )− JR(σ

x
Nσx

R + σy
Nσy

R), (9)

where |JL,R| � |δM | denotes the weak tunnel coupling
strength of the left and right probe cavities, respectively.
Since, by assumption, all energy scales associated with
Hprobe are much smaller than Eg, the probe cavities only
probe the low-energy physics associated with the Majo-
rana modes. Owing to this energy selectivity, the terms
σy
i σ

y
j that appear in (9) and mediate coupling to higher

excited states can safely be neglected. In addition, the
operators σx

1 and σx
N which commute with the ideal sys-

tem Hamiltonian (6) both effectively describe a spin flip
of the Majorana qubit and can therefore be replaced by
σx
M . The low-energy physics of the overall system is thus

captured by the effective Hamiltonian

Heff = δMσz
M + δLσ

z
L + δRσ

z
R − JLσ

x
Lσ

x
M − JRσ

x
Mσx

R.

(10)

Physically, the above expression tells us that the (non-
local) Majorana qubit mediates a nonlocal coherent ex-
change of photons between the probe cavities. Clearly,
the bottleneck of this exchange is given by the timescale
tM ∼ 1/|δM | over which the Majorana qubit evolves.
Therefore, in order to favor the onset of nonlocal cor-
relations between the probes, tM must be the short-
est timescale in (10). In other words, δM must satisfy
|δM | � |δL,R|, |JL,R|, as we have already assumed.

In order to observe the expected nonlocal correlations
between the probe cavities, one can take advantage of
the intrinsic dissipative nature of the system. Assum-
ing that the decay rate of the probe cavities satisfies
ΓL,R ∼ |JL,R| � |δM |, such that spontaneous emission
occurs on a timescale much longer than the timescale tM
over which correlations are generated, we expect to see
a direct signature of the Majorana modes in the second-
order photon cross-correlations between the light emit-
ted from the two probe cavities. In order to illustrate
this, we consider the simple case where δL = δR = 0,
JL = JR ≡

√
2J̃ , and ΓL = ΓR ≡ 8Γ̃. Following

the method of [25] (see Supplementary Information), we
then obtain steady-state photon cross-correlations be-
tween the probe cavities that read

g
(2)
LR ≡ �b̃†Lb̃

†
Rb̃Rb̃L�

�b̃†Lb̃L��b̃
†
Rb̃R�

= 1 +
�σz

Lσ
z
R� − �σz

L��σz
R�

(1 + �σz
L�)(1 + �σz

R�)

= 1 +
Γ̃2δ2M

(J̃2 + Γ̃2)2
. (11)

Remembering that Γ̃2 ∼ J̃
2 � δ2M , we thus find g

(2)
LR � 2;

in other words, the light emitted by the spatially sepa-
rated probe cavities appears as strongly bunched in the
topologically non-trivial regime.
In deriving the above results, we have assumed the

Majorana qubit to be protected from decoherence. How-
ever, numerical simulations of the full Kitaev chain cou-
pled to the probe cavities did confirm that a strong,
nonlocal photon bunching persists for small decay rates

Majorana qubit

It is not topologically protected as fermionized 
photons can lead out of the system.

Majorana operators

2

In order to achieve p-wave pairing, we introduce para-
metric pumps which, in stark contrast to usual coherent
drives, are tailored to inject pairs of photons into the sys-
tem through nonlinear optical processes (see Supplemen-
tary Information). We assume that these pumps drive
the system locally through the inter-cavity field which
can be seen as a superposition of two neighboring Wan-
nier modes. Two photons from a single pair can then ei-
ther be emitted into the same cavity (or Wannier mode),
or settle into different, nearest-neighboring cavities. In
the strong-interaction regime assumed throughout this
work, the second process is strongly favored, and the
drive Hamiltonian effectively reduces to

Hdrive = ∆
N−1�

i=1

(b†i b
†
i+1e

−2iωpt + h.c.), (2)

where ∆ = |∆|eiφ defines the amplitude and phase of the
parametric pumps, and ωp their frequency. We note that
the strength |∆| of the parametric drive is determined by
the overlap of the Wannier modes in a similar way as the
tunneling strength J defined above. We thus expect to
be able to reach a regime in which the two quantities are
of the same order. Physically, the drive Hamiltonian de-
scribes the coherent exchange of p-wave paired photons
between the system and the classical pump field(s). In
addition to providing the optical counterpart of p-wave
superconductivity that is crucial to access the Majorana
physics, Hdrive also compensates for losses by continu-
ously replenishing the system with photons. Taking into
account the photon losses and the drive, the time evolu-
tion of the system is governed by the following Lindblad
master equation:

∂tρ = −i [H0 +Hdrive, ρ] + Γ
N�

i=1

�
biρ b

†
i − 1

2{b
†
i bi, ρ}

�
,

(3)

where ρ is the density matrix of the system and Γ the
decay rate associated with the system cavities. Although
photon losses clearly cannot be avoided, we will assume
a sufficient suppression of dissipation so that the photon
lifetime ∼ 1/Γ is the longest of all relevant timescales in
the system.

Mapping to a 1D Kitaev chain – In the strong-
interaction regime (U � J, |∆|), the Hilbert space of the
system effectively reduces to that of hard-core photons
b̃i = PbiP, b̃†i = Pb

†
iP, where P is a projector onto the

subspace of single-site occupancy 0, 1. Owing to their
two-level nature, hard-core photons can be described as
spin- 12 particles through the mapping σ−

i = 2b̃i, σ
+
i =

2b̃†i , where σ±
i = σx

i ± iσy
i . Defining µ = ωc − ωp and

moving to a rotating frame defined by H1 = ωp
�

i b̃
†
i b̃i,

the Hamiltonian H = H0 +Hdrive of the full system be-

comes [20]

H = −Jx

N−1�

i=1

σx
i σ

x
i+1 − Jy

N−1�

i=1

σy
i σ

y
i+1 +

µ
2

N�

i=1

(σz
i + 1),

(4)

where Jx = 1
2 (J −∆) and Jy = 1

2 (J +∆). The fermionic
nature of the hard-core photons can then be revealed by
mapping the spin- 12 particles to spinless fermions ai, a

†
i

through a Jordan-Wigner transformation [21] of the form
ai =

1
2e

−iφ/2(
�i−1

j=1 σ
z
j )σ

+
i , where the string-like operator�i−1

j=1 σ
z
j crucially ensures that ai, a

†
i obey canonical an-

ticommutation relations. In this fermionic picture, the
Hamiltonian takes the form

H =− J

N−1�

i=1

(a†iai+1 + h.c.) + |∆|
N−1�

i=1

(a†ia
†
i+1 + h.c.)

− µ

N�

i=1

(a†iai − 1
2 ), (5)

which corresponds to the 1D p-wave superconductor of
spinless fermions originally introduced by Kitaev [14] as
a toy model for Majorana fermions. We note that the
bare-cavity frequency ωc plays the role of a Fermi level,
whereas the detuning µ = ωc − ωp between the cavity
and pump frequencies can be viewed as a chemical poten-
tial. Assuming that |∆| �= 0, two topologically distinct
(gapped) phases can be identified [14]: a trivial phase
corresponding to |µ| > |2J | and a non-trivial phase cor-
responding to |µ| < |2J | in which the system supports
Majorana modes that are exponentially localized at both
ends of the chain.
The topological phenomena associated with the 1D

Kitaev chain (5) can be most easily understood when
|∆| = −J > 0 and µ = 0 (i.e. ωp = ωc). In this ideal
case, the Hamiltonian takes the form

H = −J

N−1�

i=1

σx
i σ

x
i+1 = iJ

N−1�

i=1

c2ic2i+1 (6)

with Majorana operators defined as

�
c2i−1 = (

�i−1
j=1 σ

z
j )σ

x
i = e

+iφ/2
ai + e

−iφ/2
a
†
i

c2i = (
�i−1

j=1 σ
z
j )σ

y
i = −i(e+iφ/2

ai − e
−iφ/2

a
†
i ),

(7)

and can readily be diagonalized in terms of Bogoliubov-
Valatin quasiparticle operators ãi =

1
2 (c2i + ic2i+1), such

that H = 2J
�N−1

i=1 (ã†i ãi − 1
2 ). Clearly, the correspond-

ing spectrum features a gap 2J and is symmetric about
the Fermi level. Most importantly, it exhibits two Majo-
rana zero-energy modes that correspond to the Majorana
operators c1 and c2N localized at the ends of the chain
which do not appear in the Hamiltonian. These modes
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The search for Majorana fermions in p-wave paired fermionic systems has recently moved to the
forefront of condensed-matter research. Here we propose an alternative route and show theoretically
that Majorana modes can be realized and probed in a driven-dissipative system of strongly correlated
photons consisting of a chain of tunnel-coupled cavities, where p-wave pairing effectively arises
from the interplay between strong on-site interactions and two-photon parametric driving. Cross-
correlation measurements carried out at the ends of the chain would reveal a strong photon bunching
signature, demonstrating the nonlocal nature of these photonic Majorana modes.

In recent years, strongly correlated photons have

proved to be a remarkably rich platform for investigating

phenomena traditionally regarded as pertaining to con-

densed matter physics. Tremendous theoretical and ex-

perimental efforts have made it possible to achieve strong

optical nonlinearities at the single-photon level [1, 2] and

to demonstrate photon blockade effects [3–8]. Meanwhile,

the pursuit of Majorana fermions has become a new focus

of condensed matter research [9, 10], and p-wave paired

superfluids and superconductors have been promoted as

paradigmatic systems for investigating the physics of Ma-

jorana modes [11]. However, even though strongly inter-

acting photons have been predicted to exhibit a typical

fermionic behavior [12, 13], optical systems have never

been considered as potential candidates for realizing such

exotic physics.

In this letter, we show that Majorana bound states of

light can be obtained in a strongly correlated system of

impenetrable (or “fermionized”) photons. More specifi-

cally, we consider a one-dimensional (1D) chain of cou-

pled cavities with strong nonlinearities, and introduce a

drive mechanism based on parametric pumping which, in

stark contrast to previous works, gives rise to an effective
p-wave pairing between (fermionized) photons. Mapping

our system to the 1D chain originally proposed by Kitaev

as a toy model for Majorana fermions [14], we demon-

strate the existence of Majorana bound states of light

with properties similar to those predicted in solid-state

systems.

Although our optical system effectively consists of

fermions, its intrinsic dissipative nature does not allow for

Majorana modes to be topologically protected [15, 16].

Nevertheless, and most crucially, we claim that the

mere existence of Majorana bound states of light can

be demonstrated via some simple detection schemes,

as long as photon losses can be reasonably suppressed.

As an illustrative example, we propose a realistic ex-

periment that takes full advantage of the optical na-

ture of our system and allows for the direct observation

of Majorana modes through second-order photon cross-

correlation measurements.

The model – The backbone of our system consists of a

1D chain of N optical cavities coupled through nearest-

neighbor photon tunneling (Fig. 1). Each cavity exhibits

a large optical nonlinearity (i.e. is strongly coupled to

an artificial atom) and supports a single mode that can

be described as a Wannier function localized on site i

around the cavity center. Photon tunneling occurs as

a result of the non-vanishing spatial overlap between

nearest-neighboring Wannier modes [17], and the system

Hamiltonian takes the generic form of a generalized Bose-

Hubbard model [18]:

H0 = ωc

N�

i=1

b
†
i bi +

U
2

N�

i=1

b
†
i b

†
i bibi − J

N−1�

i=1

(b
†
i bi+1 + h.c.),

(1)

where bi (b
†
i ) are annihilation (creation) operators associ-

ated with the i
th

cavity of the chain with bare frequency

ωc, U is the strength of the on-site photon-photon repul-

sion (Kerr energy) due to the large optical nonlinearities,

and J denotes the tunneling strength between nearest-

neighboring sites. In this work, we exclusively focus on

the strong-interaction regime, in which the energy cost U

of adding an extra photon to an occupied cavity is by far

the largest of all relevant energy scales in the system [19].

In this so-called hard-core limit, the occupancy of each

site is effectively restricted to 0 or 1, and the photons

exhibit a characteristic fermionic behavior [13].

i = 1 2 … N 

FIG. 1. (Color online). Illustration of the driven-dissipative
chain of coupled cavities studied in this work. Each cavity ex-
hibits a large optical nonlinearity and sustains a single Wan-
nier mode that weakly overlaps with its nearest neighbors,
thereby allowing for photon hopping between sites. In addi-
tion, parametric pumps (depicted by arrows) couple to the
weak inter-cavity field to inject photon pairs into the system.
Owing to the strong photon-photon repulsion, photons from
the same pair end up into different cavities, and the nonlinear
pumping processes effectively give rise to p-wave pairing.
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ThesearchforMajoranafermionsinp-wavepairedfermionicsystemshasrecentlymovedtothe
forefrontofcondensed-matterresearch.Hereweproposeanalternativerouteandshowtheoretically
thatMajoranamodescanberealizedandprobedinadriven-dissipativesystemofstronglycorrelated
photonsconsistingofachainoftunnel-coupledcavities,wherep-wavepairingeffectivelyarises
fromtheinterplaybetweenstrongon-siteinteractionsandtwo-photonparametricdriving.Cross-
correlationmeasurementscarriedoutattheendsofthechainwouldrevealastrongphotonbunching
signature,demonstratingthenonlocalnatureofthesephotonicMajoranamodes.

Inrecentyears,stronglycorrelatedphotonshave

provedtobearemarkablyrichplatformforinvestigating

phenomenatraditionallyregardedaspertainingtocon-

densedmatterphysics.Tremendoustheoreticalandex-

perimentaleffortshavemadeitpossibletoachievestrong

opticalnonlinearitiesatthesingle-photonlevel[1,2]and

todemonstratephotonblockadeeffects[3–8].Meanwhile,

thepursuitofMajoranafermionshasbecomeanewfocus

ofcondensedmatterresearch[9,10],andp-wavepaired

superfluidsandsuperconductorshavebeenpromotedas

paradigmaticsystemsforinvestigatingthephysicsofMa-

joranamodes[11].However,eventhoughstronglyinter-

actingphotonshavebeenpredictedtoexhibitatypical

fermionicbehavior[12,13],opticalsystemshavenever

beenconsideredaspotentialcandidatesforrealizingsuch

exoticphysics.

Inthisletter,weshowthatMajoranaboundstatesof

lightcanbeobtainedinastronglycorrelatedsystemof

impenetrable(or“fermionized”)photons.Morespecifi-

cally,weconsideraone-dimensional(1D)chainofcou-

pledcavitieswithstrongnonlinearities,andintroducea

drivemechanismbasedonparametricpumpingwhich,in

starkcontrasttopreviousworks,givesrisetoaneffective
p-wavepairingbetween(fermionized)photons.Mapping

oursystemtothe1DchainoriginallyproposedbyKitaev

asatoymodelforMajoranafermions[14],wedemon-

stratetheexistenceofMajoranaboundstatesoflight

withpropertiessimilartothosepredictedinsolid-state

systems.

Althoughouropticalsystemeffectivelyconsistsof

fermions,itsintrinsicdissipativenaturedoesnotallowfor

Majoranamodestobetopologicallyprotected[15,16].

Nevertheless,andmostcrucially,weclaimthatthe

mereexistenceofMajoranaboundstatesoflightcan

bedemonstratedviasomesimpledetectionschemes,

aslongasphotonlossescanbereasonablysuppressed.

Asanillustrativeexample,weproposearealisticex-

perimentthattakesfulladvantageoftheopticalna-

tureofoursystemandallowsforthedirectobservation

ofMajoranamodesthroughsecond-orderphotoncross-

correlationmeasurements.

Themodel–Thebackboneofoursystemconsistsofa

1DchainofNopticalcavitiescoupledthroughnearest-

neighborphotontunneling(Fig.1).Eachcavityexhibits

alargeopticalnonlinearity(i.e.isstronglycoupledto

anartificialatom)andsupportsasinglemodethatcan

bedescribedasaWannierfunctionlocalizedonsitei

aroundthecavitycenter.Photontunnelingoccursas

aresultofthenon-vanishingspatialoverlapbetween

nearest-neighboringWanniermodes[17],andthesystem

HamiltoniantakesthegenericformofageneralizedBose-

Hubbardmodel[18]:
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wherebi(b
†
i)areannihilation(creation)operatorsassoci-

atedwiththei
th

cavityofthechainwithbarefrequency

ωc,Uisthestrengthoftheon-sitephoton-photonrepul-

sion(Kerrenergy)duetothelargeopticalnonlinearities,

andJdenotesthetunnelingstrengthbetweennearest-

neighboringsites.Inthiswork,weexclusivelyfocuson

thestrong-interactionregime,inwhichtheenergycostU

ofaddinganextraphotontoanoccupiedcavityisbyfar

thelargestofallrelevantenergyscalesinthesystem[19].

Inthisso-calledhard-corelimit,theoccupancyofeach

siteiseffectivelyrestrictedto0or1,andthephotons

exhibitacharacteristicfermionicbehavior[13].
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FIG.1.(Coloronline).Illustrationofthedriven-dissipative
chainofcoupledcavitiesstudiedinthiswork.Eachcavityex-
hibitsalargeopticalnonlinearityandsustainsasingleWan-
niermodethatweaklyoverlapswithitsnearestneighbors,
therebyallowingforphotonhoppingbetweensites.Inaddi-
tion,parametricpumps(depictedbyarrows)coupletothe
weakinter-cavityfieldtoinjectphotonpairsintothesystem.
Owingtothestrongphoton-photonrepulsion,photonsfrom
thesamepairendupintodifferentcavities,andthenonlinear
pumpingprocesseseffectivelygiverisetop-wavepairing.
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define a two-dimensional, nonlocal zero-energy subspace
which we refer to as a Majorana qubit, with an associated
parity operator that reads

σz
M = −ic1c2N = (

N�

j=1

σz
j )σ

x
1σ

x
N . (8)

We note that the string-like operator P =
�N

j=1 σ
z
j ap-

pearing here corresponds to the parity operator associ-
ated with the total number of (fermionized) photons. Al-
though fermion parity is conserved in any fermionic sys-
tem that interacts with a bosonic environment, there is
no such superselection rule in the photonic system that
we are considering since fermionized photons can leak out
of the latter [22]. As a result, the Majorana qubit (8) is
subject to decoherence, and this decoherence increases
with the size of the system, i.e. with the length of the
string corresponding to P . There is therefore no sensi-
ble notion of topological protection for Majorana bound
states of light, and the latter cannot be used for prac-
tical applications such as topological quantum memories
or topological quantum computation [14]. Nevertheless,
the existence of such modes can still be demonstrated in
small systems where dissipation remains relatively unim-
portant within the dynamical timescales of interest.

Optical detection scheme – A multitude of schemes
have been proposed for detecting Majorana fermions in
solid-state systems (see [10] for an extensive review). Al-
though we believe that most of these schemes can be
transposed to our optical setting, we will focus on de-
tecting signatures due to Majorana-mediated “photonic
Cooper pair” splitting –an analog of nonlocal Andreev re-
flection. Following the proposals of Ref. [23, 24], we start
with the 1D Kitaev chain (5) in a topologically non-trivial
regime defined by J , |∆| > 0, and 0 ≤ µ < 2J , without
loss of generality. In such a parameter range, exponen-
tially localized Majorana modes are expected on each side
of the chain, with a localization length that increases with
µ and diverges as µ → 2J [14]. For finite µ < 2J and
small enough system sizes, these modes weakly couple
according to the Hamiltonian δMσz

M , where δM denotes
their energy splitting. As a key ingredient, we assume
that |δM | � Eg, where Eg denotes the gap of the system,
with Eg ∼ J close to the ideal case. Next we introduce
two additional cavities –one on each side of the Kitaev
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end cavities of the Kitaev chain through weak tunneling
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where |JL,R| � |δM | denotes the weak tunnel coupling
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Since, by assumption, all energy scales associated with
Hprobe are much smaller than Eg, the probe cavities only
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Physically, the above expression tells us that the (non-
local) Majorana qubit mediates a nonlocal coherent ex-
change of photons between the probe cavities. Clearly,
the bottleneck of this exchange is given by the timescale
tM ∼ 1/|δM | over which the Majorana qubit evolves.
Therefore, in order to favor the onset of nonlocal cor-
relations between the probes, tM must be the short-
est timescale in (10). In other words, δM must satisfy
|δM | � |δL,R|, |JL,R|, as we have already assumed.

In order to observe the expected nonlocal correlations
between the probe cavities, one can take advantage of
the intrinsic dissipative nature of the system. Assum-
ing that the decay rate of the probe cavities satisfies
ΓL,R ∼ |JL,R| � |δM |, such that spontaneous emission
occurs on a timescale much longer than the timescale tM
over which correlations are generated, we expect to see
a direct signature of the Majorana modes in the second-
order photon cross-correlations between the light emit-
ted from the two probe cavities. In order to illustrate
this, we consider the simple case where δL = δR = 0,
JL = JR ≡

√
2J̃ , and ΓL = ΓR ≡ 8Γ̃. Following

the method of [25] (see Supplementary Information), we
then obtain steady-state photon cross-correlations be-
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string corresponding to P . There is therefore no sensi-
ble notion of topological protection for Majorana bound
states of light, and the latter cannot be used for prac-
tical applications such as topological quantum memories
or topological quantum computation [14]. Nevertheless,
the existence of such modes can still be demonstrated in
small systems where dissipation remains relatively unim-
portant within the dynamical timescales of interest.

Optical detection scheme – A multitude of schemes
have been proposed for detecting Majorana fermions in
solid-state systems (see [10] for an extensive review). Al-
though we believe that most of these schemes can be
transposed to our optical setting, we will focus on de-
tecting signatures due to Majorana-mediated “photonic
Cooper pair” splitting –an analog of nonlocal Andreev re-
flection. Following the proposals of Ref. [23, 24], we start
with the 1D Kitaev chain (5) in a topologically non-trivial
regime defined by J , |∆| > 0, and 0 ≤ µ < 2J , without
loss of generality. In such a parameter range, exponen-
tially localized Majorana modes are expected on each side
of the chain, with a localization length that increases with
µ and diverges as µ → 2J [14]. For finite µ < 2J and
small enough system sizes, these modes weakly couple
according to the Hamiltonian δMσz

M , where δM denotes
their energy splitting. As a key ingredient, we assume
that |δM | � Eg, where Eg denotes the gap of the system,
with Eg ∼ J close to the ideal case. Next we introduce
two additional cavities –one on each side of the Kitaev
chain, which we refer to as the left (L) and right (R)
probe cavities. We assume that the latter couple to the
end cavities of the Kitaev chain through weak tunneling
only, and have resonance frequencies ωL,R = ωp + 2δL,R
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where |JL,R| � |δM | denotes the weak tunnel coupling
strength of the left and right probe cavities, respectively.
Since, by assumption, all energy scales associated with
Hprobe are much smaller than Eg, the probe cavities only
probe the low-energy physics associated with the Majo-
rana modes. Owing to this energy selectivity, the terms
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Physically, the above expression tells us that the (non-
local) Majorana qubit mediates a nonlocal coherent ex-
change of photons between the probe cavities. Clearly,
the bottleneck of this exchange is given by the timescale
tM ∼ 1/|δM | over which the Majorana qubit evolves.
Therefore, in order to favor the onset of nonlocal cor-
relations between the probes, tM must be the short-
est timescale in (10). In other words, δM must satisfy
|δM | � |δL,R|, |JL,R|, as we have already assumed.

In order to observe the expected nonlocal correlations
between the probe cavities, one can take advantage of
the intrinsic dissipative nature of the system. Assum-
ing that the decay rate of the probe cavities satisfies
ΓL,R ∼ |JL,R| � |δM |, such that spontaneous emission
occurs on a timescale much longer than the timescale tM
over which correlations are generated, we expect to see
a direct signature of the Majorana modes in the second-
order photon cross-correlations between the light emit-
ted from the two probe cavities. In order to illustrate
this, we consider the simple case where δL = δR = 0,
JL = JR ≡
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tecting signatures due to Majorana-mediated “photonic
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regime defined by J , |∆| > 0, and 0 ≤ µ < 2J , without
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tially localized Majorana modes are expected on each side
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µ and diverges as µ → 2J [14]. For finite µ < 2J and
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according to the Hamiltonian δMσz

M , where δM denotes
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that |δM | � Eg, where Eg denotes the gap of the system,
with Eg ∼ J close to the ideal case. Next we introduce
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only, and have resonance frequencies ωL,R = ωp + 2δL,R
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where |JL,R| � |δM | denotes the weak tunnel coupling
strength of the left and right probe cavities, respectively.
Since, by assumption, all energy scales associated with
Hprobe are much smaller than Eg, the probe cavities only
probe the low-energy physics associated with the Majo-
rana modes. Owing to this energy selectivity, the terms
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Physically, the above expression tells us that the (non-
local) Majorana qubit mediates a nonlocal coherent ex-
change of photons between the probe cavities. Clearly,
the bottleneck of this exchange is given by the timescale
tM ∼ 1/|δM | over which the Majorana qubit evolves.
Therefore, in order to favor the onset of nonlocal cor-
relations between the probes, tM must be the short-
est timescale in (10). In other words, δM must satisfy
|δM | � |δL,R|, |JL,R|, as we have already assumed.

In order to observe the expected nonlocal correlations
between the probe cavities, one can take advantage of
the intrinsic dissipative nature of the system. Assum-
ing that the decay rate of the probe cavities satisfies
ΓL,R ∼ |JL,R| � |δM |, such that spontaneous emission
occurs on a timescale much longer than the timescale tM
over which correlations are generated, we expect to see
a direct signature of the Majorana modes in the second-
order photon cross-correlations between the light emit-
ted from the two probe cavities. In order to illustrate
this, we consider the simple case where δL = δR = 0,
JL = JR ≡

√
2J̃ , and ΓL = ΓR ≡ 8Γ̃. Following

the method of [25] (see Supplementary Information), we
then obtain steady-state photon cross-correlations be-
tween the probe cavities that read

g
(2)
LR ≡ �b̃†Lb̃

†
Rb̃Rb̃L�

�b̃†Lb̃L��b̃
†
Rb̃R�

= 1 +
�σz

Lσ
z
R� − �σz

L��σz
R�

(1 + �σz
L�)(1 + �σz

R�)

= 1 +
Γ̃2δ2M

(J̃2 + Γ̃2)2
. (11)

Remembering that Γ̃2 ∼ J̃
2 � δ2M , we thus find g

(2)
LR � 2;

in other words, the light emitted by the spatially sepa-
rated probe cavities appears as strongly bunched in the
topologically non-trivial regime.
In deriving the above results, we have assumed the

Majorana qubit to be protected from decoherence. How-
ever, numerical simulations of the full Kitaev chain cou-
pled to the probe cavities did confirm that a strong,
nonlocal photon bunching persists for small decay rates

3

define a two-dimensional, nonlocal zero-energy subspace
which we refer to as a Majorana qubit, with an associated
parity operator that reads

σz
M = −ic1c2N = (

N�

j=1

σz
j )σ

x
1σ

x
N . (8)

We note that the string-like operator P =
�N

j=1 σ
z
j ap-

pearing here corresponds to the parity operator associ-
ated with the total number of (fermionized) photons. Al-
though fermion parity is conserved in any fermionic sys-
tem that interacts with a bosonic environment, there is
no such superselection rule in the photonic system that
we are considering since fermionized photons can leak out
of the latter [22]. As a result, the Majorana qubit (8) is
subject to decoherence, and this decoherence increases
with the size of the system, i.e. with the length of the
string corresponding to P . There is therefore no sensi-
ble notion of topological protection for Majorana bound
states of light, and the latter cannot be used for prac-
tical applications such as topological quantum memories
or topological quantum computation [14]. Nevertheless,
the existence of such modes can still be demonstrated in
small systems where dissipation remains relatively unim-
portant within the dynamical timescales of interest.

Optical detection scheme – A multitude of schemes
have been proposed for detecting Majorana fermions in
solid-state systems (see [10] for an extensive review). Al-
though we believe that most of these schemes can be
transposed to our optical setting, we will focus on de-
tecting signatures due to Majorana-mediated “photonic
Cooper pair” splitting –an analog of nonlocal Andreev re-
flection. Following the proposals of Ref. [23, 24], we start
with the 1D Kitaev chain (5) in a topologically non-trivial
regime defined by J , |∆| > 0, and 0 ≤ µ < 2J , without
loss of generality. In such a parameter range, exponen-
tially localized Majorana modes are expected on each side
of the chain, with a localization length that increases with
µ and diverges as µ → 2J [14]. For finite µ < 2J and
small enough system sizes, these modes weakly couple
according to the Hamiltonian δMσz

M , where δM denotes
their energy splitting. As a key ingredient, we assume
that |δM | � Eg, where Eg denotes the gap of the system,
with Eg ∼ J close to the ideal case. Next we introduce
two additional cavities –one on each side of the Kitaev
chain, which we refer to as the left (L) and right (R)
probe cavities. We assume that the latter couple to the
end cavities of the Kitaev chain through weak tunneling
only, and have resonance frequencies ωL,R = ωp + 2δL,R
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where |JL,R| � |δM | denotes the weak tunnel coupling
strength of the left and right probe cavities, respectively.
Since, by assumption, all energy scales associated with
Hprobe are much smaller than Eg, the probe cavities only
probe the low-energy physics associated with the Majo-
rana modes. Owing to this energy selectivity, the terms
σy
i σ

y
j that appear in (9) and mediate coupling to higher

excited states can safely be neglected. In addition, the
operators σx

1 and σx
N which commute with the ideal sys-

tem Hamiltonian (6) both effectively describe a spin flip
of the Majorana qubit and can therefore be replaced by
σx
M . The low-energy physics of the overall system is thus

captured by the effective Hamiltonian

Heff = δMσz
M + δLσ

z
L + δRσ

z
R − JLσ

x
Lσ

x
M − JRσ

x
Mσx

R.

(10)

Physically, the above expression tells us that the (non-
local) Majorana qubit mediates a nonlocal coherent ex-
change of photons between the probe cavities. Clearly,
the bottleneck of this exchange is given by the timescale
tM ∼ 1/|δM | over which the Majorana qubit evolves.
Therefore, in order to favor the onset of nonlocal cor-
relations between the probes, tM must be the short-
est timescale in (10). In other words, δM must satisfy
|δM | � |δL,R|, |JL,R|, as we have already assumed.

In order to observe the expected nonlocal correlations
between the probe cavities, one can take advantage of
the intrinsic dissipative nature of the system. Assum-
ing that the decay rate of the probe cavities satisfies
ΓL,R ∼ |JL,R| � |δM |, such that spontaneous emission
occurs on a timescale much longer than the timescale tM
over which correlations are generated, we expect to see
a direct signature of the Majorana modes in the second-
order photon cross-correlations between the light emit-
ted from the two probe cavities. In order to illustrate
this, we consider the simple case where δL = δR = 0,
JL = JR ≡
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2J̃ , and ΓL = ΓR ≡ 8Γ̃. Following
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In deriving the above results, we have assumed the

Majorana qubit to be protected from decoherence. How-
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|δM | � |δL,R|, |JL,R|, as we have already assumed.

In order to observe the expected nonlocal correlations
between the probe cavities, one can take advantage of
the intrinsic dissipative nature of the system. Assum-
ing that the decay rate of the probe cavities satisfies
ΓL,R ∼ |JL,R| � |δM |, such that spontaneous emission
occurs on a timescale much longer than the timescale tM
over which correlations are generated, we expect to see
a direct signature of the Majorana modes in the second-
order photon cross-correlations between the light emit-
ted from the two probe cavities. In order to illustrate
this, we consider the simple case where δL = δR = 0,
JL = JR ≡

√
2J̃ , and ΓL = ΓR ≡ 8Γ̃. Following

the method of [25] (see Supplementary Information), we
then obtain steady-state photon cross-correlations be-
tween the probe cavities that read

g
(2)
LR ≡ �b̃†Lb̃

†
Rb̃Rb̃L�

�b̃†Lb̃L��b̃
†
Rb̃R�

= 1 +
�σz

Lσ
z
R� − �σz

L��σz
R�

(1 + �σz
L�)(1 + �σz

R�)

= 1 +
Γ̃2δ2M

(J̃2 + Γ̃2)2
. (11)

Remembering that Γ̃2 ∼ J̃
2 � δ2M , we thus find g

(2)
LR � 2;

in other words, the light emitted by the spatially sepa-
rated probe cavities appears as strongly bunched in the
topologically non-trivial regime.
In deriving the above results, we have assumed the

Majorana qubit to be protected from decoherence. How-
ever, numerical simulations of the full Kitaev chain cou-
pled to the probe cavities did confirm that a strong,
nonlocal photon bunching persists for small decay rates

3

define a two-dimensional, nonlocal zero-energy subspace
which we refer to as a Majorana qubit, with an associated
parity operator that reads

σz
M = −ic1c2N = (

N�

j=1

σz
j )σ

x
1σ

x
N . (8)

We note that the string-like operator P =
�N

j=1 σ
z
j ap-

pearing here corresponds to the parity operator associ-
ated with the total number of (fermionized) photons. Al-
though fermion parity is conserved in any fermionic sys-
tem that interacts with a bosonic environment, there is
no such superselection rule in the photonic system that
we are considering since fermionized photons can leak out
of the latter [22]. As a result, the Majorana qubit (8) is
subject to decoherence, and this decoherence increases
with the size of the system, i.e. with the length of the
string corresponding to P . There is therefore no sensi-
ble notion of topological protection for Majorana bound
states of light, and the latter cannot be used for prac-
tical applications such as topological quantum memories
or topological quantum computation [14]. Nevertheless,
the existence of such modes can still be demonstrated in
small systems where dissipation remains relatively unim-
portant within the dynamical timescales of interest.

Optical detection scheme – A multitude of schemes
have been proposed for detecting Majorana fermions in
solid-state systems (see [10] for an extensive review). Al-
though we believe that most of these schemes can be
transposed to our optical setting, we will focus on de-
tecting signatures due to Majorana-mediated “photonic
Cooper pair” splitting –an analog of nonlocal Andreev re-
flection. Following the proposals of Ref. [23, 24], we start
with the 1D Kitaev chain (5) in a topologically non-trivial
regime defined by J , |∆| > 0, and 0 ≤ µ < 2J , without
loss of generality. In such a parameter range, exponen-
tially localized Majorana modes are expected on each side
of the chain, with a localization length that increases with
µ and diverges as µ → 2J [14]. For finite µ < 2J and
small enough system sizes, these modes weakly couple
according to the Hamiltonian δMσz

M , where δM denotes
their energy splitting. As a key ingredient, we assume
that |δM | � Eg, where Eg denotes the gap of the system,
with Eg ∼ J close to the ideal case. Next we introduce
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where |JL,R| � |δM | denotes the weak tunnel coupling
strength of the left and right probe cavities, respectively.
Since, by assumption, all energy scales associated with
Hprobe are much smaller than Eg, the probe cavities only
probe the low-energy physics associated with the Majo-
rana modes. Owing to this energy selectivity, the terms
σy
i σ

y
j that appear in (9) and mediate coupling to higher

excited states can safely be neglected. In addition, the
operators σx

1 and σx
N which commute with the ideal sys-

tem Hamiltonian (6) both effectively describe a spin flip
of the Majorana qubit and can therefore be replaced by
σx
M . The low-energy physics of the overall system is thus

captured by the effective Hamiltonian
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Physically, the above expression tells us that the (non-
local) Majorana qubit mediates a nonlocal coherent ex-
change of photons between the probe cavities. Clearly,
the bottleneck of this exchange is given by the timescale
tM ∼ 1/|δM | over which the Majorana qubit evolves.
Therefore, in order to favor the onset of nonlocal cor-
relations between the probes, tM must be the short-
est timescale in (10). In other words, δM must satisfy
|δM | � |δL,R|, |JL,R|, as we have already assumed.

In order to observe the expected nonlocal correlations
between the probe cavities, one can take advantage of
the intrinsic dissipative nature of the system. Assum-
ing that the decay rate of the probe cavities satisfies
ΓL,R ∼ |JL,R| � |δM |, such that spontaneous emission
occurs on a timescale much longer than the timescale tM
over which correlations are generated, we expect to see
a direct signature of the Majorana modes in the second-
order photon cross-correlations between the light emit-
ted from the two probe cavities. In order to illustrate
this, we consider the simple case where δL = δR = 0,
JL = JR ≡

√
2J̃ , and ΓL = ΓR ≡ 8Γ̃. Following

the method of [25] (see Supplementary Information), we
then obtain steady-state photon cross-correlations be-
tween the probe cavities that read
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Remembering that Γ̃2 ∼ J̃
2 � δ2M , we thus find g
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LR � 2;

in other words, the light emitted by the spatially sepa-
rated probe cavities appears as strongly bunched in the
topologically non-trivial regime.
In deriving the above results, we have assumed the

Majorana qubit to be protected from decoherence. How-
ever, numerical simulations of the full Kitaev chain cou-
pled to the probe cavities did confirm that a strong,
nonlocal photon bunching persists for small decay rates
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In order to achieve p-wave pairing, we introduce para-
metric pumps which, in stark contrast to usual coherent
drives, are tailored to inject pairs of photons into the sys-
tem through nonlinear optical processes (see Supplemen-
tary Information). We assume that these pumps drive
the system locally through the inter-cavity field which
can be seen as a superposition of two neighboring Wan-
nier modes. Two photons from a single pair can then ei-
ther be emitted into the same cavity (or Wannier mode),
or settle into different, nearest-neighboring cavities. In
the strong-interaction regime assumed throughout this
work, the second process is strongly favored, and the
drive Hamiltonian effectively reduces to

Hdrive = ∆
N−1�

i=1

(b†i b
†
i+1e

−2iωpt + h.c.), (2)

where ∆ = |∆|eiφ defines the amplitude and phase of the
parametric pumps, and ωp their frequency. We note that
the strength |∆| of the parametric drive is determined by
the overlap of the Wannier modes in a similar way as the
tunneling strength J defined above. We thus expect to
be able to reach a regime in which the two quantities are
of the same order. Physically, the drive Hamiltonian de-
scribes the coherent exchange of p-wave paired photons
between the system and the classical pump field(s). In
addition to providing the optical counterpart of p-wave
superconductivity that is crucial to access the Majorana
physics, Hdrive also compensates for losses by continu-
ously replenishing the system with photons. Taking into
account the photon losses and the drive, the time evolu-
tion of the system is governed by the following Lindblad
master equation:

∂tρ = −i [H0 +Hdrive, ρ] + Γ
N�

i=1

�
biρ b

†
i − 1

2{b
†
i bi, ρ}

�
,

(3)

where ρ is the density matrix of the system and Γ the
decay rate associated with the system cavities. Although
photon losses clearly cannot be avoided, we will assume
a sufficient suppression of dissipation so that the photon
lifetime ∼ 1/Γ is the longest of all relevant timescales in
the system.

Mapping to a 1D Kitaev chain – In the strong-
interaction regime (U � J, |∆|), the Hilbert space of the
system effectively reduces to that of hard-core photons
b̃i = PbiP, b̃†i = Pb

†
iP, where P is a projector onto the

subspace of single-site occupancy 0, 1. Owing to their
two-level nature, hard-core photons can be described as
spin- 12 particles through the mapping σ−

i = 2b̃i, σ
+
i =

2b̃†i , where σ±
i = σx

i ± iσy
i . Defining µ = ωc − ωp and

moving to a rotating frame defined by H1 = ωp
�

i b̃
†
i b̃i,

the Hamiltonian H = H0 +Hdrive of the full system be-

comes [20]

H = −Jx

N−1�

i=1

σx
i σ

x
i+1 − Jy

N−1�

i=1

σy
i σ

y
i+1 +

µ
2

N�

i=1

(σz
i + 1),

(4)

where Jx = 1
2 (J −∆) and Jy = 1

2 (J +∆). The fermionic
nature of the hard-core photons can then be revealed by
mapping the spin- 12 particles to spinless fermions ai, a

†
i

through a Jordan-Wigner transformation [21] of the form
ai =

1
2e

−iφ/2(
�i−1

j=1 σ
z
j )σ

+
i , where the string-like operator�i−1

j=1 σ
z
j crucially ensures that ai, a

†
i obey canonical an-

ticommutation relations. In this fermionic picture, the
Hamiltonian takes the form

H =− J

N−1�

i=1

(a†iai+1 + h.c.) + |∆|
N−1�

i=1

(a†ia
†
i+1 + h.c.)

− µ

N�

i=1

(a†iai − 1
2 ), (5)

which corresponds to the 1D p-wave superconductor of
spinless fermions originally introduced by Kitaev [14] as
a toy model for Majorana fermions. We note that the
bare-cavity frequency ωc plays the role of a Fermi level,
whereas the detuning µ = ωc − ωp between the cavity
and pump frequencies can be viewed as a chemical poten-
tial. Assuming that |∆| �= 0, two topologically distinct
(gapped) phases can be identified [14]: a trivial phase
corresponding to |µ| > |2J | and a non-trivial phase cor-
responding to |µ| < |2J | in which the system supports
Majorana modes that are exponentially localized at both
ends of the chain.
The topological phenomena associated with the 1D

Kitaev chain (5) can be most easily understood when
|∆| = −J > 0 and µ = 0 (i.e. ωp = ωc). In this ideal
case, the Hamiltonian takes the form

H = −J

N−1�

i=1

σx
i σ

x
i+1 = iJ

N−1�

i=1

c2ic2i+1 (6)

with Majorana operators defined as

�
c2i−1 = (

�i−1
j=1 σ

z
j )σ

x
i = e

+iφ/2
ai + e

−iφ/2
a
†
i

c2i = (
�i−1

j=1 σ
z
j )σ

y
i = −i(e+iφ/2

ai − e
−iφ/2

a
†
i ),

(7)

and can readily be diagonalized in terms of Bogoliubov-
Valatin quasiparticle operators ãi =

1
2 (c2i + ic2i+1), such

that H = 2J
�N−1

i=1 (ã†i ãi − 1
2 ). Clearly, the correspond-

ing spectrum features a gap 2J and is symmetric about
the Fermi level. Most importantly, it exhibits two Majo-
rana zero-energy modes that correspond to the Majorana
operators c1 and c2N localized at the ends of the chain
which do not appear in the Hamiltonian. These modes

H0 = ωc

N�

i=1

b
†
i bi − J

N−1�

i=1

(b†i bi+1 + h.c.)
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pearing here corresponds to the parity operator associ-
ated with the total number of (fermionized) photons. Al-
though fermion parity is conserved in any fermionic sys-
tem that interacts with a bosonic environment, there is
no such superselection rule in the photonic system that
we are considering since fermionized photons can leak out
of the latter [22]. As a result, the Majorana qubit (8) is
subject to decoherence, and this decoherence increases
with the size of the system, i.e. with the length of the
string corresponding to P . There is therefore no sensi-
ble notion of topological protection for Majorana bound
states of light, and the latter cannot be used for prac-
tical applications such as topological quantum memories
or topological quantum computation [14]. Nevertheless,
the existence of such modes can still be demonstrated in
small systems where dissipation remains relatively unim-
portant within the dynamical timescales of interest.

Optical detection scheme – A multitude of schemes
have been proposed for detecting Majorana fermions in
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though we believe that most of these schemes can be
transposed to our optical setting, we will focus on de-
tecting signatures due to Majorana-mediated “photonic
Cooper pair” splitting –an analog of nonlocal Andreev re-
flection. Following the proposals of Ref. [23, 24], we start
with the 1D Kitaev chain (5) in a topologically non-trivial
regime defined by J , |∆| > 0, and 0 ≤ µ < 2J , without
loss of generality. In such a parameter range, exponen-
tially localized Majorana modes are expected on each side
of the chain, with a localization length that increases with
µ and diverges as µ → 2J [14]. For finite µ < 2J and
small enough system sizes, these modes weakly couple
according to the Hamiltonian δMσz

M , where δM denotes
their energy splitting. As a key ingredient, we assume
that |δM | � Eg, where Eg denotes the gap of the system,
with Eg ∼ J close to the ideal case. Next we introduce
two additional cavities –one on each side of the Kitaev
chain, which we refer to as the left (L) and right (R)
probe cavities. We assume that the latter couple to the
end cavities of the Kitaev chain through weak tunneling
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where |JL,R| � |δM | denotes the weak tunnel coupling
strength of the left and right probe cavities, respectively.
Since, by assumption, all energy scales associated with
Hprobe are much smaller than Eg, the probe cavities only
probe the low-energy physics associated with the Majo-
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Physically, the above expression tells us that the (non-
local) Majorana qubit mediates a nonlocal coherent ex-
change of photons between the probe cavities. Clearly,
the bottleneck of this exchange is given by the timescale
tM ∼ 1/|δM | over which the Majorana qubit evolves.
Therefore, in order to favor the onset of nonlocal cor-
relations between the probes, tM must be the short-
est timescale in (10). In other words, δM must satisfy
|δM | � |δL,R|, |JL,R|, as we have already assumed.

In order to observe the expected nonlocal correlations
between the probe cavities, one can take advantage of
the intrinsic dissipative nature of the system. Assum-
ing that the decay rate of the probe cavities satisfies
ΓL,R ∼ |JL,R| � |δM |, such that spontaneous emission
occurs on a timescale much longer than the timescale tM
over which correlations are generated, we expect to see
a direct signature of the Majorana modes in the second-
order photon cross-correlations between the light emit-
ted from the two probe cavities. In order to illustrate
this, we consider the simple case where δL = δR = 0,
JL = JR ≡
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j=1 σ
z
j )σ

+
i , where the string-like operator�i−1

j=1 σ
z
j crucially ensures that ai, a

†
i obey canonical an-

ticommutation relations. In this fermionic picture, the
Hamiltonian takes the form

H =− J

N−1�

i=1

(a†iai+1 + h.c.) + |∆|
N−1�

i=1

(a†ia
†
i+1 + h.c.)

− µ

N�

i=1

(a†iai − 1
2 ), (5)

which corresponds to the 1D p-wave superconductor of
spinless fermions originally introduced by Kitaev [14] as
a toy model for Majorana fermions. We note that the
bare-cavity frequency ωc plays the role of a Fermi level,
whereas the detuning µ = ωc − ωp between the cavity
and pump frequencies can be viewed as a chemical poten-
tial. Assuming that |∆| �= 0, two topologically distinct
(gapped) phases can be identified [14]: a trivial phase
corresponding to |µ| > |2J | and a non-trivial phase cor-
responding to |µ| < |2J | in which the system supports
Majorana modes that are exponentially localized at both
ends of the chain.
The topological phenomena associated with the 1D

Kitaev chain (5) can be most easily understood when
|∆| = −J > 0 and µ = 0 (i.e. ωp = ωc). In this ideal
case, the Hamiltonian takes the form

H = −J

N−1�

i=1

σx
i σ

x
i+1 = iJ

N−1�

i=1

c2ic2i+1 (6)

with Majorana operators defined as

�
c2i−1 = (

�i−1
j=1 σ

z
j )σ

x
i = e

+iφ/2
ai + e

−iφ/2
a
†
i

c2i = (
�i−1

j=1 σ
z
j )σ

y
i = −i(e+iφ/2

ai − e
−iφ/2

a
†
i ),

(7)

and can readily be diagonalized in terms of Bogoliubov-
Valatin quasiparticle operators ãi =

1
2 (c2i + ic2i+1), such

that H = 2J
�N−1

i=1 (ã†i ãi − 1
2 ). Clearly, the correspond-

ing spectrum features a gap 2J and is symmetric about
the Fermi level. Most importantly, it exhibits two Majo-
rana zero-energy modes that correspond to the Majorana
operators c1 and c2N localized at the ends of the chain
which do not appear in the Hamiltonian. These modesLight emitted by the spatially separated probe cavities is 

strongly bunched in the topologically non-trivial regime.



Conclusions

• realization of Kitaev model in 
driven-dissipative bosonic chain

• detection of Majorana modes by 
photon correlation measurement
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