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Effects of Strain in Graphene [id., PRB 84, 195404 (2011)]

[Castro-Neto, et al., RMP 81, 109 (2009)]

q
+

q
–  

● Changes in the hopping due to 
modulation in the bond length;
● Low energy Hamiltonian:

● q: wave-vector displacement 
from the shifted Dirac cones:

ν=1.4: Poisson's ratio

derivative of the hopping parameter t

: zigzag
: armchair

accounts for the deformation 
of the Fermi velocity
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from the shifted Dirac cones:

ν=1.4: Poisson's ratio

derivative of the hopping parameter t

: zigzag
: armchair

accounts for the deformation 
of the Fermi velocity

● Strain-induced modification of the work function
(next-nearest-neighbor hopping)



  

Strain & Electrostatic Potential modulation: superlattice

● Piecewise constant profile;

● Transmission via Transfer Matrix;
● Chebyshev identity for MN

● U is always zero in this paper...
(left over from other papers; copy/paste)



  

Transfer Matrix
● Considering only the electrostatic potential here;

● Since strain profile is piecewise constant, the idea is the same

[GJF, Leuenberger, Loss, Egues, PRB 84, 125453 (2011)]

Defining the spinor 
in a matrix notation

Continuity of the spinor
along the interfaces

Transfer matrix connects the
source and drain spinor coefficients

If all barriers are equivalent: T M=M̃ N=[M j
−1M j+1]

N

Chebyshev identity:
Nth power of a 2x2 matrix



  

From their previous paper [id., PRB 84, 195404 (2011)]

● Effects of strain regarding the ballistic transport, no modulation/superlattice
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From their previous paper [id., PRB 84, 195404 (2011)]

● Effects of strain regarding the ballistic transport, no modulation/superlattice

Minimum conductivity: Asymptotic limit:

Frequency of the oscillations: Fano factor



  

Transport: single barrier
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N=5 “barriers”: minibands, and hybridization of bound states
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Their conclusion and my remarks

● “strain-induced graphene supperlattices can accommodate additional resonant quasipaticles”
● misleading: resonances occur due to modulation of the “finite-k

y
 gap”. 

● Not a peculiarity of strain effects;

● Bound states;

● “We thus surmise that a strain-induced superlattice in graphene can be used as a filter for 
the resonant modes discussed here.”

● Their previous paper: PRB 84, 195404 (2011)
“Transport properties of graphene across strain-induced nonuniform velocity profiles”

● Low energy Hamiltonian for strained graphene;
● Deformation of Dirac cone = same order as the shift in k-space;



  

Chebyshev identity: Nth power of a 2x2 matrix

● Characteristic equation for matrix P:

● Replace eigenvalues by the matrix itself:
(Cayley-Hamilton theorem)

● Recursion relation:
Task: find polynomial U

● Multiply by P:

● N → N+1 in PN:

● Recursion relation for Chebyshev polynomials:

[Griffiths and Steinke, Am. J. Phys. 69 (2), 137 (2001)]
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