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Proposal

m use (pseudo-) spin of heavy holes (HH) in
GaAs quantum dots as qubits

m realize arbitrary single-qubit gates with pure
electric quadrupole fields

m preserve time-reversal symmetry (TRS)

m implement qubit-gates via adiabatic
transformation of Hamiltonian
(holonomic quantum computing)
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Possible Advantages

heavy holes (HH) in quantum dots as qubits
m predicted long coherence times
m coupling to nuclear spins Isig-like
m advanced level of optical control
m naturally realized in many semiconductors
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m predicted long coherence times
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m naturally realized in many semiconductors

all-electrical control
m electrical fields easier to control experimentally
m preserves time-reversal symmetry

m absence of certain (phonon mediated)
decoherence mechanisms (higher temperatures?)
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Holonomy, Geometric Phase, and Gauge Potentials
flat manifold M: on sphere:
close relation between

holonomy, curvature,
and topology of manifold

vector preserved rotation U,

holonomy

degree of failure in preserving geometrical properties in
parallel transport along closed paths + on manifold M

m holonomy operation (geometric phase) determined
by gauge potential (connection) A: T, = el 4



Holonomic Quantum Computation
P. Zanardi and M. Rasetti, Phys. Lett. A 264, 94-99 (1999)

translation to quantum mechanics
identify M with Hamiltonian manifold H = {H(y)|y € V}

m H(v) has n-fold degenerate subspace with
corresponding projector P

m closed path v in space — adiabatic change of
external parameter set ~(r) with v(27) = ~(0)

m adiabatic connection A(3) = — [0 p(y)]

main idea

implement universal set of quantum gates with
geometrical phases U, for properly chosen closed
loops in parameter space




Example for Non-Abelian Gauge Potential
F. Wilczek and A. Zee, PRL 52, 2111 (1984)

3-fold degenerate 4d Hamiltonian
H(r) = R(t)HoR ' (1) with Hy = diag(0,0,0, 1) J

B R = R3[¢3]Ra[2]R) [p1] With R;[¢;] rotate components i <> 4
m gauge potential A; = PR™!(9,,R)P with P = diag(1, 1, 1,0)
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m gauge potential A; = PR™!(9,,R)P with P = diag(1, 1, 1,0)

0 sin(¢1) 0 O

N

0 0 0 0
0 0 sin(¢1) cos(¢) 0O
o 0 0 sin(¢» 0
2 —sin(¢1) cos(¢2) —sin(¢z) 0 0
0 0 0 0

simple dynamical systems can have (non-abelian) gauge structure



Manifold and Gauge Potential for the HH

quadrupole hamiltonian H, = J;Q"J; for holes in GaAs
m due to TRS: 2 two-fold degenerate subspaces
m quadrupole tensor Q element of 54 matrix space
m angular momentum operators J for spin 3/2
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quadrupole hamiltonian H, = J;Q"J; for holes in GaAs
m due to TRS: 2 two-fold degenerate subspaces
m quadrupole tensor Q element of 54 matrix space
m angular momentum operators J for spin 3/2

can be expressed in basis of Hamiltonians I';:

I:IQ = Z?:O x I with

(0 oy _(oi O (0 -
F°_<ax o)’r’_<0 —a,->’a”dr4_<i1 o>

SO(5) Clifford algebra: {T;, T;} = 26;

Ai<j = IAJ()(%[FZ', Fj])ﬁ’o with 13() = diag(l,0,0, 1) J




Single-Qubit Operations with Quadrupole Fields

general single-qubit gate

(i 0) = ex (10" ) = expli Y i)
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Single-Qubit Operations with Quadrupole Fields

general geometric phase
general single-qubit gate

U(R, $) = exp (i¢%") —exp(i Y 0i6/2) Uy o exp (—r%) = exp(—t/ZzgzaiAi)

i=0
2 —
where Y~ a7 = 1

i



Single-Qubit Operations with Quadrupole Fields

general geometric phase
general single-qubit gate R

U(n, §) = exp (idy%’) = eXp(iZ 0i0i/2) Uy oc exp (—ta?) = exp(—t/zzgza,-Ai)

i=0
where Y. a? = 1

P =

i

Pauli matrices in HH subspace:
A1 = f)OI‘4I‘1130 = iO’x A2 = i)ol—‘lropo = in A3 = f’oFngPO = iUZ



Single-Qubit Operations with Quadrupole Fields

general geometric phase
general single-qubit gate R 9
no U o ex —taA = exp(—t/ZZa-A)
Ui o) =exp (i0'y ) e aon PP 2 i
where Y. a? = 1

P =

i

Pauli matrices in HH subspace:
Ay = PoTyl\ Py = io, Ay := PoT'\ToPy = ioy,  As := PoT'\T2Py = io,
additional generator Ay = 0 needed to adjust ¢
e.g. Ag := Py Py



Single-Qubit Operations with Quadrupole Fields

general geometric phase
general single-qubit gate R

. ) aA 2
(i) = exp (6% ) = et Yoy T (-5 =este P2
where 3", a? = 1

Pauli matrices in HH subspace:
Ay = PoTyl\ Py = io, Ay := PoT'\ToPy = ioy,  As := PoT'\T2Py = io,
additional generator Ay = 0 needed to adjust ¢
e.g. Ag := Py Py

for arbitrary n and ¢

choose a = (ao, a1, az,a3) with |a] = 1 with
(a1,02,83) __ — s and

[(a1,a2,a3)] —

¢ =2m(1 —|(a1,a2,a3)|) = 27 (1 — /1 - a5)
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wanted: ai,...,ap sothatn = —e, and ¢ = /2
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wanted: ai,...,ap sothatn = —e, and ¢ = /2

U(—&y,m/2) = - G —11) J

la1:a3:0

mr/2=2n(1—/1—-d})

- aozﬁ/4

la%+a%:1:> a, =3/4



Example: /2 Rotation of HH-Qubit around y-Axis

wanted: ai,...,ap sothatn = —e, and ¢ = /2
@ - - [
U(—ey,m/2) = % <i _11) J ; of\ l@’ﬁ ; ﬁl
.l .f ﬁf
m initial Hamiltonian H, = T (:;ﬁ (:ﬁ »
Ha =a3=0 Q‘@~’! ".y' .
mr/2=2n(1—/1—-d})

- a0=\/7/4

madtas=1= ay=3/4

H(t) = l(V1/440)= 3/ A1 o=1(V7/440) = (3/4)As] J




HH-LH Splitting due to Confinement

realistic Hamiltonian
H = Hp + 257 with AEy > AE(Hp) J

HH/HL splitting with qubit-charge distance r = 50nm
and quadrupole potential e® = 50meV: AE(Hp) ~ 0.57meV



HH-LH Splitting due to Confinement

realistic Hamiltonian
H= I:IQ aF %TZ with AEy > AE(ﬁQ) J

HH/HL splitting with qubit-charge distance r = 50nm
and quadrupole potential e® = 50meV: AE(Hp) ~ 0.57meV

typical HH/LH splitting AE, due to confinement
larger than quadrupole splitting!

10



HH-LH Splitting due to Confinement

realistic Hamiltonian
H = Hp + 257 with AEy > AE(Hp) J

HH/HL splitting with qubit-charge distance r = 50nm
and quadrupole potential e® = 50meV: AE(Hp) ~ 0.57meV

typical HH/LH splitting AE, due to confinement
larger than quadrupole splitting!
possible solution: induce linear mechanical strain in z-direction (GaAs)

confinement splitting versus strain total HH/LH splitting versus quadrupole
potential
10



method robust against:

m residual dipole fields
m deviations from quadrupole potential wih [ =2
m deviations from quadratic confinement

Other Deviations

TABLE L. Characteristic terms of the axial multipole expansion.

!
=1
1=2
1=3
1=
=6

reosp

P cos2$

PPy =r(}cosg + §cos3g)

rcosdg
Feos2p

7°cos b

Overall shift in energy that does not change AE

Shift of the center of the bound state assuming that quadrupole and confining potentials
(@, + ®,) are quadratic in r; AE unchanged

@+ 0y

Included in the mode}

Lowest order that appears in dipole expansion and can induce quadratic Stark effect
Deviation from quadrupole symmetry by four equally charged gates

Allowed by quadrupole symmetry leading to the same effective Hamiltonian H(Q) with
J = 2 but with the induced value AE only a few percent in comparison with the

1= 2 term; does not infuence holonomy operations
Correction to the confinement potential, which removes stability against the I = 1 perturbation
Lowest-order perturbation that appears in quadrupole expansion

AE fmev

0. mev
0 20 0 m 50 ©

effect of * corrections to confinement



Possible Issues

extra long coherence times in HH systems often
rely on tuning with magnetic fields (break TRS)

phonon-mediated spin-decoherence mainly
important for higher temperatures

implementation of quadrupole gates around every
qubit necessary

how good can strain suppress the HH/LH splitting

in reality? . ‘ /
g



