All-electric qubit control in heavy hole quantum dots via non-Abelian geometric phases

J. C. Budich, D. G. Rothe, E. M. Hankiewicz, and B. Trauzettel

Institute for Theoretical Physics and Astrophysics, University of Würzburg, 97074 Würzburg, Germany (Received 2 February 2012; published 14 May 2012)

Phys. Rev. B 85, 205425 (2012)

Journal Club

Daniel Becker 22 May 2012

Proposal

- use (pseudo-) spin of heavy holes (HH) in GaAs quantum dots as qubits
- realize arbitrary single-qubit gates with pure electric quadrupole fields
- preserve time-reversal symmetry (TRS)
- implement qubit-gates via adiabatic transformation of Hamiltonian (holonomic quantum computing)

Possible Advantages

heavy holes (HH) in quantum dots as qubits

- predicted long coherence times
- coupling to nuclear spins Isig-like
- advanced level of optical control
- naturally realized in many semiconductors

Possible Advantages

heavy holes (HH) in quantum dots as qubits

- predicted long coherence times
- coupling to nuclear spins Isig-like
- advanced level of optical control
- naturally realized in many semiconductors

all-electrical control

- electrical fields easier to control experimentally
- preserves time-reversal symmetry
- absence of certain (phonon mediated) decoherence mechanisms (higher temperatures?)

flat manifold \mathcal{M} :

holonomy

flat manifold \mathcal{M} :

vector preserved

holonomy

flat manifold \mathcal{M} :

on sphere:

vector preserved

holonomy

flat manifold \mathcal{M} :

on sphere:

vector preserved

holonomy

flat manifold \mathcal{M} :

on sphere:

vector preserved

holonomy

flat manifold \mathcal{M} :

on sphere:

vector preserved

holonomy

flat manifold \mathcal{M} :

on sphere:

vector preserved

holonomy

flat manifold \mathcal{M} :

on sphere:

vector preserved

holonomy

flat manifold \mathcal{M} :

vector preserved

on sphere:

close relation between holonomy, curvature, and topology of manifold

holonomy

degree of failure in preserving geometrical properties in parallel transport along closed paths γ on manifold ${\cal M}$

■ holonomy operation (geometric phase) determined by gauge potential (connection) *A*: $\hat{U}_{\gamma} = e^{\int_{\gamma} A}$

Holonomic Quantum Computation

P. Zanardi and M. Rasetti, Phys. Lett. A 264, 94-99 (1999)

translation to quantum mechanics

identify \mathcal{M} with Hamiltonian manifold $\mathcal{H} = \{\hat{H}(\boldsymbol{\gamma}) | \boldsymbol{\gamma} \in \mathcal{V}\}$

- *Ĥ*(γ) has *n*-fold degenerate subspace with corresponding projector *P*
- closed path γ in space \longrightarrow adiabatic change of external parameter set $\gamma(t)$ with $\gamma(2\pi) = \gamma(0)$

• adiabatic connection
$$A\left(\frac{\mathbf{d}}{\mathbf{d}t}\right) = -\left[\frac{\mathbf{d}\hat{P}(t)}{\mathbf{d}t}, \hat{P}(t)\right]$$

main idea

implement universal set of quantum gates with geometrical phases \hat{U}_{γ} for properly chosen closed loops in parameter space

Example for Non-Abelian Gauge Potential

F. Wilczek and A. Zee, PRL 52, 2111 (1984)

3-fold degenerate 4*d* Hamiltonian

 $\hat{H}(t) = \hat{R}(t)\hat{H}_0\hat{R}^{-1}(t)$ with $\hat{H}_0 = \text{diag}(0, 0, 0, 1)$

 $\hat{R} = \hat{R}_3[\phi_3]\hat{R}_2[\phi_2]\hat{R}_1[\phi_1] \text{ with } \hat{R}_i[\phi_i] \text{ rotate components } i \leftrightarrow 4$ $= \text{ gauge potential } A_i = \hat{P}\hat{R}^{-1}(\partial_{\phi_i}\hat{R})\hat{P} \text{ with } \hat{P} = \text{diag}(1, 1, 1, 0)$

Example for Non-Abelian Gauge Potential

F. Wilczek and A. Zee, PRL 52, 2111 (1984)

3-fold degenerate 4*d* Hamiltonian $\hat{H}(t) = \hat{R}(t)\hat{H}_0\hat{R}^{-1}(t)$ with $\hat{H}_0 = \text{diag}(0, 0, 0, 1)$

 $\hat{R} = \hat{R}_3[\phi_3]\hat{R}_2[\phi_2]\hat{R}_1[\phi_1] \text{ with } \hat{R}_i[\phi_i] \text{ rotate components } i \leftrightarrow 4$ $= \text{ gauge potential } A_i = \hat{P}\hat{R}^{-1}(\partial_{\phi_i}\hat{R})\hat{P} \text{ with } \hat{P} = \text{diag}(1, 1, 1, 0)$

simple dynamical systems can have (non-abelian) gauge structure

Manifold and Gauge Potential for the HH

quadrupole hamiltonian $\hat{H}_Q = \hat{J}_i Q^{ij} \hat{J}_j$ for holes in GaAs

- due to TRS: 2 two-fold degenerate subspaces
- quadrupole tensor Q element of 5d matrix space
- angular momentum operators \hat{J} for spin 3/2

Manifold and Gauge Potential for the HH

quadrupole hamiltonian $\hat{H}_Q = \hat{J}_i Q^{ij} \hat{J}_j$ for holes in GaAs

due to TRS: 2 two-fold degenerate subspaces

- quadrupole tensor Q element of 5d matrix space
- angular momentum operators \hat{J} for spin 3/2

can be expressed in basis of Hamiltonians Γ_i :

$$\hat{H}_Q = \sum_{i=0}^4 x_i \Gamma_i$$
 with

$$\Gamma_0 = \begin{pmatrix} 0 & \sigma_x \\ \sigma_x & 0 \end{pmatrix}, \ \Gamma_i = \begin{pmatrix} \sigma_i & 0 \\ 0 & -\sigma_i \end{pmatrix}, \ \text{and} \ \Gamma_4 = \begin{pmatrix} 0 & -i\mathbf{1} \\ i\mathbf{1} & 0 \end{pmatrix}$$

SO(5) Clifford algebra: $\{\Gamma_i, \Gamma_j\} = 2\delta_{ij}$

Manifold and Gauge Potential for the HH

quadrupole hamiltonian $\hat{H}_{Q} = \hat{J}_{i}Q^{ij}\hat{J}_{j}$ for holes in GaAs

due to TRS: 2 two-fold degenerate subspaces

- quadrupole tensor Q element of 5d matrix space
- angular momentum operators \hat{J} for spin 3/2

can be expressed in basis of Hamiltonians Γ_i :

$$\hat{H}_Q = \sum_{i=0}^4 x_i \Gamma_i$$
 with

$$\Gamma_0 = \begin{pmatrix} 0 & \sigma_x \\ \sigma_x & 0 \end{pmatrix}, \Gamma_i = \begin{pmatrix} \sigma_i & 0 \\ 0 & -\sigma_i \end{pmatrix}$$
, and $\Gamma_4 = \begin{pmatrix} 0 & -i\mathbf{1} \\ i\mathbf{1} & 0 \end{pmatrix}$

SO(5) Clifford algebra: $\{\Gamma_i, \Gamma_j\} = 2\delta_{ij}$

$$A_{i < j} = \hat{P}_0 \big(\frac{1}{2} [\Gamma_i, \Gamma_j] \big) \hat{P}_0 \quad \text{with} \quad \hat{P}_0 = \text{diag}(1, 0, 0, 1) \ \Big|$$

general single-qubit gate $\mathcal{U}(\hat{n}, \phi) = \exp\left(i\phi\frac{\hat{n}\sigma}{2}\right) = \exp(i\sum_{i}\sigma_i\phi_i/2)$

general single-qubit gate $\mathcal{U}(\hat{n}, \phi) = \exp\left(i\phi\frac{\hat{n}\sigma}{2}\right) = \exp(i\sum_{i}\sigma_{i}\phi_{i}/2)$ general geometric phase $\hat{U}_t \propto \exp\left(-t\frac{\hat{a}A}{2}\right) = \exp(-t/2\sum_{i=0}^9 a_iA_i)$ where $\sum_i a_i^2 = 1$

general single-qubit gate $\mathcal{U}(\hat{n}, \phi) = \exp\left(i\phi\frac{\hat{n}\sigma}{2}\right) = \exp(i\sum_{i}\sigma_{i}\phi_{i}/2)$

general geometric phase

$$\hat{U}_t \propto \exp\left(-t\frac{\hat{a}A}{2}\right) = \exp(-t/2\sum_{i=0}^9 a_iA_i)$$

where $\sum_i a_i^2 = 1$

Pauli matrices in HH subspace:

$$A_1 := \hat{P}_0 \Gamma_4 \Gamma_1 \hat{P}_0 = \mathbf{i} \sigma_x \quad A_2 := \hat{P}_0 \Gamma_1 \Gamma_0 \hat{P}_0 = \mathbf{i} \sigma_y \quad A_3 := \hat{P}_0 \Gamma_1 \Gamma_2 \hat{P}_0 = \mathbf{i} \sigma_z$$

general single-qubit gate $\mathcal{U}(\hat{n}, \phi) = \exp\left(i\phi\frac{\hat{n}\sigma}{2}\right) = \exp(i\sum_{i}\sigma_{i}\phi_{i}/2)$ general geometric phase $\hat{U}_t \propto \exp\left(-t\frac{\hat{a}A}{2}\right) = \exp(-t/2\sum_{i=0}^9 a_iA_i)$ where $\sum_i a_i^2 = 1$

Pauli matrices in HH subspace:

 $A_1 := \hat{P}_0 \Gamma_4 \Gamma_1 \hat{P}_0 = i\sigma_x \quad A_2 := \hat{P}_0 \Gamma_1 \Gamma_0 \hat{P}_0 = i\sigma_y \quad A_3 := \hat{P}_0 \Gamma_1 \Gamma_2 \hat{P}_0 = i\sigma_z$

additional generator $A_0 = 0$ needed to adjust ϕ

e.g. $A_0 := \hat{P}_0 \Gamma_3 \Gamma_1 \hat{P}_0$

general single-qubit gate $\mathcal{U}(\hat{n}, \phi) = \exp\left(i\phi\frac{\hat{n}\sigma}{2}\right) = \exp(i\sum_{i}\sigma_{i}\phi_{i}/2)$

general geometric phase

$$\hat{U}_t \propto \exp\left(-t\frac{\hat{a}A}{2}\right) = \exp(-t/2\sum_{i=0}^9 a_iA_i)$$

where $\sum_i a_i^2 = 1$

Pauli matrices in HH subspace:

$$A_1 := \hat{P}_0 \Gamma_4 \Gamma_1 \hat{P}_0 = \boldsymbol{i} \sigma_x \quad A_2 := \hat{P}_0 \Gamma_1 \Gamma_0 \hat{P}_0 = \boldsymbol{i} \sigma_y \quad A_3 := \hat{P}_0 \Gamma_1 \Gamma_2 \hat{P}_0 = \boldsymbol{i} \sigma_z$$

additional generator $A_0 = 0$ needed to adjust ϕ

e.g.
$$A_0 := \hat{P}_0 \Gamma_3 \Gamma_1 \hat{P}_0$$

for arbitrary \hat{n} and ϕ choose $\hat{a} = (a_0, a_1, a_2, a_3)$ with $|\hat{a}| = 1$ with $\frac{(a_1, a_2, a_3)}{|(a_1, a_2, a_3)|} = \hat{n}$ and $\phi = 2\pi(1 - |(a_1, a_2, a_3)|) = 2\pi(1 - \sqrt{1 - a_0^2})$

Example: $\pi/2$ Rotation of HH-Qubit around y-Axis

wanted: a_1, \ldots, a_0 so that $\hat{n} = -\hat{e}_y$ and $\phi = \pi/2$

$$\mathcal{U}(-\hat{e}_y,\pi/2) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

Example: $\pi/2$ Rotation of HH-Qubit around y-Axis

wanted: a_1, \ldots, a_0 so that $\hat{n} = -\hat{e}_y$ and $\phi = \pi/2$

$$\mathcal{U}(-\hat{e}_y,\pi/2) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

■
$$a_1 = a_3 = 0$$

■ $\pi/2 = 2\pi(1 - \sqrt{1 - a_0^2})$
 $\implies a_0 = \sqrt{7}/4$
■ $a_0^2 + a_2^2 = 1 \implies a_2 = 3/4$

Example: $\pi/2$ Rotation of HH-Qubit around y-Axis wanted: a_1, \ldots, a_0 so that $\hat{n} = -\hat{e}_y$ and $\phi = \pi/2$

$$\mathcal{U}(-\hat{e}_y,\pi/2) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

- initial Hamiltonian $\hat{H}_0 = \Gamma_3$
- $a_1 = a_3 = 0$ ■ $\pi/2 = 2\pi(1 - \sqrt{1 - a_0^2})$ ⇒ $a_0 = \sqrt{7}/4$ ■ $a_0^2 + a_2^2 = 1 \implies a_2 = 3/4$

(a)
(b)

$$x^{n}$$

 x^{n}
 x^{n}

$$\hat{H}(t) = \boldsymbol{e}^{t[(\sqrt{7}/4A_0) - (3/4)A_2]} \Gamma_3 \boldsymbol{e}^{-t[(\sqrt{7}/4A_0) - (3/4)A_2]}$$

HH-LH Splitting due to Confinement

 $\begin{aligned} & \text{realistic Hamiltonian} \\ \hat{H} = \hat{H}_Q + \frac{\Delta E_0}{2} \tau_z \text{ with } \Delta E_0 > \Delta E(\hat{H}_Q) \end{aligned}$

HH/HL splitting with qubit-charge distance r = 50nm and quadrupole potential $e\Phi = 50$ meV: $\Delta E(\hat{H}_Q) \approx 0.57$ meV

HH-LH Splitting due to Confinement

 $\begin{aligned} & \text{realistic Hamiltonian} \\ \hat{H} = \hat{H}_Q + \frac{\Delta E_0}{2} \tau_z \text{ with } \Delta E_0 > \Delta E(\hat{H}_Q) \end{aligned}$

HH/HL splitting with qubit-charge distance r = 50nm and quadrupole potential $e\Phi = 50$ meV: $\Delta E(\hat{H}_Q) \approx 0.57$ meV

typical HH/LH splitting ΔE_0 due to confinement larger than quadrupole splitting!

HH-LH Splitting due to Confinement

realistic Hamiltonian $\hat{H} = \hat{H}_Q + \frac{\Delta E_0}{2} \tau_z$ with $\Delta E_0 > \Delta E(\hat{H}_Q)$

HH/HL splitting with qubit-charge distance r = 50nm and quadrupole potential $e\Phi = 50$ meV: $\Delta E(\hat{H}_Q) \approx 0.57$ meV

typical HH/LH splitting ΔE_0 due to confinement larger than quadrupole splitting!

possible solution: induce linear mechanical strain in *z*-direction (GaAs)

Other Deviations

method robust against:

- residual dipole fields
- deviations from quadrupole potential wih l = 2
- deviations from quadratic confinement

l = 0 l = 1	r cos φ	Overall shift in energy that does not change ΔE Shift of the center of the bound state assuming that quadrupole and confining potentials
		$(\Phi_1 + \Phi_4)$ are quadratic in r ; ΔE unchanged
l = 2	r^2 , $r^2 \cos 2\phi$	Included in the model as $\Phi_1 + \Phi_4$
l = 3	$r^{3}P_{3} = r^{3}(\frac{3}{8}\cos\phi + \frac{5}{8}\cos 3\phi)$	Lowest order that appears in dipole expansion and can induce quadratic Stark effect
l = 4	r ⁴ cos 4φ	Deviation from quadrupole symmetry by four equally charged gates
	$r^4 \cos 2\phi$	Allowed by quadrupole symmetry leading to the same effective Hamiltonian $H(Q)$ with
		$J = \frac{3}{2}$ but with the induced value ΔE only a few percent in comparison with the
		l = 2 term; does not influence holonomy operations
	r ⁴	Correction to the confinement potential, which removes stability against the $l = 1$ perturbation
l = 6	r ⁶ cos 6φ	Lowest-order perturbation that appears in quadrupole expansion
	ΔE /meV	
	0.5	· ·
		1
	0.4	1 · · · · · · · · · · · · · · · · · · ·
	0.3	1
		1
	0.2	
		- 4 1
		4
	+	10 20 30 40 50 Q _m / meV

TABLE I. Characteristic terms of the axial multipole expansion.

effect of r^4 corrections to confinement

Possible Issues

- extra long coherence times in HH systems often rely on tuning with magnetic fields (break TRS)
- phonon-mediated spin-decoherence mainly important for higher temperatures
- implementation of quadrupole gates around every qubit necessary
- how good can strain suppress the HH/LH splitting in reality?

