PRL 107, 150504 (2011)

Energy Landscape of 3D Spin Hamiltonians with Topological Order

Sergey Bravyi (IBM) and Jeongwan Haah (Caltech)

Why can we store a classical bit, but not a qubit?

bit
$$\longleftrightarrow$$
qubitprotect against logical Z \longleftrightarrow protect against logical X and Z unstable:1D Ising model: \longleftrightarrow 2D (3D) toric code $O(L^0)$ energy gapstable:(below T_c)2D Ising model \longleftrightarrow 4D toric code $O(L^1)$ energy gap

Can we find something similar in <4D?

Stabilizer Hamiltonians

Lattice \mathbb{Z}_L^D with O(1) qubits per site

$$H = -\sum_a G_a$$

 G_a : mutually commuting local products of single-qubit Pauli operators

$$G_a\psi=+\psi$$
: ψ is stabilized by G_a $G_a\psi=-\psi$: defect stabilized space $\mathcal{K}\subseteq \left(\mathbb{C}^2\right)^{\otimes L^D}$: groundstate space of H (if frustration-free) $\mathcal{G}=\langle G_a \rangle$: stabilizer group: abelian, $-I\notin \mathcal{G}$

logical operators: elements of $C(\mathcal{G}) \setminus \mathcal{G}$: perform non-trivial operations on the groundstate space

No-go results in 2D

Bravyi & Terhal 2008, Kay & Colbeck 2008, Haah & Preskill 2010: Every 2D stabilizer Hamiltonian with local interactions has an O(1) energy gap

between different groundstates.

Problem: string-like logical operators:

Defects can move without energy costs (\sim domain walls in 1D Ising model).

Haah's breakthrough

What about 3D?

Recent breakthrough (Haah, PRA **83**, 042330 (2011)): Existence of 3D stabilizer Hamiltonians with local interactions without string-like logical operators

Defects cannot move further than a certain constant distance away without creating other defects (**no-strings rule**).

Result: Assumptions

Assumptions on the Hamiltonian $-\sum_a G_a$:

- ► Frustration-free: for a groundstate ψ_0 we have $G_a\psi_0=\psi_0$, $\forall a$ (guaranteed if G_a 's indep. and $-I \notin \mathcal{G}$)
- Topological quantum order:
 A Pauli operator with local support that creates no defects is a stabilizer.
 - \Leftrightarrow Logical operators have O(L) distance.
- No-strings rule
 (violated by every 2D local stabilizer Hamiltonian, satisfied by e.g. Haah's 3D Hamiltonian)

Result: Precitions

- Any sequence of local errors creating an isolated defect from the vacuum with no other defects within distance R must cross an energy barrier at least $c \cdot \log R$ for some constant c > 0.
- ▶ The energy barrier for any logical operator is at least $c \cdot \log L$.
- ► This bound is tight up to a constant factor (c.f. Haah's 3D Hamiltonian)
- Proof: Based on renormalization group technique, studies syndromes which are 'dense' or 'sparse' on different length-scales, uses induction over different length-scale levels (no-strings rule is scale-invariant!).

The scaling is not as favorable as the one of the 4D toric code, but the first known in < 4D which is not $O(L^0)$.

Lifetime of the stored quantum information

- ▶ In Haah's 3D Hamiltonian, the gap between different groundstates grows as $\Delta = c \cdot \log L$
- Naive expectation (Haah & Bravyi, PRL **107**, 150504 (2011)): $au \sim e^{\beta \Delta} = L^{c\beta}$
- ▶ Best known lower bound: $\tau = e^{c'\beta^2}$ for some finite *L* (Haah & Bravyi, arXiv:1112.3252 (2011))
- ► No further improvement expected (J. Haah, private communication, 2012)