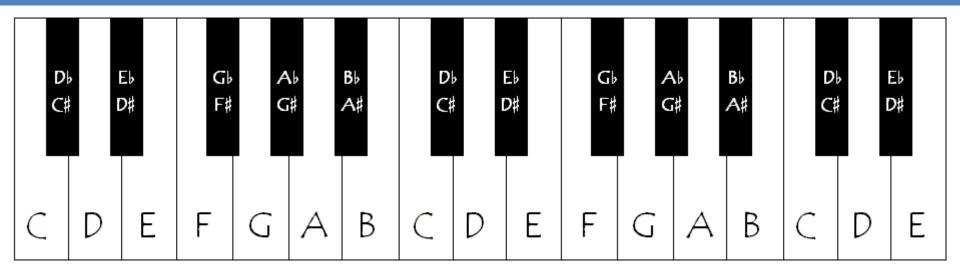
Rev. Bras. Ens. Fis. **34**, 2301 (2012) arXiv:1203.5101

Entropy-based Tuning of Musical Instruments

Haye Hinrichsen

Fakultät für Physik und Astronomie, Universität Würzburg, Germany

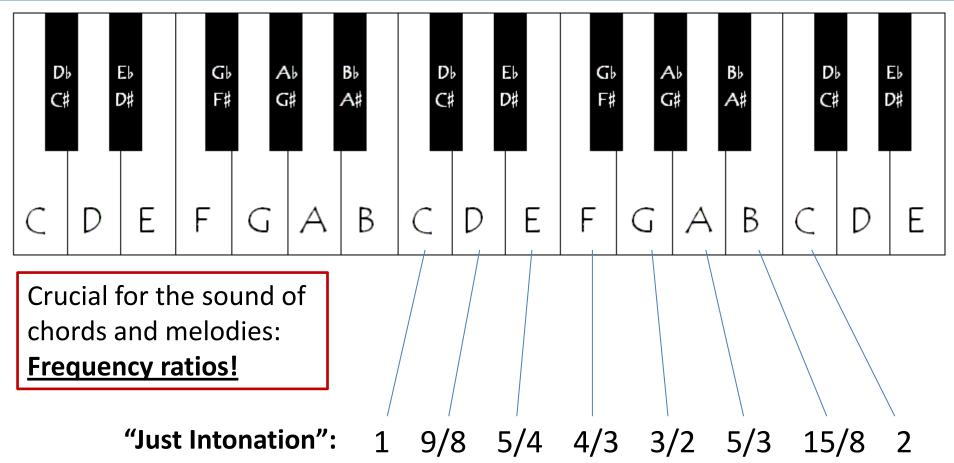
Tuning Systems



Crucial for the sound of chords and melodies:

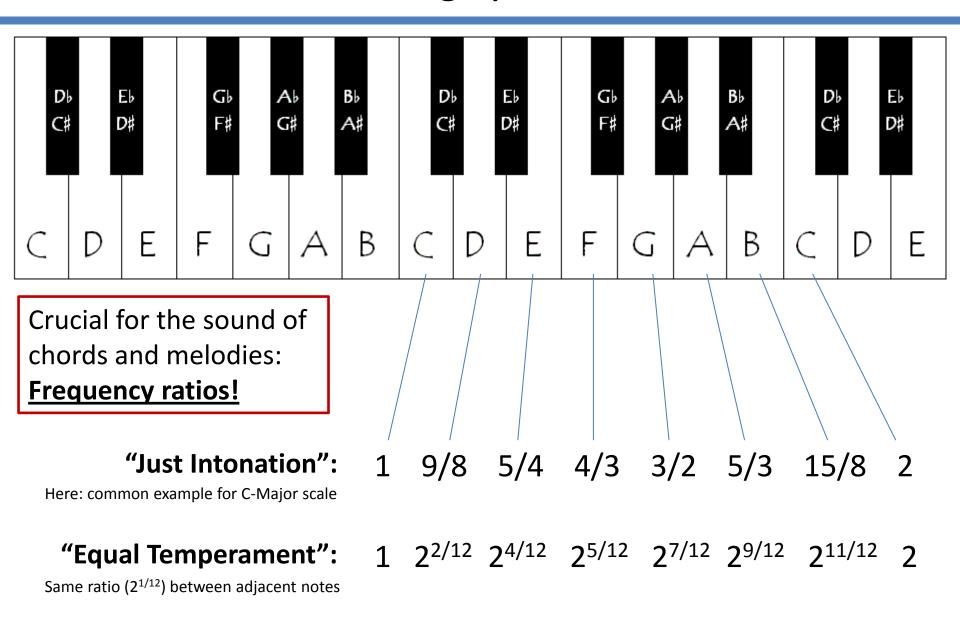
Frequency ratios!

Tuning Systems

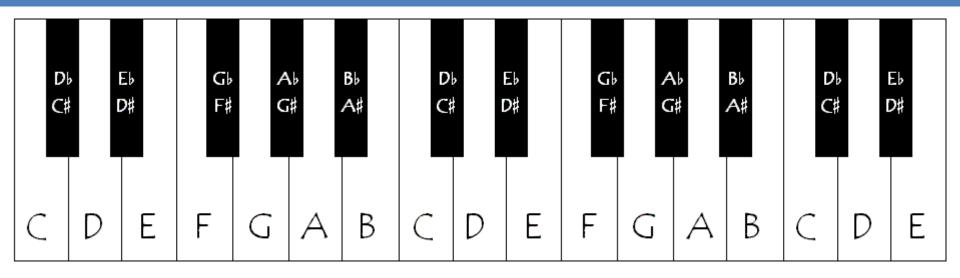


Here: common example for C-Major scale

Tuning Systems



Equal Temperament

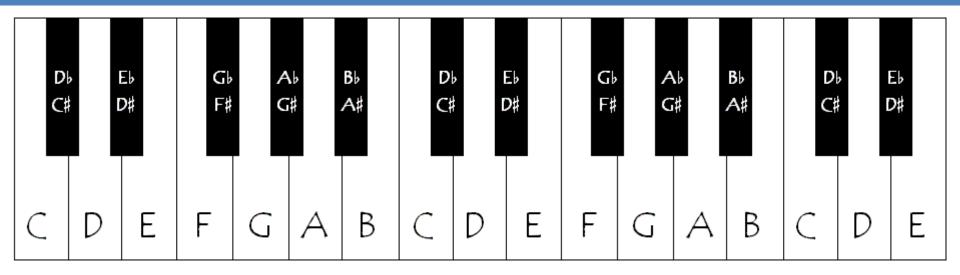


Since ~ 19th century, Western music is based on **Equal Temperament**

Adjacent notes differ by factor **2**^{1/12} in frequency

→ Translational Invariance

Equal Temperament



Since ~ 19th century, Western music is based on **Equal Temperament**

Adjacent notes differ by factor **2**^{1/12} in frequency —> Translational Invariance

Professional Piano Tuning: Aural

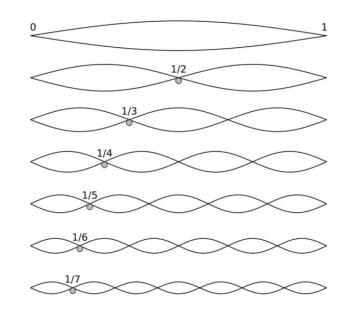
Picture from Wikipedia, by Henry Heatly

Why can't we tune it ourselves?

Overtones & Stiffness of Strings

Besides its fundamental mode (frequency f_1), a string features several overtones of frequencies f_n

Ideal string:
$$\ddot{y} \propto -y''$$
 $f \propto |k|$ \longrightarrow $f_n = nf_1$



Overtones & Stiffness of Strings

Besides its fundamental mode (frequency f₁), a string features several overtones of frequencies f_n

Ideal string:
$$\ddot{y} \propto -y''$$
 $f \propto |k|$

$$\longrightarrow f_n = nf_1$$

Stiff bar: $\ddot{y} \propto -y''''$ $f \propto k^2$

Stiff bar:
$$\ddot{y} \propto -y''''$$
 $f \propto k^2$

Realistic string:
$$\ddot{y} \propto -y'' - \epsilon y''''$$
 $f^2 \propto k^2 + \epsilon k^4$

$$\rightarrow f_n \propto n f_1 \sqrt{1 + Bn^2}$$

B: Inharmonicity coefficient

$$n=1,2,\ldots$$

Overtones & Stiffness of Strings

Further complications:

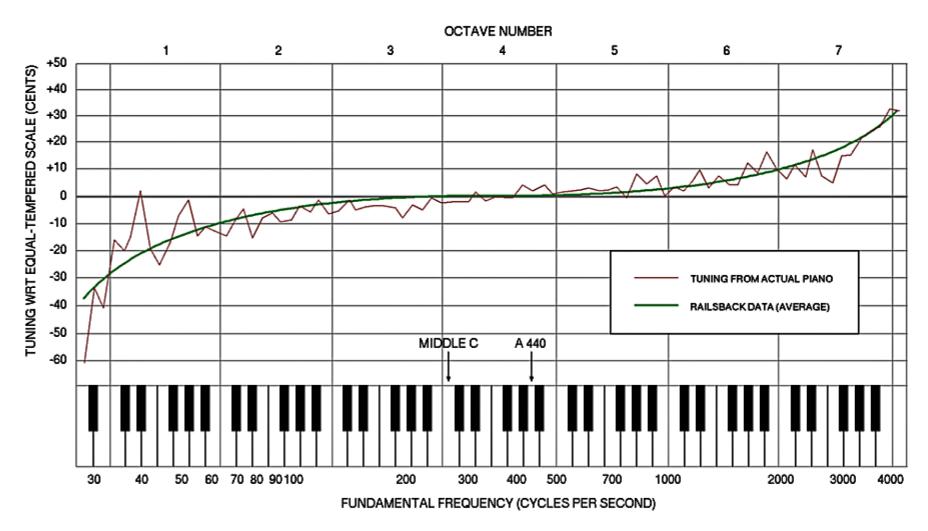
- Inharmonicity coefficient is different for each string (depends on length, diameter, tension, material properties, ...)
- For each string, the amplitudes of the overtones are different (depending on position of hammer, ...)

Realistic string:
$$\ddot{y} \propto -y'' - \epsilon y''''$$
 $f^2 \propto k^2 + \epsilon k^4$ $\longrightarrow f_n \propto n \, f_1 \, \sqrt{1 + B n^2}$

B: Inharmonicity coefficient

 $n=1,2,\ldots$

Tuning Curve of High-Quality Aural Tuning



Green: Average

Red: Individual piano

Tuning via Entropy

Idea of the paper:

Human brain perceives sounds as "pleasant" ("in tune") when there is some kind of order

Entropy is a measure of disorder

Find tuning curve via entropy minimization

Entropy-Based Tuning: Preparation

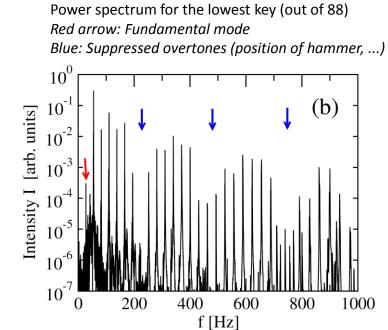
Step 1: Play and record each of the keys

Entropy-Based Tuning: Preparation

Step 1: Play and record each of the keys

Step 2: Calculate power spectrum

I(f) = |Fourier transform|²

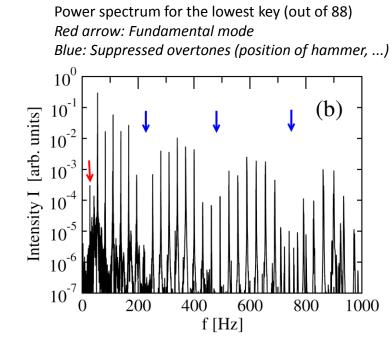


Entropy-Based Tuning: Preparation

Step 1: Play and record each of the keys

Step 2: Calculate power spectrum

I(f) = |Fourier transform|²



Step 3: Calculate **A-weighted sound pressure level L_A(f)** (in dBA)

Can be considered a rough measure of frequency-dependent energy deposition in the inner ear (cochlea)

$$L_A(f) = \left(2.0 + 20\log_{10}R_A(f)\right)L(f)$$
 Filter function: Outer \rightarrow Inner ear
$$L(f) = 10\log_{10}\left(\frac{I(f)}{I_0}\right) \qquad R_A(f) = \frac{12200^2f^4}{(f^2 + 20.6^2)(f^2 + 12200^2)\sqrt{(f^2 + 107.7^2)(f^2 + 737.9^2)}}$$

Entropy-Based Tuning: Algorithm (Start)

Start configuration:

Quantize frequency, ranging from 10 Hz to 10 kHz, in steps of cents:

$$f_m = 2^{m/1200} \cdot 10 \text{ Hz}$$
 $0 \le m \le 12000$

- For each of the 88 keys k, map the A-leveled sound pressure level $L_A(f)$ onto f_m to obtain $L_m^{(k)}$
- Shift $L_m^{(k)}$ such that the fundamental modes of the keys correspond exactly to that of an equal temperament (with A4 = 440 Hz)
- Compute the sum p_m over all keys: $p_m = \sum_{k=1}^{88} L_m^{(k)}$
- Normalize: $\sum_m p_m = 1$

Entropy-Based Tuning: Algorithm (Start)

Start configuration:

• Quantize frequency, ranging from 10 Hz to 10 kHz, in steps of cents:

$$f_m = 2^{m/1200} \cdot 10 \text{ Hz}$$
 $0 \le m \le 12000$

- For each of the 88 keys k, map the A-leveled sound pressure level $L_A(f)$ onto f_m to obtain $L_m^{(k)}$
- Shift $L_m^{(k)}$ such that the fundamental modes of the keys correspond exactly to that of an equal temperament (with A4 = 440 Hz)
- Compute the sum p_{m} over all keys: $p_{m} = \sum_{k=1}^{88} L_{m}^{(k)}$
- Normalize: $\sum_m p_m = 1$

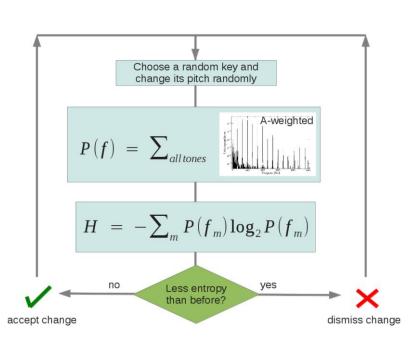
Start configuration is a quantized (cents) probability distribution based on the power spectrum generated in the inner ear when the piano is exactly tuned to equal temperament

Entropy-Based Tuning: Algorithm (Dynamics)

Entropy:
$$H = -\sum_{m} p_m \ln p_m$$

Monte-Carlo dynamics:

- Randomly shift one of the keys by ± 1 cent
- Compute again the sum $extbf{ extit{p}}_{ extit{m}}$ over all keys: $\;p_{m}=\sum_{k=1}^{88}L_{m}^{(k)}\;$
- Normalize: $\sum_m p_m = 1$
- Compute the entropy
- If entropy decreased, keep the change, otherwise undo it

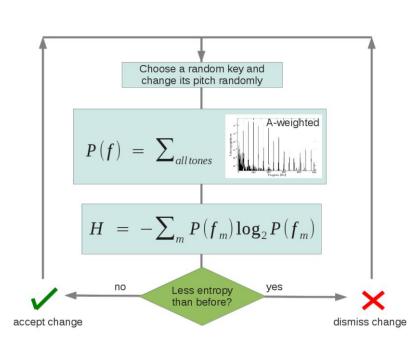


Entropy-Based Tuning: Algorithm (Dynamics)

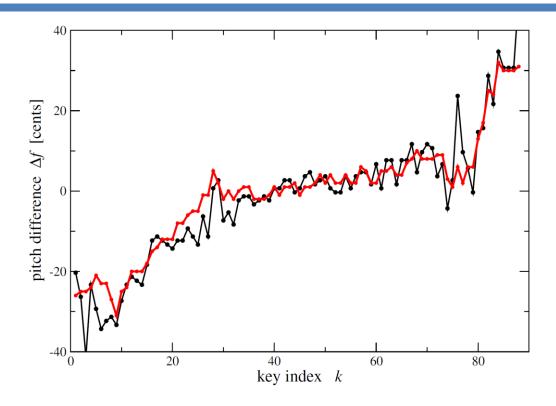
Entropy:
$$H = -\sum_{m} p_m \ln p_m$$

Monte-Carlo dynamics:

- Randomly shift one of the keys by ± 1 cent
- Compute again the sum $extcolor{black}{p}_m$ over all keys: $\;p_m = \sum_{k=1}^{88} L_m^{(k)}\;$
- Normalize: $\sum_m p_m = 1$
- Compute the entropy
- If entropy decreased, keep the change, otherwise undo it

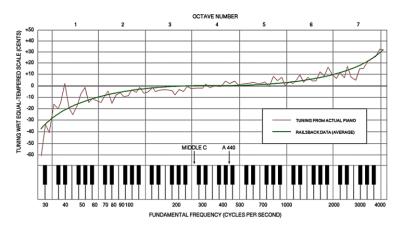


Results

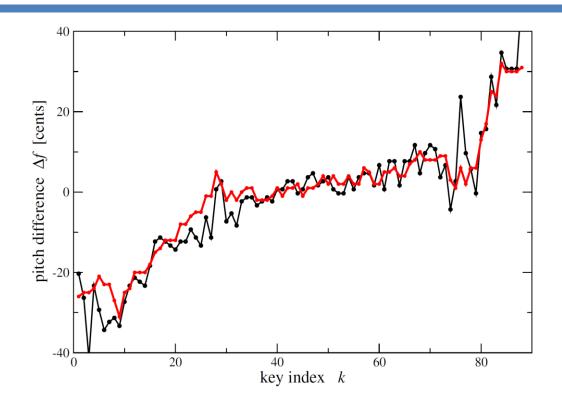


Red: Theoretical result

Black: Aural tuning



Results

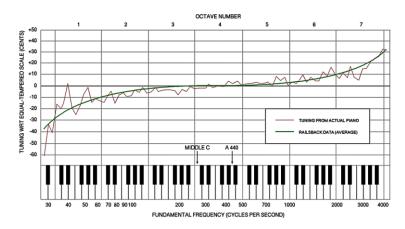


Red: Theoretical result

Black: Aural tuning

Method reproduces the stretch curve

Fluctuations are correlated (!), especially in the treble and the bass



Media Interest: Articles, Blogs, ...

English

IOP PhysicsWorld.com

MIT Technology Review

The Wall Street Journal

Daily Mail – Mail Online

Discover Magazine

Pano News Archiv

Microsoft Future Tech

Physics4me

The Week behind

Quantummaniac

33rd Square

Piano Tuner Technicians Forum

Tune a Piano Yourself Blog

Editorial RBEF

German

Heise Newsticker

Technology Review Heise Online

Deutschlandradio Kultur

Pressestelle Uni Würzburg

showmedia.de

Nürnberger Zeitung (NZ)

Wiley Interscience pro-physik

Codex Flores: Viel Aufregung...

Medizin&Technik: Wir wollen Spaß

Neurosociology & Neuromarketing

Interview Klassikradio

Interview BR2

Mainpost

• • •

..

Author: Several open questions and remaining tasks

- Method tested on only one piano so far
- Apparently there are many local minima, and the present algorithm gives similar but not reproducible results
- Step-size of one cent is smaller than the resolution of the ear
- When additional filter function for "inner ear → brain" ("loudness")
 are included, one obtains unreasonable stretches in the bass
- ... (see article)

Author: Several open questions and remaining tasks

- Method tested on only one piano so far
- Apparently there are many local minima, and the present algorithm gives similar but not reproducible results
- Step-size of one cent is smaller than the resolution of the ear
- When additional filter function for "inner ear → brain" ("loudness")
 are included, one obtains unreasonable stretches in the bass
- ... (see article)

The fluctuations on top of the smooth stretch curve are not random, but to some extent essential for the good results as achieved by professional, aural tuning

Author: Several open questions and remaining tasks

- Method tested on only one piano so far
- Apparently there are many local minima, and the present algorithm gives similar but not reproducible results
- Step-size of one cent is smaller than the resolution of the ear
- When additional filter function for "inner ear → brain" ("loudness")
 are included, one obtains unreasonable stretches in the bass
- ... (see article)

The fluctuations on top of the smooth stretch curve are not random, but to some extent essential for the good results as achieved by professional, aural tuning

Whether or not the presented idea based on entropy minimization can be used to improve existing electronic tuning methods remains to be seen

Author: Several open questions and remaining tasks

- Method tested on only one piano so far
- Apparently there are many local minima, and the present algorithm gives similar but not reproducible results
- Step-size of one cent is smaller than the resolution of the ear
- When additional filter function for "inner ear → brain" ("loudness")
 are included, one obtains unreasonable stretches in the bass
- ... (see article)

The fluctuations on top of the smooth stretch curve are not random, but to some extent essential for the good results as achieved by professional, aural tuning

Whether or not the presented idea based on entropy minimization can be used to improve existing electronic tuning methods remains to be seen

MIT Technology Review, ...:

"Algorithm Spells the End for Professional Musical Instrument Tuners"

Science **336**, 1283 (2012)

Room-Temperature Quantum Bit Memory Exceeding One Second

- P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, 1
- S. D. Bennett,¹ F. Pastawski,³ D. Hunger,³ N. Chisholm,⁴
- M. Markham,⁵ D. J. Twitchen,⁵ J. I. Cirac,³ and M. D. Lukin¹

¹Department of Physics, Harvard University, Cambridge, USA ²Institute for Quant. Inf. and Matter, California Institute of Technology, Pasadena, USA ³Max-Planck-Institut für Quantenoptik, Garching, Germany ⁴School of Engineering and Applied Sciences, Harvard University, Cambridge, USA ⁵Element Six, Ascot, UK

Main Results

System

Single ¹³C nuclear spin near a nitrogen-vacancy (NV) center in an isotopically pure diamond (99.99% spinless ¹²C)

Experimental Results (Room temperature)

¹³C nuclear spin (spin ½) can preserve its polarization for several minutes

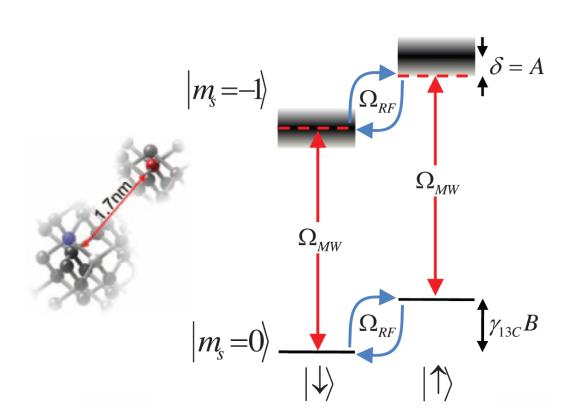
Coherence times longer than one second are achieved by decoupling the nuclear spin from its environment

Basic System

Electronic spin of NV Center: Spin 1, $m_s = 1, 0, -1$

Nearby ¹³C nuclear spin: Spin 1/2, $I_z = 1/2, -1/2$

A magnetic field B is applied along the NV symmetry axis (z axis)



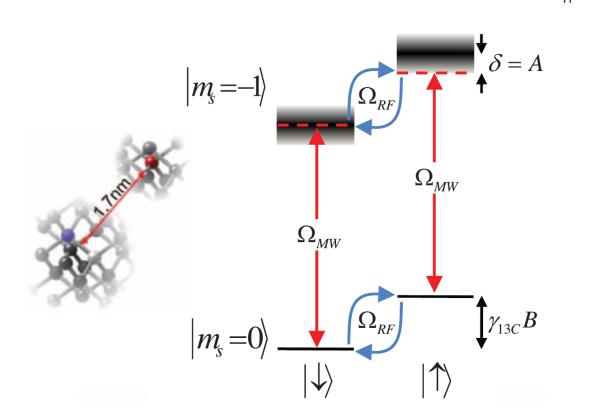
Basic System

Electronic spin of NV Center: Spin 1, $m_s = 1, 0, -1$

Nearby ¹³C nuclear spin: Spin 1/2, $I_z = 1/2, -1/2$

A magnetic field B is applied along the NV symmetry axis (z axis)

Simple Hamiltonian:
$$H=-E_Z m_s + E_n I_z + \hbar A_{||} m_s I_z$$

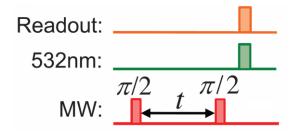


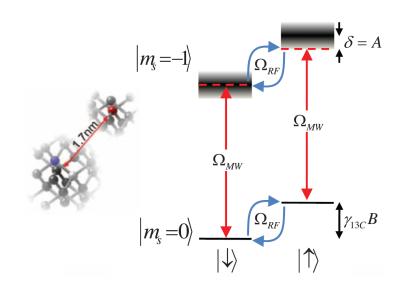
Measurement of Hyperfine Interaction

Simple Hamiltonian:

$$H = -E_Z m_s + E_n I_z + \hbar A_{\parallel} m_s I_z$$

Ramsey-type experiment:



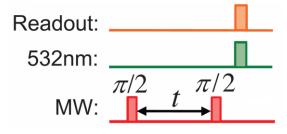


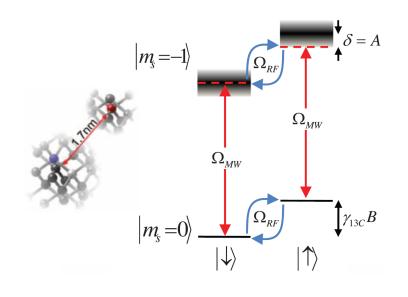
Measurement of Hyperfine Interaction

Simple Hamiltonian:

$$H = -E_Z m_s + E_n I_z + \hbar A_{\parallel} m_s I_z$$

Ramsey-type experiment:





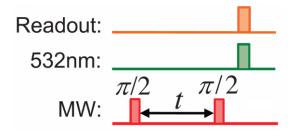
In the presence of a ^{13}C nuclear spin, one expects an additional collaps in the signal at time $~t=\tau=\pi/A_{||}$, for which one finds $\langle m_s \rangle \simeq -1/2$ when the system is initially in the state $|0\rangle ~(|\uparrow\rangle + |\!\downarrow\rangle)$

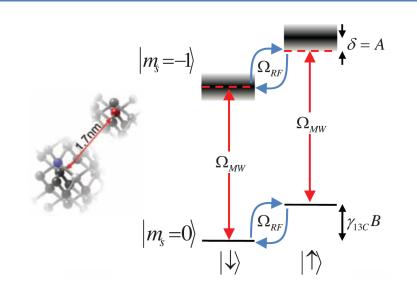
Measurement of Hyperfine Interaction

Simple Hamiltonian:

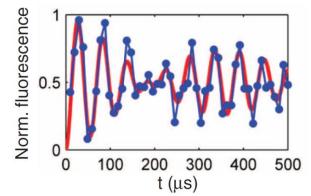
$$H = -E_Z m_s + E_n I_z + \hbar A_{\parallel} m_s I_z$$

Ramsey-type experiment:





In the presence of a ¹³C nuclear spin, one expects an additional collaps in the signal at time $~t= au=\pi/A_{\parallel}$, for which one finds $\langle m_s
angle\simeq -1/2$ when the system is initially in the state $|0\rangle$ ($|\uparrow\rangle + |\downarrow\rangle$)



In this sample, around 1 out of 10 NV centers had a 13 C nuclear spin close by (1-2 nm). Here: ~ 1.7 nm

$$T_{2e}^* = 470 \pm 100 \; \mu ext{s}$$
 $A_{||} = (2\pi) \; (2.66 \pm 0.08) \; ext{kHz}$ Measured also via an NMR exp

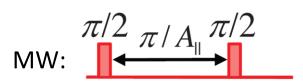
Measured also accurately via an NMR experiment

C_nNOT_e gate

Simple Hamiltonian:

$$H = -E_Z m_s + E_n I_z + \hbar A_{\parallel} m_s I_z$$

Pulse sequence:



C_nNOT_e gate

Simple Hamiltonian:

$H = -E_Z m_s + E_n I_z + \hbar A_{\parallel} m_s I_z$

Pulse sequence:

MW: $\pi/2 \pi/A_{\parallel} \pi/2$

One finds

$$e^{-i\alpha} = 1$$

$$\begin{array}{ccc} |0\rangle |\uparrow\rangle & \rightarrow & |0\rangle |\uparrow\rangle \\ |0\rangle |\downarrow\rangle & \rightarrow & |-1\rangle |\downarrow\rangle \end{array}$$

$$\alpha = \frac{\pi E_Z}{\hbar A_{\parallel}} + \frac{\pi}{2}$$

$$e^{-i\alpha} = -1$$

$$\begin{array}{ccc} |0\rangle |\uparrow\rangle & \rightarrow & |-1\rangle |\uparrow\rangle \\ |0\rangle |\downarrow\rangle & \rightarrow & |0\rangle |\downarrow\rangle \end{array}$$

C_nNOT_e gate

Simple Hamiltonian:

$$H = -E_Z m_s + E_n I_z + \hbar A_{\parallel} m_s I_z$$

Pulse sequence:

MW: $\pi/2 \pi/A_{\parallel} \pi/2$

One finds

$$e^{-i\alpha} = 1$$

$$\begin{array}{ccc} |0\rangle |\uparrow\rangle & \rightarrow & |0\rangle |\uparrow\rangle \\ |0\rangle |\downarrow\rangle & \rightarrow & |-1\rangle |\downarrow\rangle \end{array}$$

$$\alpha = \frac{\pi E_Z}{\hbar A_{\parallel}} + \frac{\pi}{2}$$

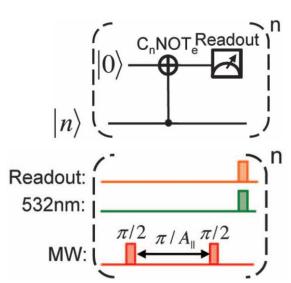
$$e^{-i\alpha} = -1$$

$$\begin{array}{ccc} |0\rangle |\uparrow\rangle & \rightarrow & |-1\rangle |\uparrow\rangle \\ |0\rangle |\downarrow\rangle & \rightarrow & |0\rangle |\downarrow\rangle \end{array}$$

Corresponds to a C_nNOT_e logical gate

Nuclear spin state can be read out via electron spin

Initialization via projective measurement



C_nNOT_e gate

Simple Hamiltonian:

$$H = -E_Z m_s + E_n I_z + \hbar A_{\parallel} m_s I_z$$

Pulse sequence:

MW: $\pi/2 \pi/A_{\parallel} \pi/2$

One finds

$$e^{-i\alpha} = 1$$

$$\begin{array}{ccc} |0\rangle |\uparrow\rangle & \rightarrow & |0\rangle |\uparrow\rangle \\ |0\rangle |\downarrow\rangle & \rightarrow & |-1\rangle |\downarrow\rangle \end{array}$$

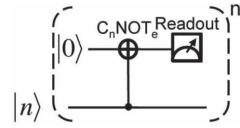
$$e^{-i\alpha} = -1$$

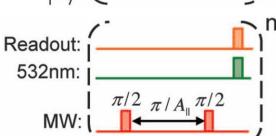
$$\begin{array}{ccc} |0\rangle |\uparrow\rangle & \rightarrow & |-1\rangle |\uparrow\rangle \\ |0\rangle |\downarrow\rangle & \rightarrow & |0\rangle |\downarrow\rangle \end{array}$$

Experiment:

. 244.42 ± 0.02 G

 $\alpha = \frac{\pi E_Z}{\hbar A_{\parallel}} + \frac{\pi}{2}$





Corresponds to a C_nNOT_e logical gate

Nuclear spin state can be read out via electron spin

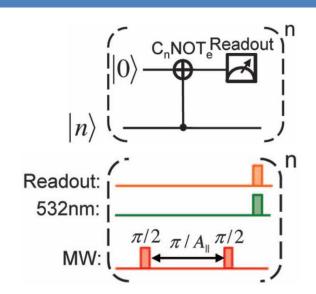
Initialization via projective measurement

C_nNOT_e gate

Simple Hamiltonian:

$$H = -E_Z m_s + E_n I_z + \hbar A_{\parallel} m_s I_z$$

Repetitive readout

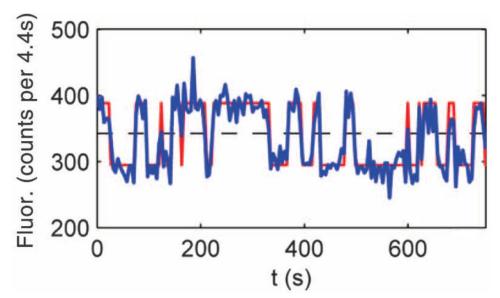


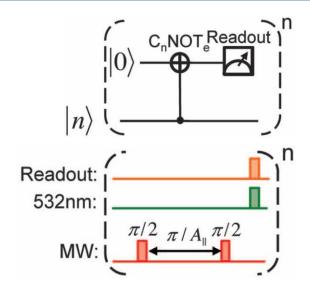
C_nNOT_e gate

Simple Hamiltonian:

$$H = -E_Z m_s + E_n I_z + \hbar A_{\parallel} m_s I_z$$

Repetitive readout

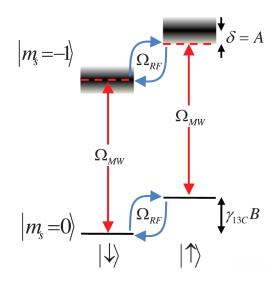




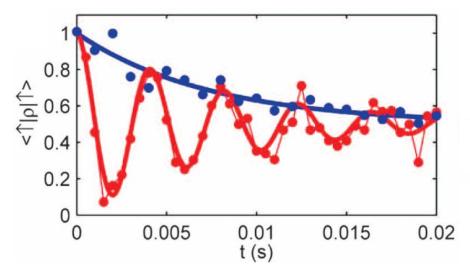
Nuclear spin preserves orientation for about half a minute In the dark, no decay was observed at time scale of 200 s

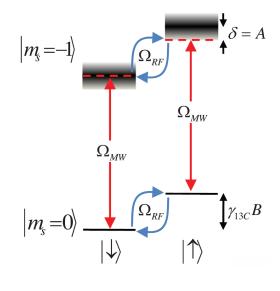
Scheme allows initialization of nuclear spin state with > 97% fidelity, and readout with 92% fidelity

Ramsey experiment on the nuclear spin via rf pulses



Ramsey experiment on the nuclear spin via rf pulses





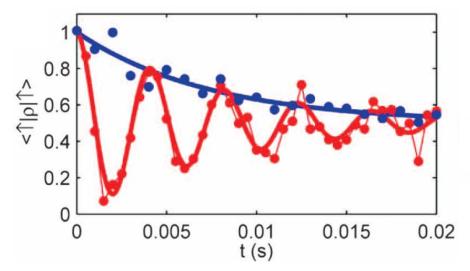
Red: Coherent oscillations of nuclear spin (Ramsey)

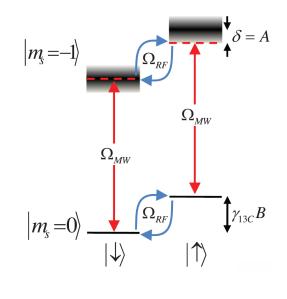
Blue: Relaxation of electronic spin state

$$T_{2n}^* = 8.2 \pm 1.3 \text{ ms}$$

$$T_{1e} = 7.5 \pm 0.8 \text{ ms}$$

Ramsey experiment on the nuclear spin via rf pulses





Red: Coherent oscillations of nuclear spin (Ramsey)

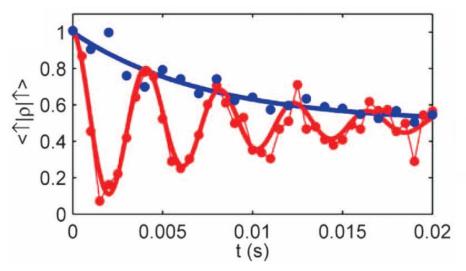
Blue: Relaxation of electronic spin state

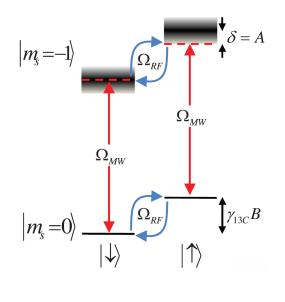
$$T_{2n}^* = 8.2 \pm 1.3 \text{ ms}$$

$$T_{1e} = 7.5 \pm 0.8 \text{ ms}$$

Short dephasing time is determined by coupling to nearby electronic states with $m_s = 1$, -1. Can these be decoupled from the nuclear spin?

Ramsey experiment on the nuclear spin via rf pulses





Red: Coherent oscillations of nuclear spin (Ramsey)

Blue: Relaxation of electronic spin state

$$T_{2n}^* = 8.2 \pm 1.3 \text{ ms}$$

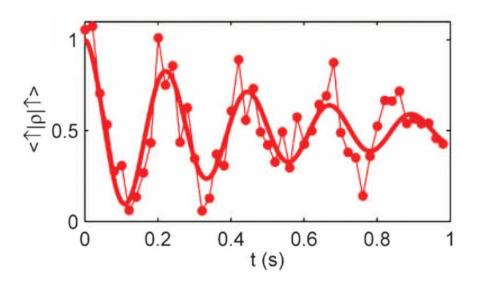
$$T_{1e} = 7.5 \pm 0.8 \text{ ms}$$

Short dephasing time is determined by coupling to nearby electronic states with $m_s = 1$, -1. Can these be decoupled from the nuclear spin?

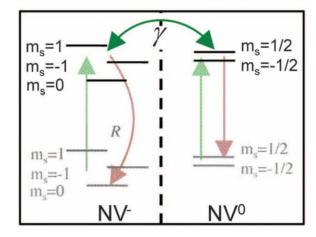
Yes, by exciting the NV center with a focused green laser beam!

Decoherence with Laser

Ramsey experiment on the nuclear spin via rf pulses



$$T_{2n}^* = 0.53 \pm 0.14 \text{ s}$$

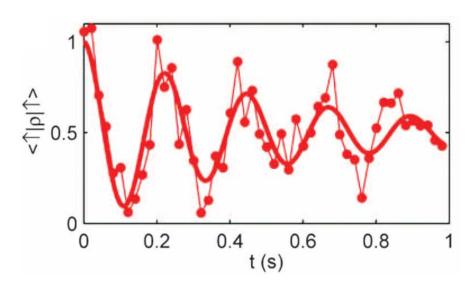


The authors also explain their results with simulations of a many-state system (Supplement)

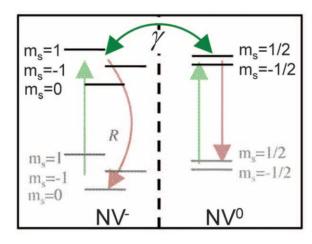
"Dissipative decoupling" via laser illumination prolongs dephasing time by two orders of magnitude

Decoherence with Laser

Ramsey experiment on the nuclear spin via rf pulses



$$T_{2n}^* = 0.53 \pm 0.14 \text{ s}$$



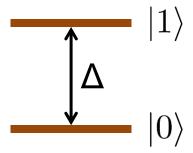
The authors also explain their results with simulations of a many-state system (Supplement)

"Dissipative decoupling" via laser illumination prolongs dephasing time by two orders of magnitude

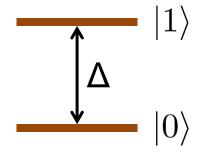
Further improvement is possible:

Dynamical decoupling from other ¹³C nuclear spins

Two-level system (Qubit)



Two-level system (Qubit)



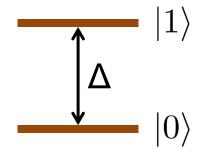
Prepare system in eigenstate of σ_x

$$|\psi\rangle_{t=0} = |0\rangle + |1\rangle$$

Time evolution

$$|\psi\rangle_t = |0\rangle + e^{-i\frac{\Delta}{\hbar}t} |1\rangle$$

Two-level system (Qubit)



Prepare system in eigenstate of σ_x

$$|\psi\rangle_{t=0} = |0\rangle + |1\rangle$$

Time evolution

$$|\psi\rangle_t = |0\rangle + e^{-i\frac{\Delta}{\hbar}t} |1\rangle$$

Average over different Δ

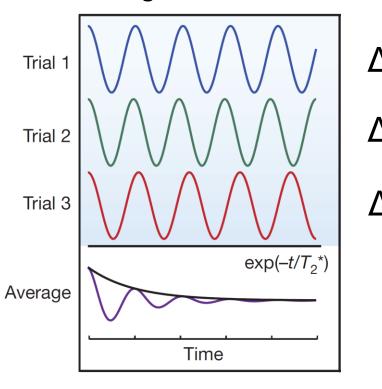
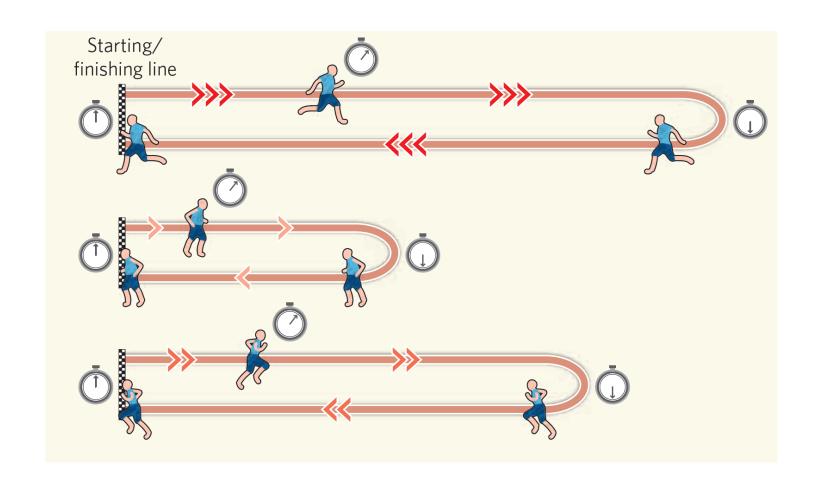
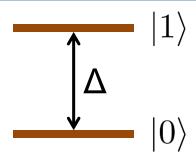
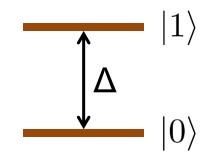


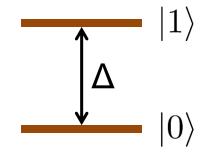
Figure from Ladd et al., Nature 2010





Eigenstate of
$$\sigma_{\rm x}$$
 $|\psi\rangle_{t=0}=|0\rangle+|1\rangle$

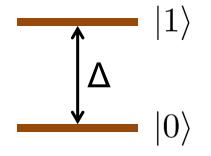




Eigenstate of
$$\sigma_x$$

Eigenstate of
$$\sigma_{\rm x}$$
 $|\psi\rangle_{t=0}=|0\rangle+|1\rangle$

$$|\psi\rangle_{t<\tau} = |0\rangle + e^{-i\frac{\Delta}{\hbar}t} |1\rangle$$



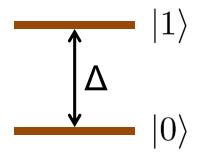
Eigenstate of
$$\sigma_x$$

Eigenstate of
$$\sigma_{\rm x}$$
 $|\psi\rangle_{t=0}=|0\rangle+|1\rangle$

$$|\psi\rangle_{t<\tau} = |0\rangle + e^{-i\frac{\Delta}{\hbar}t} |1\rangle$$
$$|\psi\rangle_{t=\tau} = |0\rangle + e^{-i\frac{\Delta}{\hbar}\tau} |1\rangle$$

$$|\psi\rangle_{t=\tau} = |0\rangle + e^{-i\frac{\Delta}{\hbar}\tau} |1\rangle$$

Apply a single π pulse (echo pulse) at time $t = \tau$



Eigenstate of
$$\sigma_x$$

Eigenstate of
$$\sigma_{\rm x}$$
 $|\psi\rangle_{t=0}=|0\rangle+|1\rangle$

$$|\psi\rangle_{t<\tau} = |0\rangle + e^{-i\frac{\Delta}{\hbar}t} |1\rangle$$

π pulse

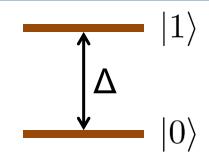
$$|\psi\rangle_{t<\tau} = |0\rangle + e^{-i\frac{\Delta}{\hbar}t} |1\rangle$$

$$|\psi\rangle_{t=\tau} = |0\rangle + e^{-i\frac{\Delta}{\hbar}\tau} |1\rangle$$

$$|\psi\rangle_{t=\tau} = |1\rangle + e^{-i\frac{\Delta}{\hbar}\tau} |0\rangle$$

$$|\psi\rangle_{t=\tau} = |1\rangle + e^{-i\frac{\Delta}{\hbar}\tau} |0\rangle$$

Apply a single π pulse (echo pulse) at time $t = \tau$



Eigenstate of σ_x

$$|\psi\rangle_{t=0} = |0\rangle + |1\rangle$$

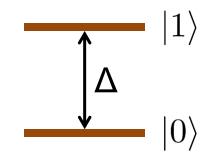
$$|\psi\rangle_{t<\tau} = |0\rangle + e^{-i\frac{\Delta}{\hbar}t} |1\rangle$$

$$|\psi\rangle_{t=\tau} = |0\rangle + e^{-i\frac{\Delta}{\hbar}\tau} |1\rangle$$

$$|\psi\rangle_{t=\tau} = |1\rangle + e^{-i\frac{\Delta}{\hbar}\tau} |0\rangle$$

$$|\psi\rangle_{t>\tau} = e^{-i\frac{\Delta}{\hbar}(t-\tau)}|1\rangle + e^{-i\frac{\Delta}{\hbar}\tau}|0\rangle$$
$$= |0\rangle + e^{-i\frac{\Delta}{\hbar}(t-2\tau)}|1\rangle$$

Apply a single π pulse (echo pulse) at time t = τ



Eigenstate of σ_x

$$|\psi\rangle_{t=0} = |0\rangle + |1\rangle$$

π pulse

$$|\psi\rangle_{t<\tau} = |0\rangle + e^{-i\frac{\Delta}{\hbar}t} |1\rangle$$

$$|\psi\rangle_{t=\tau} = |0\rangle + e^{-i\frac{\Delta}{\hbar}\tau} |1\rangle$$

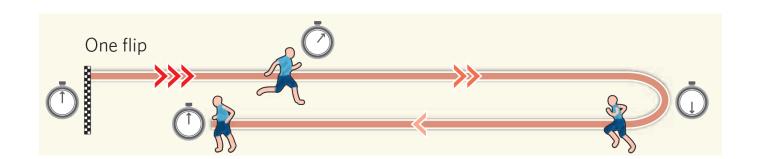
$$|\psi\rangle_{t=\tau} = |1\rangle + e^{-i\frac{\Delta}{\hbar}\tau} |0\rangle$$

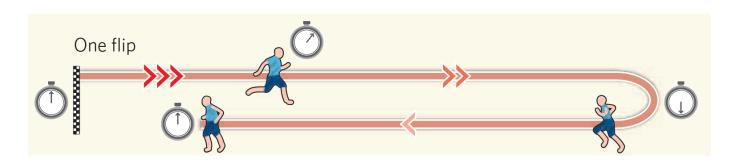
$$|\psi\rangle_{t>\tau} = e^{-i\frac{\Delta}{\hbar}(t-\tau)}|1\rangle + e^{-i\frac{\Delta}{\hbar}\tau}|0\rangle$$
$$= |0\rangle + e^{-i\frac{\Delta}{\hbar}(t-2\tau)}|1\rangle$$

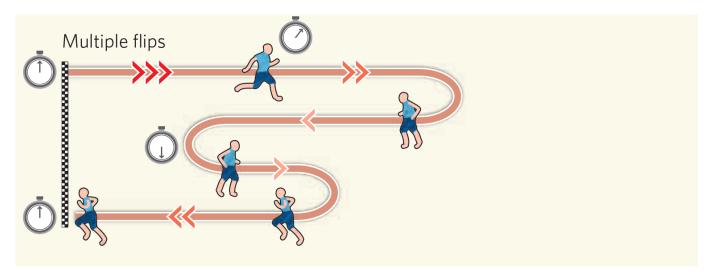
$$t = 2 \tau$$

$$|\psi\rangle_{t=2\tau} = |0\rangle + |1\rangle$$

Independent of Δ Peak in the signal





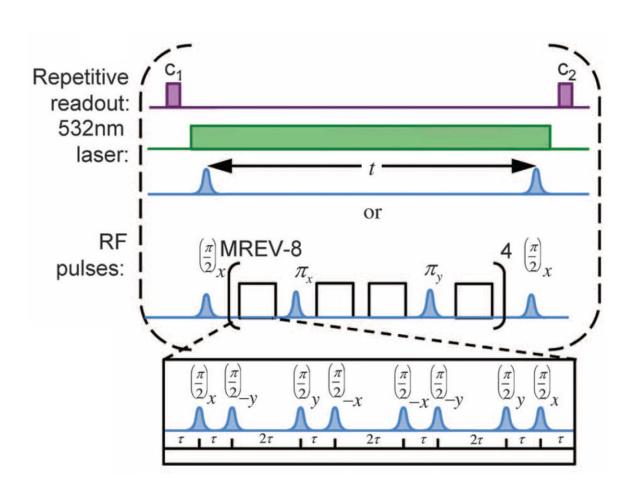


More advanced pulse sequences:

Carr-Purcell-Meiboom-Gill (CPMG)
Concatenated dynamical decoupling (CDD)

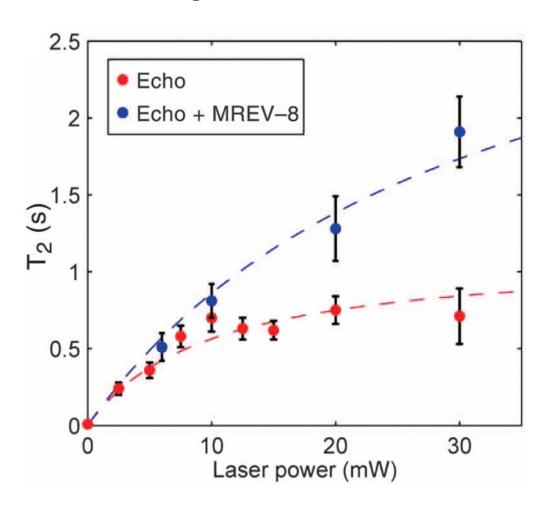
• • •

In the paper, a modified Mansfield-Rhim-Elleman-Vaughan (MREV) decoupling sequence is used



Decoherence with Laser and Decoupling Sequence

For laser illumination PLUS advanced dynamical decoupling sequence, coherence times longer than one second have been measured



Conclusions

- Single ¹³C nuclear spins near NV centers are candidates for solid state qubits
- The paper demonstrates that they feature very long relaxation times T_1 (many seconds to minutes) and coherence times T_2 (seconds)
- Initialization and readout are possible
- Two-qubit gates and scalability?
 (Maybe via photonic entanglement, ...)
- According to the authors' analysis, further improvements seem clearly possible (T₂ on the order of minutes)