


Overview

Bose-Hubbard model for a 1D chain
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The BHM favors delocalized particles for large t. How to
explain re-entrance?

Use infinite time-evolving block decimation (iTEBD)
algorithm to variationally minimize the infinite matrix product
state (MPS) ansatz.



Mott Insulator - Superfluid Quantum Phase Transition

Superfluid

Atom number uncertain and well
defined macroscopic phase

Gapless excitation spectrum and
finite compressibility

Mott Insulator

Atom number exactly known but
no phase coherence

Gapped excitation spectrum and
vanishing compressibility



Superfluid Limit
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Atom number uncertain and well defined macroscopic phase



Strong Interactions Limit
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Atom number exactly known but no phase coherence



Mean-Field Phase Diagram of the BHM

Areas with vanishing compressibility are MI

Density Contours have negative slope for large t

Integer density contours meet the tips of the Mott lobes



Phase Diagram of the 1D BHM

(a) small-cluster MF (b) periodic bc’s with 2 to 11 sites
(c) real-space RG (d) DMRG and QMC



Matrix Product States

Interpolate between

|Ψ〉 =
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C (s1 . . . sN)|s1 . . . sN〉

and

|Ψ〉MF =
(∑

cs1 |s1〉
)(∑

cs2 |s2〉
)
. . .
(∑

csN |sN〉
)

via Matrix product states:
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tr [A1(s1)Σ1A2(s2) . . .AN(sN)] |s1 . . . sN〉

It’s possible because the entanglement is bound by area laws.

Vidal, Phys.Rev.Lett. 93, 040502 (2004) & Phys.Rev.Lett. 98, 070201 (2007)



Finite-Entanglement infinite MPS

Recall Schmidt decomposition via a SVD,
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The elements of Σ are the Schmidt coefficients.

⇒ The size of the A’s determines the maximal entanglement!

Schollwöck, Annals of Physics 326 (2011) 96-192



Signatures of Criticality at Finite Entanglement

(a) χ = 3 calculation: Pseudo-critical point (µ = 0.6)
(b) χ = 13 Entanglement spectrum (µ = 0.6, t = 0.22)



Utility of the Schmidt Spectrum

χ = 13 calculation: Re-entrance!



Phase boundaries for different χ

Works much better than small-cluster MF and χ = 21 is tiny for
DMRG standards



A Zoom to the Tip

χ = 8 is the minimal entanglement needed to see re-entrance



Kinetic and Interaction energies

Rewrite the energy density of the BHM
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Fluctuations and correlation distributions for µ = 0.204

In the MI phase MF neglects 〈b̂†j b̂j+1〉c and ∆(n̂j).



Entanglement Scaling of the KT point

(b) S1/2 ∼ κ ln(χ) (c) tc(χ) = B1/(ln(χ) + B2)2 + tKT



Conclusions

”Utilizing the iTEBD algorithm we have performed a
finite-entanglement analysis of the MI-SF transition in the
BHM in 1D.”

Extrapolation beyond MF by restricting the entanglement

What is the ”entanglement needed for an infinite MPS to be
both particle-number symmetric and effectively capture
intricate particle-hole excitations above the MI state carrying
kinetic energy.”

Low cost iTEBD calculations can provide qualitative and
quantitative insight into the lobe structure and accurate
estimations of critical points.


