Re-entrance and entanglement in the one-dimensional Bose-Hubbard model
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Re-entrance is a novel feature where the phase boundaries of a system exhibit a succession of
transitions between two phases A and B, like A-B-A-B, when just one parameter is varied mono-
tonically. This type of re-entrance is displayed by the 1D Bose Hubbard model between its Mott
insulator (MI) and superfluid phase as the hopping amplitude is increased from zero. Here we anal-
yse this counter-intuitive phenomenon directly in the thermodynamic limit by utilizing the infinite
time-evolving block decimation algorithm to variationally minimize an infinite matrix product state
(MPS) parameterized by a matrix size x. Exploiting the direct restriction on the half-chain entan-
glement imposed by fixing y, we determined that re-entrance in the MI lobes only emerges in this
approximate when y > 8. This entanglement threshold is found to be coincident with the ability an
infinite MPS to be simultaneously particlenumber symmetric and capture the kinetic energy carried
by particle-hole excitations above the MI. Focussing on the tip of the MI lobe we then applied, for
the first time, a general finite-entanglement scaling analysis of the infinite order Kosterlitz-Thouless
critical point located there. By analysing x’s up to a very moderate y = 70 we obtained an estimate
of the KT transition as txt = 0.30 & 0.01, demonstrating the how a finite-entanglement approach
can provide not only qualitative insight but also quantitatively accurate predictions.



Overview

Bose-Hubbard model for a 1D chain
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m The BHM favors delocalized particles for large t. How to
explain re-entrance?

m Use infinite time-evolving block decimation (iTEBD)
algorithm to variationally minimize the infinite matrix product
state (MPS) ansatz.



Mott Insulator - Superfluid Quantum Phase Transition

Superfluid Mott Insulator

Atom number uncertain and well
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Superfluid Limit
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Strong Interactions Limit
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Atom number exactly known but no phase coherence




Mean-Field Phase Diagram of the BHM
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m Areas with vanishing compressibility are Ml
m Density Contours have negative slope for large t

m Integer density contours meet the tips of the Mott lobes



Phase Diagram of the 1D BHM
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(a) small-cluster MF (b) periodic bc's with 2 to 11 sites
(c) real-space RG (d) DMRG and QMC



Matrix Product States

Interpolate between
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via Matrix product states:
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It's possible because the entanglement is bound by area laws.

Vidal, Phys.Rev.Lett. 93, 040502 (2004) & Phys.Rev.Lett. 98, 070201 (2007)



Finite-Entanglement infinite MPS

Recall Schmidt decomposition via a SVD,

W) = Zc,,p ® |j7) Zzu,a/\aa Vieli®) @ %)

ij

= ZAQ|¢2> ® [)

a=1

and the von-Neumann entropy
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The elements of X~ are the Schmidt coefficients.

= The size of the A's determines the maximal entanglement!

Schollwéck, Annals of Physics 326 (2011) 96-192



Signatures of Criticality at Finite Entanglement
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(a) x = 3 calculation: Pseudo-critical point (1 = 0.6)
(b) x = 13 Entanglement spectrum (u = 0.6, t = 0.22)



Utility of the Schmidt Spectrum
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x = 13 calculation: Re-entrance!



Phase boundaries for different y
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Works much better than small-cluster MF and x = 21 is tiny for
DMRG standards



A Zoom to the Tip
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x = 8 is the minimal entanglement needed to see re-entrance



Kinetic and Interaction energies

Rewrite the energy density of the BHM
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Fluctuations and correlation distributions for ;. = 0.204

In the MI phase MF neglects (b/b;;1)c and A(#)).



Entanglement Scaling of the KT point
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Conclusions

m " Utilizing the iTEBD algorithm we have performed a
finite-entanglement analysis of the MI-SF transition in the
BHM in 1D."

m Extrapolation beyond MF by restricting the entanglement

m What is the "entanglement needed for an infinite MPS to be
both particle-number symmetric and effectively capture
intricate particle-hole excitations above the MI state carrying
kinetic energy.”

m Low cost iTEBD calculations can provide qualitative and
quantitative insight into the lobe structure and accurate
estimations of critical points.



