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Motivation

I Verify Luttinger Liquid (LL) theory for microscopic theory

I What is the energy scale below which LL behavior manifests?

I How can the LL parameters K and υF be obtained?

I What is the physics away from the zero Temperature limit?

I Avoid finite-size effects.
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Giamarchi (2003)



Infinite-system DMRG

I for 1D lattice models

I start with H for 1 site, add
further sites stepwise

I after each step, find density
matrix ρ

I diagonalize ρ and neglect
redundant DoF

I obtain a new H ′ with the same
dimension but describing more
sites

I use H ′ for the next step

G. De Chiara, M. Rizzi, D. Rossini, S. Montangero (2009)



Model of spinless fermions (incl. next-nearest neighb. int.)
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I For ∆2 = 0 the Bethe ansatz gives an analytic solution and
can be used to extract LL parameters K , υF

I At half filling a gap opens for ∆ > 1. Away from half filling or
for |∆| < 1: LL

I Finite ∆2: no exact solution known. LL for small ∆2

I expectation values:
G (x) = 〈c†j+xcj〉T , n(k) =

∑
x e
−ikxG (x)



T = 0, ∆2 = 0

I χ - size of DMRG Hilbert space

I α = K
2 + 1

2K − 1

I everything for half filled system, zero temperature



∆2 6= 0, Gapped phase



Finite temperature

I T cuts off LL power laws exponentially in the infrared

I Power laws in temperature appear: dn(k)
dk |kF ∼ Tα−1

I Analytical results yield dn(k)
dk ∼ Tα−1F

[
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]
I Strong indication that low-energy n(k ,T ) behavior universal

for models in the LL universality class



Instantaneous density response function, extraction of LL
parameters

I Instantaneous density response function:
CNN(x) = 〈c†j+xcj+xc

†
j cj〉T

I Calculate the specific heat and susceptibility (∼ CNN) in
DMRG to extract the LL parameters υF and K


