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Adiabatic rapid passage (ARP)

problem: population transfer in a two-level (n-level) system

“old-school“ approach: π-pulse

not robust: sensitive to pulse area,
inhomogeneities, etc.

ARP idea: sweep (”chirp”) through the resonance!

Ω(t) = µE(t) (Rabi frequency) ∆ω(t) ≡ ω(t) − ω12 (detuning)

θ(t) ≡ tan−1[∆ω(t)/Ω(t)] (phase angle)

the adiabaticity condition
√

Ω2(t) + ∆ω2(t) � |dθ(t)/dt|

guarantees 100% population transfer to the desired excited state!

[regardless of the concrete shape of E(t) and ω(t)!]



What is this paper about?

ARP applied to a collection of interacting two-level systems

with a generic Hamiltonian:

H =

N∑
i=1

[
E

2
(σz

i + 1) + (fi(t)σ
+
i + H.c.)

]
−

∑
i,j

Jijσ
+
i σ−

j

Goals of this paper:
demonstrate the feasibility of state preparation via ARP;
find the dependence of the pulse shapes of f(t) on the interaction strength

Outcome: ARP efficient here if the pulse bandwidth is sufficient



Chirped pulse and Hamiltonian

decomposition of the driving field into amplitude and frequency:

fi(t) = gi(t) exp(i

∫
ω(t′)dt′)

eliminating the instantaneous frequency:

H =

N∑
i=1

[
E − ω(t)

2
(σz

i + 1) + (gi(t)σ
+
i + H.c.)

]
−

∑
i,j

Jijσ
+
i σ−

j

Gaussian, linearly chirped pulse with uniform amplitude:

gi(t) = g exp(−t2/τ 2) , ω(t) = E + αt

α – (linear) chirp

in the special case α = 0 one recovers a Rabi pulse with frequency E



Recap: the non-interacting (J = 0) case

HJ=0 =

N∑
i=1

[
E − ω(t)

2
(σz

i + 1) + (gi(t)σ
+
i + H.c.)

]

g(t) = 0 : level crossing for E − ω(t) = 0

g(t) = g : standard Landau-Zener problem

L-Z: the probability to remain in the adiabatic state (i.e., transfer from the

initial ground state to the excited state) is 1 − exp(−2πg2/α)

=⇒ final population always increases with reducing α!

ARP: pulses of finite duration, i.e., g(t) 6= const.

the two levels must be coupled long enough ⇒ α � 1/τ2



Special case: 1d model with n.n. coupling only

coupling Ji,j = Jδj,i+1 ⇒ JW and F.T. yield

H = −
∑
k

(αt + J cos k)c†kck +
1

√
N

∑
k,i

(g∗i Ticke
ikri + H.c.)

Reminder: the Jordan-Wigner (JW) transformation

σ−
1 = c1 , σ−

i = exp[iπ
∑
l<i

c†l cl]︸ ︷︷ ︸
Ti

ci (i ≥ 2)

maps H onto a Hamiltonian for free fermions with
n.n. hopping and an on-site potential (σz

i = 2c†ici − 1)

collective pseudospin: S ≡
∑
i

σi/2 n = Sz + N/2

for J = 0 all the states in the n-th band have energy −nαt!



Energy spectrum (for g = 0, J = 1/2, N = 4)

interaction (J 6= 0) lifts the degeneracy within each band!

different states correspond to different values of S2 for given Sz!



Possible transitions

To prepare an excited state, e.g., the fully occupied one (n = N)
we have to go through multiple crossings from n = 0 to n = N !

...for these crossings to allow adiabatic state transfer,
we need them to be avoided (the role of g 6= 0)!

simplifying assumption: uniform driving gi(t) = g(t) ⇒ coupling

g(t)
∑
i

(σ+
i + σ−

i ) = g(t)(S+ + S−) commutes with S2!

⇒ transitions possible only between states with the same S2

in different bands!

S+, S− ⇒ only n → n ± 1 direct transitions possible!



Mean-field: Lipkin-Meshkov-Glick Hamiltonian in higher dim.

mean-field replacement:
∑

i,j σ
+
i σ−

j ⇒
∑

i(Jeff σ+
i 〈σ−

i 〉 + H.c.)

effective mean-field Hamiltonian:

HMF = −Jeff(S
+S− + S−S+) −

αt

2
Sz + 2gSx

HMF = 2Jeff(S
z)2 −

αt

2
Sz + 2g(t)Sx

for fixed α occupation increases for J > 0 because of icreased separation
between crossings, which increases the individual splitings!

due to finite pulse duration, occupation should be very small when the
spacing between crossings (≈ J/α) becomes larger than the pulse width
(τ )!



Average excitation of two-level systems (mean field)

gτ = 3

for fixed α, the occupation increases (decreases) for J > 0 (J < 0)


