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Adiabatic rapid passage (ARP)

problem: population transfer in a two-level (n-level) system

2
“old-school “ approach: m-pulse
Wiz .
not robust: sensitive to pulse area,
inhomogeneities, etc.
1

ARP idea: sweep ("chirp”) through the resonance!

Q(t) = pE(t) (Rabi frequency) Aw(t) = w(t) — wiz (detuning)
0(t) = tan—1[Aw(t)/Q2(t)] (phase angle)

the adiabaticity condition \/92(15) + Aw?(t) > |dO(t)/dt|

guarantees 100% population transfer to the desired excited state!
[regardless of the concrete shape of E(t) and w(t)!]



What is this paper about?

ARP applied to a collection of interacting two-level systems
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with a generic Hamiltonian:

N
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Goals of this paper:
demonstrate the feasibility of state preparation via ARP;
find the dependence of the pulse shapes of f(t) on the interaction strength

Outcome: ARP efficient here if the pulse bandwidth is sufficient



Chirped pulse and Hamiltonian

decomposition of the driving field into amplitude and frequency:

£:6) = gi®) exp(i [ w(t)dt)

eliminating the instantaneous frequency:

N — W
i= i

Gaussian, linearly chirped pulse with uniform amplitude:
gi(t) = gexp(—t?/12) , w({t)=E+ at

o — (linear) chirp

in the special case a = 0 one recovers a Rabi pulse with frequency E



Recap: the non-interacting (J = 0) case

N
Hy—o=Y [E_Tw(t)(af +1) + (gi(t)of + Hee))
=1

g(t) = 0 : level crossing for E — w(t) =0
g(t) = g : standard Landau-Zener problem

L-Z: the probability to remain in the adiabatic state (i.e., transfer from the

initial ground state to the excited state) is | 1 — exp(—2mg? /)

—> final population always increases with reducing «!

ARP: pulses of finite duration, i.e., g(t) # const.

the two levels must be coupled long enough = | a > 1/72




Special case: 1d model with n.n. coupling only

coupling J; j = Jdji41 = JW and F.T. yield

H=— Z(at + J cos k:)c,tck + — \/_ Z(g:T cre® + Hee.)
k

Reminder: the Jordan-Wigner (JW) transformation

o, =¢c1 , 0O; = exp[iﬂ'Zc;cl] c (1> 2)
1<

T;
maps H onto a Hamiltonian for free fermions with
n.n. hopping and an on-site potential (7 = 2c;.rci —-1)

collective pseudospin: | S = Zai/Z n=S,+ N/2

for J = 0 all the states in the n-th band have energy —nat!



Energy spectrum (for g = 0,J =1/2, N = 4)

interaction (J # 0) lifts the degeneracy within each band!

different states correspond to different values of S2 for given S, !



Possible transitions

To prepare an excited state, e.g., the fully occupied one (n = NN)
we have to go through multiple crossings from n = 0 to n = V!

...for these crossings to allow adiabatic state transfer,
we need them to be avoided (the role of g # 0)!

simplifying assumption: uniform driving g;(t) = g(t) = coupling
g(t) Z:(o'i+ +0;7) =g(t)(ST + S7) commutes with S2!

i
= transitions possible only between states with the same S?

in different bands!

S*, 8~ = only n — n =% 1 direct transitions possible!



Mean-field: Lipkin-Meshkov-Glick Hamiltonian in higher dim.

mean-field replacement: }, ; o'jaj_ = > i (Jesr 0’;’— (o, ) + H.c.)

effective mean-field Hamiltonian:

t
Hyr = —Jug(STS— + §—5+) — % S* + 29S°

t
Hyr = 2Jeﬁ(Sz)2 — % S* + 2¢g(t)S”*

for fixed o occupation increases for J > 0 because of icreased separation
between crossings, which increases the individual splitings!

due to finite pulse duration, occupation should be very small when the
spacing between crossings (= J/a) becomes larger than the pulse width

(m)!



Average excitation of two-level systems (mean field)
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for fixed a, the occupation increases (decreases) for J > 0 (J < 0)



