Adiabatic State Preparation of Interacting Two-Level Systems R. T. Brierley, C. Creatore, P. B. Littlewood, and P. R. Eastham, Phys. Rev. Lett. 109, 043002

.

Vladimir M. Stojanovi´c **@** Journal Club

August 7, 2012

Adiabatic rapid passage (ARP)

problem: population transfer in a two-level (*n*-level) system

"old-school" approach: *π*-pulse

not robust: sensitive to pulse area, inhomogeneities, etc.

ARP idea: sweep ("chirp") through the resonance!

 $\Omega(t) = \mu E(t)$ (Rabi frequency) $\Delta \omega(t) \equiv \omega(t) - \omega_{12}$ (detuning) $\theta(t) \equiv \tan^{-1}[\Delta \omega(t)/\Omega(t)]$ (phase angle)

the adiabaticity condition ^q

$$
\sqrt{\Omega^2(t)+\Delta\omega^2(t)}\gg |d\theta(t)/dt|
$$

guarantees **100%** population transfer to the desired excited state! $[$ regardless of the concrete shape of $E(t)$ and $\omega(t)$!]

What is this paper about?

ARP applied to a collection of interacting two-level systems

with a generic Hamiltonian:

$$
H = \sum_{i=1}^N \left[\frac{E}{2} (\sigma_i^z + 1) + (f_i(t)\sigma_i^+ + \text{H.c.}) \right] - \sum_{i,j} J_{ij} \sigma_i^+ \sigma_j^-
$$

Goals of this paper:

demonstrate the feasibility of state preparation via ARP;

find the dependence of the pulse shapes of $f(t)$ on the interaction strength

Outcome: ARP efficient here if the pulse bandwidth is sufficient

Chirped pulse and Hamiltonian

decomposition of the driving field into amplitude and frequency:

$$
f_i(t) = g_i(t) \exp(i \int \omega(t') dt')
$$

eliminating the instantaneous frequency:

$$
H = \sum_{i=1}^N \left[\frac{E - \omega(t)}{2} (\sigma_i^z + 1) + (g_i(t)\sigma_i^+ + \text{H.c.}) \right] - \sum_{i,j} J_{ij}\sigma_i^+ \sigma_j^-
$$

Gaussian, linearly chirped pulse with uniform amplitude:

$$
g_i(t) = g \exp(-t^2/\tau^2) , \quad \omega(t) = E + \alpha t
$$

 α – (linear) chirp

in the special case $\alpha = 0$ one recovers a Rabi pulse with frequency E

Recap: the non-interacting $(J = 0)$ **case**

$$
H_{J=0} = \sum_{i=1}^{N} \left[\frac{E - \omega(t)}{2} (\sigma_i^z + 1) + (g_i(t)\sigma_i^+ + \text{H.c.}) \right]
$$

 $g(t) = 0$: level crossing for $E - \omega(t) = 0$

- $g(t) = g$: standard Landau-Zener problem
- **L-Z**: the probability to remain in the adiabatic state (i.e., transfer from the initial ground state to the excited state) is $\left|1 - \exp(-2\pi g^2/\alpha)\right|$
- **=***⇒* final population always increases with reducing *α*!
- **ARP**: pulses of finite duration, i.e., $g(t) \neq$ const. the two levels must be coupled long enough $\Rightarrow \alpha \gg 1/\tau^2$

Special case: 1*d* **model with n.n. coupling only**

coupling $J_{i,j} = J \delta_{j,i+1} \Rightarrow \text{JW}$ and F.T. yield

$$
H = -\sum_{k} (\alpha t + J \cos k) c_{k}^{\dagger} c_{k} + \frac{1}{\sqrt{N}} \sum_{k,i} (g_{i}^{*} T_{i} c_{k} e^{ikr_{i}} + \text{H.c.})
$$

Reminder: the Jordan-Wigner (JW) transformation

$$
\sigma_1^- = c_1 \quad , \quad \sigma_i^- = \underbrace{\exp[i\pi\sum_{l
$$

maps *H* onto a Hamiltonian for free fermions with n.n. hopping and an on-site potential $(\sigma_i^z = 2c_i^{\dagger}c_i - 1)$

 $collective pseudospin:$

$$
S \equiv \sum_i \sigma_i/2 \qquad n = S_z + N/2
$$

for $J = 0$ all the states in the *n*-th band have energy $-n\alpha t!$

Energy spectrum (for $g = 0, J = 1/2, N = 4$)

interaction $(J \neq 0)$ lifts the degeneracy within each band! different states correspond to different values of $\mathbf{S}^{\mathbf{2}}$ for given $\boldsymbol{S}_{\boldsymbol{z}}!$

Possible transitions

To prepare an excited state, e.g., the fully occupied one $(n = N)$ we have to go through multiple crossings from $n = 0$ to $n = N!$

...for these crossings to allow adiabatic state transfer, we need them to be avoided (the role of $q \neq 0$)!

simplifying assumption: uniform driving $q_i(t) = q(t) \Rightarrow$ coupling $g(t)$ ^{\sum} *i* $(\sigma_i^+ + \sigma_i^-) = g(t)(S^+ + S^-)$ commutes with S^2 !

⇒ transitions possible only between states with the same **S 2** in different bands!

S **⁺***, S[−] [⇒]* only *ⁿ [→] ⁿ [±]* **¹** direct transitions possible!

Mean-field: Lipkin-Meshkov-Glick Hamiltonian in higher dim.

$$
\textsf{mean-field replacement: } \textstyle\sum_{i,j}\sigma^+_i\sigma^-_j \Rightarrow \textstyle\sum_i (J_\text{eff}\,\sigma^+_i\langle\sigma^-_i\rangle + \text{H.c.})
$$

effective mean-field Hamiltonian:

$$
H_{\rm MF}=-J_{\rm eff} (S^+ S^- + S^- S^+) - \frac{\alpha t}{2} \, S^z + 2 g S^x
$$

$$
H_{\rm MF}=2J_{\rm eff}(S^z)^2-\frac{\alpha t}{2}\,S^z+2g(t)S^x\,\biggr|\,
$$

for fixed α occupation increases for $J > 0$ because of icreased separation between crossings, which increases the individual splitings!

due to finite pulse duration, occupation should be very small when the spacing between crossings ($\approx J/\alpha$) becomes larger than the pulse width $(\tau)!$

Average excitation of two-level systems (mean field)

for fixed α , the occupation increases (decreases) for $J > 0$ ($J < 0$)