Journal Club 4th September 2012 James Wootton

3D quantum stabilizer codes with a power law energy barrier

Kamil Michnicki quant-ph/1208.3649

Abstract

We introduce a new primitive, called welding, for combining two stabilizer codes to produce a new stabilizer code. We apply welding to construct surface codes and then use the surface codes to construct solid codes, a variant of a 3-d toric code with rough and smooth boundaries. Finally, we weld solid codes together to produce a $(O(L^3), 1, O(L^{\frac{4}{3}}))$ stabilizer code with an energy barrier of $O(L^{\frac{2}{3}})$, which solves an open problem of whether a power law energy barrier is possible for local stabilizer code Hamiltonians in three-dimensions. The previous highest energy barrier is $O(\log L)$. Previous no-go results are avoided by breaking translation invariance.

Self-correcting quantum memories

- Hamiltonian with degenerate ground state space
- Logical qubit(s) stored in ground state
- Large operators required to map between logical states
- Spin-by-spin performance of logical operators is energetically penalized
- Typically done by energy barrier (minimum over all possible sequences of operators of maximum energy required)
- Ideally, this will increase with system size
- Size of a D-dimensional system with N spins is measured by a linear size $L = O(\sqrt[D]{N})$

Self-correcting quantum memories

- Classical example 1: 1D Ising model
 - Degenerate GS: All up and all down
 - Can be used to encode a bit (all up for 0, all down for 1)
 - Every spin must be flipped to map 0 to 1 or 1 to 0
 - Minimum energy sequence requires flips to be neighbouring
 - Maximum energy cost is that for a domain wall: O(1)
 - Nature easily performs errors and decoheres the memory in O(1) time
- Classical example 2: 2D Ising model
 - Degeneracy and encoding: As for 1D
 - Minimum energy sequence: expand cluster of flipped spins
 - Energy cost = sqrt(# flipped spins)
 - Maximum energy cost = O(L): increases with system size
 - Errors are suppressed, allowing lifetime O(exp[L^2]) below Curie temp. and O(poly L) above [Day, Barrett 2012]

Self-correcting quantum memories

- 2D Ising model provides energy barrier against Z flips but not X flips (or vice-versa)
- Only a good classical memory
- For quantum self-correction, there needs to be an energy barrier for both X and Z flips that increases with L. Is this possible?
- Restricting to stabilizer Hamiltonians:
 - Not possible in 2D [Alicki et al., 2008]
 - Model in 3D known with O(L) barrier for X flips bit O(1) for Z [Castelnovo, Chamon 2007]
 - Model in 3D known with O(log L) energy barrier [Bravyi and Haah, 2011]
 - Model in 4D known with O(L) energy barrier [Alicki et al., 2008]
- This paper constructs the first 3D stabilizer Hamiltonian with power law energy barrier

Code Welding

- Consider Hamiltonians based on CSS codes
- Terms are either tensor products of X or tensor products of Z, and all terms commute
- Codes are characterized by the set of all terms + logical operators
 1D Ising model: {ZZII, IZZI, IIZZ, XXXX}
- •To perform an X-type weld of two codes
 - Identify spins on which both codes act
 - Incorporate all Z-type elements from original codes into new code
 - Identify all products of X's that commute with the set of Z elements, and incorporate into new code
 - Example: Weld $S1 = \{ZZ,XX\}$ and $S2 = \{ZZ,XX\}$ to form S3
 - Identify second spin of S1 with first of S2:
 S1 = {ZZI,XXI}, S2 = {IZZ,IXX}
 - Take Z-type elements: S3 = {ZZ1,IZZ,...}
 - Add X type elements that commute $S3 = \{ZZ1, IZZ, XXX\}$
- For Z-type weld, interchange X and Z

Solid Codes

Figure 8: The graph of a small solid code with qubits on the edges. a.) An X-star operator and a Z-plaquette operator are shown. b.) The \bar{X} -membrane operator is shown. c.) The \bar{Z} -string operator is shown.

- 3D generalization of planar code
- We'll use d to denote linear system size (rather than L, as usual)
- Logical X operator is a membrane, so energy barrier is O(d)
- Logical Z operator is a string, so energy barrier is O(1) for a single domain wall
- Self-correcting classical memory, but not self-correcting quantum memory

Welded Solid Codes

Figure 11: Three small solid codes with a Z-type weld between their upper rough boundary. The α_{ij} symbols label identical qubits.

- Let's weld three of these codes together with Z-type weld on upper boundary
- Result: Logical Z's join together, become Y-shaped rather than a string
- Energy barrier of logical Z increases from that of one domain wall, to two

Welded Solid Codes

Figure 12: Welded solid code with solids welded together in a 2d square lattice. Notice that the object as a whole is three dimensional.

- Welding codes in an RxR square lattice similarly increases energy barrier of logical Z's to O(R)
- For an RxRxR cubic lattice, barrier increased to O(R^2)
- Energy barrier for logical X's remains O(d)

Welded Solid Codes

• For the cubic lattice of cubic solid codes:

$$N = O(R^3 d^3) = O(L^3)$$

Z barrier = $O(R^2)$
X barrier = $O(d)$

- Let's relate R and d by $d = R^{\alpha}$
- Let's require that X and Z barriers have same scaling w.r.t. N
- This yields $\alpha = 2$ and a total barrier of $O(N^{9/2}) = O(L^{2/3})$

- Despite this, further (unpublished) work suggests the lack of a phase transition
- Like the Haah-Bravyi model (with log L barrier), the author thinks that this model will not be truly self-correcting, but partially self-correcting
- Model is proof of principle that power law energy barriers are possible with stabilizer Hamiltonians
- But energy landscape seems insufficient to provide actual self-correction (too much entropy)

Thanks for your attention