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FIG. 2. (Color online) Top: Spectrum of an infinite non-

superconducting wire. The lowest three bands (six sub-bands) cross

the chemical potential at Fermi wave vectors kn±
F > 0.1nm

−1
, while

the top occupied band has k4±
F � 0.1nm

−1
. Bottom: BdG spec-

trum for three different values of B. The induced SC pair potential

∆ = 0.25 meV. The BdG spectra associated with the three lower

bands depend weakly on B and have minima at energies ≈ 250 µeV.

By contrast, BdG spectra for the top band is strongly B-dependent

and the gap closes at the critical field Bc ≈ 0.2 T.

band’) depends strongly on B. Note that the gap in the top

band has a minimum at kx = 0 when B ≤ Bc, vanishes

at Bc ≈ 0.2 meV, then reopens for B > Bc. Thus, the low-

energy physics in the vicinity of the TQPT and the gap closure

at B = Bc is controlled by the Majorana band, while the bulk

gaps at high Fermi momenta associated with the lower bands

do not close at the TQPT and depend weakly on B.

Next, we consider a finite wire with Lx = 4.5µm and focus

on the contributions to the LDOS coming from high energy

BdG eigenstates associated with the lower bands. In general,

the contribution to the LDOS at the end of the wire coming

from a given state n depends on how fast the amplitude of the

corresponding wave function Ψn(x) increases as a function of

x (note that all wave functions must vanish at the wire ends).

For wires with confinement energy much larger than ∆, states

near the Fermi-level that are associated with the lower-bands

have a large kinetic energy µeff
n � ∆,Γ (see Fig. 2 upper

panel), which is the difference between the chemical potential

µ and the bottom of the band n. These lower-band states typ-

ically have large Fermi wave-vectors and, consequently, are

characterized by rapidly increasing amplitudes away from the

ends of the wire. We identify these states as responsible for

the weakly magnetic field dependent feature at ≈ 250 µeV in

Fig. 1. Note that the lowest energies of the lower-band states

have values close to the edge of the bulk gap, which disperses

weakly with B and does not close at the TQPT (Fig. 2, bottom

panel).

Even though the contributions to the LDOS from the BdG

minima associated with the lower bands are always strong, the

same is not true for the Majorana band. States associated with

this band have long characteristic wave-lengths and their con-

tributions to the end-of-wire LDOS are strongly suppressed

FIG. 3. (Color online) The lowest energy BdG states associated with

the Majorana band near the TQPT for different values of µ. The

red (dark gray) lines correspond to B = 0.9Bc, while the yellow

(light gray) curves are for B = 1.1Bc. The insets show the BdG

spectra for an infinite wire near kx = 0. In the topological SC

phase (B > Bc), the lowest-energy state is the MF state. In the

non-topological SC phase (B < Bc), there is a crossover from the

region with µ > µc ≈ ∆ characterized by localized lowest energy

states (top panel) to the region with µ < µc ≈ ∆ where the states

have mostly extended character (middle and bottom panels). The

corresponding BdG spectra change from a structure with two min-

ima (µ > µc) to a single minimum at kx = 0 (µ < µc).

whenever these states are delocalized bulk states character-

ized by an envelope with a maximum at the middle of the

wire and a vanishing amplitude near the ends. In general, the

lowest energy states associated with the Majorana band con-

tain both a delocalized component and a localized component

characterized by an envelope that decays exponentially away

from the ends of the wire. In the non-topological SC phase,

we find that the lowest energy states are delocalized (i.e., have

a negligible localized component) when the chemical poten-

tial is below a certain crossover value µc(Γ) ∼ O(∆) and

localized when µ > µc. This delocalized-localized crossover

is relatively sharp, being characterized by an energy scale of

order ∆. Also, we emphasize that there are multiple localized-

delocalized crossovers characterized by values of the chemical

potential µc,n slightly above the minimum of each band. The

striking difference between the lowest energy states on the two

sides of the crossover corresponding to n = 4 is illustrated in

Fig. 3 (red/dark gray lines). Note that in the topological SC

phase (B > Bc) the lowest energy state is always a Majorana

bound state (yellow/light gray lines in Fig. 3).

The localized/delocalized character of the low-energy states

is directly reflected in the end-of-wire LDOS. If the system

is in the delocalized regime, µ < µc, the signature of the

low-energy states associated with the Majorana band in the

LDOS is strongly suppressed. In particular, there is no visi-

ble signature of the gap closing at the TQPT. The dominant

“topological band”
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Considering an evanescent state of the form &0"x ,y#
=e−z"x cos '+y sin '#&0 leads to a constraint on z which was pre-
viously written as Eq. "25#. Therefore, the condition on C0,
which determines whether the phase supports a Majorana
solution or not is precisely related to the parity of decaying
evanescent modes in a given # channel in the bulk supercon-
ductor at E=0.

A change in the parity of the decaying evanescent modes
requires an E=0 mode to become propagating, which can
only exist if the bulk superconductor is gapless. Therefore, a
change in the sign of C0, which determines the topological
nature of the phase, must be accompanied by a closing of the
bulk spectrum. This is determined by the full BdG Hamil-
tonian for a state with momentum k"cos ' , sin '# and can be
written in the Nambu space as

HBdG = "!k2 − "#(z + Vz)z +
ı%k

2
"e−ı')+ − eı')−#(z + $(x.

"49#

The spectrum is obtained by considering Det"HBdG−Ek#=0
which can be simplified to the equation,

Ek
2 = Vz

2 + $2 + *̃2 + %2k2 + 2%Vz
2$2 + *̃2"Vz

2 + %2k2# ,

"50#

where *̃=!k2−". Setting k=0, it can be seen that

E0
2 = "VZ + %$2 + "2#2, "51#

which vanishes as C0 becomes zero, as expected. Recent
work61 has shown that the quantity C0 is the Pfaffian of the
BdG Hamiltonian at k=0, &C0= Pf'HBdG"k=0#)y(y(). The
sign of C0, which determines whether the phase of the super-
conductor is non-Abelian or not has been shown to be
related61 to the parity of the first Chern number topological
invariant describing time-reversal broken topological
superconductors.62–65

The phase diagram of the spin-orbit-coupled semiconduc-
tor system can be understood from Fig. 4, which gives the
variation in the quasiparticle gap versus the Zeeman split-
ting. One knows from topological stability of the Majorana
fermion mode that, due to its nondegeneracy, the Majorana
state is protected as long as the bulk gap does not close as
one moves through the parameter space. In Fig. 4, the gap
closes "at the wave vector k=0# for the Zeeman splitting
corresponding to Vz

2=Vzc
2 =$2+"2. The phase with Vz,Vzc

supports the nondegenerate Majorana state while the phase
with Vz-Vzc does not. These two regions are separated by a
gapless point in the parameter space, which signifies a topo-
logical quantum phase transition. The quantum phase transi-
tion is topological since the superconducting order on both
sides is explicitly s wave and the two phases differ only by
the topological properties such as Majorana modes in defects
and boundaries. A similar phase transition involving Majo-
rana fermions in an artificial laser generated "vortex# in the

spin-orbit coupling with a critical Zeeman field satisfying a
similar condition has previously been reported in the context
of cold atoms.51

VIII. COMPETITION BETWEEN SUPERCONDUCTIVITY
AND ZEEMAN SPLITTING

The proposal to realize Majorana fermion modes in spin-
orbit-coupled semiconductor system involves the introduc-
tion of a large Zeeman potential. In general, a Zeeman split-
ting is known to compete with and eventually destroy
superconductivity. To understand better the competition be-
tween the Zeeman splitting and superconductivity in a spin-
orbit-coupled semiconductor, we first consider the case with-
out spin-orbit coupling. This case is described by the BdG
Hamiltonian

HBdG = "!k2 − "#(z + Vz)z + $(x. "52#

The dispersion relation of this Hamiltonian is Ek
= +Vz+%$2+ *̃2. In this case, with Vz=0, we obtain a con-
ventional proximity-induced s-wave superconductor with no
Majorana phase. As Vz increases above %"2+$2 the quasi-
particle gap of the system closes and one obtains a metal
with a Fermi momentum kF given by !kF

2 ="+%Vz
2−$2.

This is the well-known Chandrasekhar-Clogston limit66,67

where strong Zeeman splitting suppresses the superconduct-
ing quasiparticle gap. This suppression is due to the fact that,
in the spin-polarized regime "*VZ*, *"*#, a small pairing po-
tential cannot open a s-wave superconducting gap since the
latter couples opposite spins.

The BdG Hamiltonian at kF is doubly degenerate and is
given by

HBdG = %Vz
2 − $2(z + Vz)z + $(x. "53#

The degeneracy of the above Hamiltonian at the gapless
point, which arises from the particle-hole symmetry, is lifted

FIG. 4. "Color online# Quasiparticle gap versus Zeeman cou-
pling for various values of spin-orbit interaction %. The strength of
the spin-orbit coupling in the inset is such that %=0.3 corresponds
to 0.1 eV Å. The other parameters are taken to be $=0.5 and "
=0.0. The gap vanishes at the critical value Vz=%$2+"2. The spin-
orbit coupling has negligible effect below this critical point and the
superconducting gap is of a conventional s-wave type. Above the
critical value and in the absence of spin-orbit coupling, the super-
conducting gap is destroyed by the Zeeman coupling. Spin-orbit
coupling opens up a gap in this phase leading to re-entrant super-
conductivity which is topological.

SAU et al. PHYSICAL REVIEW B 82, 214509 "2010#
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FIG. 2. (Color online) Top: Spectrum of an infinite non-

superconducting wire. The lowest three bands (six sub-bands) cross

the chemical potential at Fermi wave vectors kn±
F > 0.1nm

−1
, while

the top occupied band has k4±
F � 0.1nm

−1
. Bottom: BdG spec-

trum for three different values of B. The induced SC pair potential

∆ = 0.25 meV. The BdG spectra associated with the three lower

bands depend weakly on B and have minima at energies ≈ 250 µeV.

By contrast, BdG spectra for the top band is strongly B-dependent

and the gap closes at the critical field Bc ≈ 0.2 T.

band’) depends strongly on B. Note that the gap in the top

band has a minimum at kx = 0 when B ≤ Bc, vanishes

at Bc ≈ 0.2 meV, then reopens for B > Bc. Thus, the low-

energy physics in the vicinity of the TQPT and the gap closure

at B = Bc is controlled by the Majorana band, while the bulk

gaps at high Fermi momenta associated with the lower bands

do not close at the TQPT and depend weakly on B.

Next, we consider a finite wire with Lx = 4.5µm and focus

on the contributions to the LDOS coming from high energy

BdG eigenstates associated with the lower bands. In general,

the contribution to the LDOS at the end of the wire coming

from a given state n depends on how fast the amplitude of the

corresponding wave function Ψn(x) increases as a function of

x (note that all wave functions must vanish at the wire ends).

For wires with confinement energy much larger than ∆, states

near the Fermi-level that are associated with the lower-bands

have a large kinetic energy µeff
n � ∆,Γ (see Fig. 2 upper

panel), which is the difference between the chemical potential

µ and the bottom of the band n. These lower-band states typ-

ically have large Fermi wave-vectors and, consequently, are

characterized by rapidly increasing amplitudes away from the

ends of the wire. We identify these states as responsible for

the weakly magnetic field dependent feature at ≈ 250 µeV in

Fig. 1. Note that the lowest energies of the lower-band states

have values close to the edge of the bulk gap, which disperses

weakly with B and does not close at the TQPT (Fig. 2, bottom

panel).

Even though the contributions to the LDOS from the BdG

minima associated with the lower bands are always strong, the

same is not true for the Majorana band. States associated with

this band have long characteristic wave-lengths and their con-

tributions to the end-of-wire LDOS are strongly suppressed

FIG. 3. (Color online) The lowest energy BdG states associated with

the Majorana band near the TQPT for different values of µ. The

red (dark gray) lines correspond to B = 0.9Bc, while the yellow

(light gray) curves are for B = 1.1Bc. The insets show the BdG

spectra for an infinite wire near kx = 0. In the topological SC

phase (B > Bc), the lowest-energy state is the MF state. In the

non-topological SC phase (B < Bc), there is a crossover from the

region with µ > µc ≈ ∆ characterized by localized lowest energy

states (top panel) to the region with µ < µc ≈ ∆ where the states

have mostly extended character (middle and bottom panels). The

corresponding BdG spectra change from a structure with two min-

ima (µ > µc) to a single minimum at kx = 0 (µ < µc).

whenever these states are delocalized bulk states character-

ized by an envelope with a maximum at the middle of the

wire and a vanishing amplitude near the ends. In general, the

lowest energy states associated with the Majorana band con-

tain both a delocalized component and a localized component

characterized by an envelope that decays exponentially away

from the ends of the wire. In the non-topological SC phase,

we find that the lowest energy states are delocalized (i.e., have

a negligible localized component) when the chemical poten-

tial is below a certain crossover value µc(Γ) ∼ O(∆) and

localized when µ > µc. This delocalized-localized crossover

is relatively sharp, being characterized by an energy scale of

order ∆. Also, we emphasize that there are multiple localized-

delocalized crossovers characterized by values of the chemical

potential µc,n slightly above the minimum of each band. The

striking difference between the lowest energy states on the two

sides of the crossover corresponding to n = 4 is illustrated in

Fig. 3 (red/dark gray lines). Note that in the topological SC

phase (B > Bc) the lowest energy state is always a Majorana

bound state (yellow/light gray lines in Fig. 3).

The localized/delocalized character of the low-energy states

is directly reflected in the end-of-wire LDOS. If the system

is in the delocalized regime, µ < µc, the signature of the

low-energy states associated with the Majorana band in the

LDOS is strongly suppressed. In particular, there is no visi-

ble signature of the gap closing at the TQPT. The dominant

“topological band”
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superconducting wire. The lowest three bands (six sub-bands) cross

the chemical potential at Fermi wave vectors kn±
F > 0.1nm

−1
, while

the top occupied band has k4±
F � 0.1nm

−1
. Bottom: BdG spec-

trum for three different values of B. The induced SC pair potential

∆ = 0.25 meV. The BdG spectra associated with the three lower

bands depend weakly on B and have minima at energies ≈ 250 µeV.

By contrast, BdG spectra for the top band is strongly B-dependent

and the gap closes at the critical field Bc ≈ 0.2 T.

band’) depends strongly on B. Note that the gap in the top

band has a minimum at kx = 0 when B ≤ Bc, vanishes

at Bc ≈ 0.2 meV, then reopens for B > Bc. Thus, the low-

energy physics in the vicinity of the TQPT and the gap closure

at B = Bc is controlled by the Majorana band, while the bulk

gaps at high Fermi momenta associated with the lower bands

do not close at the TQPT and depend weakly on B.

Next, we consider a finite wire with Lx = 4.5µm and focus

on the contributions to the LDOS coming from high energy

BdG eigenstates associated with the lower bands. In general,

the contribution to the LDOS at the end of the wire coming

from a given state n depends on how fast the amplitude of the

corresponding wave function Ψn(x) increases as a function of

x (note that all wave functions must vanish at the wire ends).

For wires with confinement energy much larger than ∆, states

near the Fermi-level that are associated with the lower-bands

have a large kinetic energy µeff
n � ∆,Γ (see Fig. 2 upper

panel), which is the difference between the chemical potential

µ and the bottom of the band n. These lower-band states typ-

ically have large Fermi wave-vectors and, consequently, are

characterized by rapidly increasing amplitudes away from the

ends of the wire. We identify these states as responsible for

the weakly magnetic field dependent feature at ≈ 250 µeV in

Fig. 1. Note that the lowest energies of the lower-band states

have values close to the edge of the bulk gap, which disperses

weakly with B and does not close at the TQPT (Fig. 2, bottom

panel).

Even though the contributions to the LDOS from the BdG

minima associated with the lower bands are always strong, the

same is not true for the Majorana band. States associated with

this band have long characteristic wave-lengths and their con-

tributions to the end-of-wire LDOS are strongly suppressed

FIG. 3. (Color online) The lowest energy BdG states associated with

the Majorana band near the TQPT for different values of µ. The

red (dark gray) lines correspond to B = 0.9Bc, while the yellow

(light gray) curves are for B = 1.1Bc. The insets show the BdG

spectra for an infinite wire near kx = 0. In the topological SC

phase (B > Bc), the lowest-energy state is the MF state. In the

non-topological SC phase (B < Bc), there is a crossover from the

region with µ > µc ≈ ∆ characterized by localized lowest energy

states (top panel) to the region with µ < µc ≈ ∆ where the states

have mostly extended character (middle and bottom panels). The

corresponding BdG spectra change from a structure with two min-

ima (µ > µc) to a single minimum at kx = 0 (µ < µc).

whenever these states are delocalized bulk states character-

ized by an envelope with a maximum at the middle of the

wire and a vanishing amplitude near the ends. In general, the

lowest energy states associated with the Majorana band con-

tain both a delocalized component and a localized component

characterized by an envelope that decays exponentially away

from the ends of the wire. In the non-topological SC phase,

we find that the lowest energy states are delocalized (i.e., have

a negligible localized component) when the chemical poten-

tial is below a certain crossover value µc(Γ) ∼ O(∆) and

localized when µ > µc. This delocalized-localized crossover

is relatively sharp, being characterized by an energy scale of

order ∆. Also, we emphasize that there are multiple localized-

delocalized crossovers characterized by values of the chemical

potential µc,n slightly above the minimum of each band. The

striking difference between the lowest energy states on the two

sides of the crossover corresponding to n = 4 is illustrated in

Fig. 3 (red/dark gray lines). Note that in the topological SC

phase (B > Bc) the lowest energy state is always a Majorana

bound state (yellow/light gray lines in Fig. 3).

The localized/delocalized character of the low-energy states

is directly reflected in the end-of-wire LDOS. If the system

is in the delocalized regime, µ < µc, the signature of the

low-energy states associated with the Majorana band in the

LDOS is strongly suppressed. In particular, there is no visi-

ble signature of the gap closing at the TQPT. The dominant

“topological band”
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We use InSb nanowires (15), which are
known to have strong spin-orbit interaction and
a large g factor (16). From our earlier quantum-
dot experiments, we extract a spin-orbit length
lso ≈ 200 nm corresponding to a Rashba param-
eter a ≈ 0.2 eV·Å (17). This translates to a spin-
orbit energy scale a2m*/(2ħ2) ≈ 50 meV (m* =
0.015me is the effective electron mass in InSb,
me is the bare electron mass, and ħ is Planck’s
constant h divided by 2p). Importantly, the g
factor in bulk InSb is very large (g ≈ 50), yield-
ing EZ/B ≈ 1.5 meV/T. As shown below, we find
an induced superconducting gap D ≈ 250 meV.
Thus, for m = 0, we expect to enter the topo-
logical phase for B ~ 0.15 T where EZ starts to
exceed D. The energy gap of the topological
superconductor is estimated to be a few kelvin
(17), if we assume a ballistic nanowire. The
topological gap is substantially reduced in a dis-
ordered wire (18, 19). We have measured mean
free paths of ~300 nm in our wires (15), implying
a quasi-ballistic regime in micrometer-long wires.
With these numbers, we expect Majorana zero-
energy states to become observable below 1 K
and around 0.15 T.

A typical sample is shown in Fig. 1B.We first
fabricate a pattern of narrow (50-nm) and wider
(300-nm) gates on a silicon substrate (20). The
gates are covered by a thin Si3N4 dielectric be-
fore we randomly deposit InSb nanowires. Next,
we electrically contact those nanowires that
have landed properly relative to the gates. The
lower contact in Fig. 1B fully covers the bottom
part of the nanowire. We have designed the up-
per contact to only cover half of the top part of
the nanowire, avoiding complete screening of
the underlying gates. This allows us to change
the Fermi energy in the section of the nanowire
(NW) with induced superconductivity. We have
used either a normal (N) or superconducting (S)
material for the lower and upper contacts, re-
sulting in three sample variations: (i) N-NW-S,
(ii) N-NW-N, and (iii) S-NW-S. Here, we dis-
cuss our main results on the N-NW-S devices,
whereas the other two types, serving as control
devices, are described in (20).

To perform spectroscopy on the induced su-
perconductor, we created a tunnel barrier in the
nanowire by applying a negative voltage to a
narrow gate (dark green area in Fig. 1, B and C).
A bias voltage applied externally between the N
and S contacts drops almost completely across
the tunnel barrier. In this setup, the differential
conductance dI/dV at voltage V and current I is
proportional to the density of states at energy E =
eV (where e is the charge on the electron) relative
to the zero-energy dashed line in Fig. 1C. Figure
1D shows an example taken at B = 0. The two
peaks at T250 meV correspond to the peaks in the
quasi-particle density of states of the induced
superconductor, providing a value for the in-
duced gap, D ≈ 250 meV. We generally find a
finite dI/dV in between these gap edges. We ob-
serve pairs of resonances with energies symmetric
around zero bias superimposed on nonresonant

currents throughout the gap region. Symmetric
resonances likely originate from Andreev bound
states (21, 22), whereas nonresonant current in-
dicates that the proximity gap has not fully de-
veloped (23).

Figure 2 summarizes our main result. Figure
2A shows a set of dI/dV-versus-V traces taken at

increasingB fields in 10-mTsteps from 0 (bottom
trace) to 490 mT (top trace), offset for clarity. We
again observe the gap edges at T250 meV. When
we apply a B field between ~100 and ~400 mT
along the nanowire axis, we observe a peak at
V= 0. The peak has an amplitude up to ~0.05·2e2/h
and is clearly discernible from the background
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Fig. 1. (A) Outline of theoretical proposals. (Top) Conceptual device layout with a semiconducting
nanowire in proximity to an s-wave superconductor. An external B field is aligned parallel to the wire.
The Rashba spin-orbit interaction is indicated as an effective magnetic field, Bso, pointing perpendicular
to the nanowire. The red stars indicate the expected locations of a Majorana pair. (Bottom) Energy, E,
versus momentum, k, for a 1D wire with Rashba spin-orbit interaction, which shifts the spin-down band
(blue) to the left and the spin-up band (red) to the right. Blue and red parabolas are for B = 0; black
curves are for B ≠ 0, illustrating the formation of a gap near k = 0 of size Ez (m is the Fermi energy with
m = 0 defined at the crossing of parabolas at k = 0). The superconductor induces pairing between states
of opposite momentum and opposite spin, creating a gap of size D. (B) Implemented version of the-
oretical proposals. Scanning electron microscope image of the device with normal (N) and super-
conducting (S) contacts. The S contact only covers the right part of the nanowire. The underlying gates,
numbered 1 to 4, are covered with a dielectric. [Note that gate 1 connects two gates, and gate 4
connects four narrow gates; see (C).] (C) (Top) Schematic of our device. (Bottom) illustration of energy
states. The green rectangle indicates the tunnel barrier separating the normal part of the nanowire on
the left from the wire section with induced superconducting gap, D. [In (B), the barrier gate is also
shown in green.] An external voltage, V, applied between N and S drops across the tunnel barrier. Red
stars again indicate the idealized locations of the Majorana pair. Only the left Majorana is probed in
this experiment. (D) Example of differential conductance, dI/dV, versus V at B = 0 and 65 mK, serving
as a spectroscopic measurement on the density of states in the nanowire region below the
superconductor. Data are from device 1. The two large peaks, separated by 2D, correspond to the quasi-
particle singularities above the induced gap. Two smaller subgap peaks, indicated by arrows, likely
correspond to Andreev bound states located symmetrically around zero energy. Measurements are
performed in dilution refrigerators with the use of the standard low-frequency lock-in technique
(frequency = 77 Hz, excitation = 3 mV) in the four-terminal (devices 1 and 3) or two-terminal (device 2)
current-voltage geometry.
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We use InSb nanowires (15), which are
known to have strong spin-orbit interaction and
a large g factor (16). From our earlier quantum-
dot experiments, we extract a spin-orbit length
lso ≈ 200 nm corresponding to a Rashba param-
eter a ≈ 0.2 eV·Å (17). This translates to a spin-
orbit energy scale a2m*/(2ħ2) ≈ 50 meV (m* =
0.015me is the effective electron mass in InSb,
me is the bare electron mass, and ħ is Planck’s
constant h divided by 2p). Importantly, the g
factor in bulk InSb is very large (g ≈ 50), yield-
ing EZ/B ≈ 1.5 meV/T. As shown below, we find
an induced superconducting gap D ≈ 250 meV.
Thus, for m = 0, we expect to enter the topo-
logical phase for B ~ 0.15 T where EZ starts to
exceed D. The energy gap of the topological
superconductor is estimated to be a few kelvin
(17), if we assume a ballistic nanowire. The
topological gap is substantially reduced in a dis-
ordered wire (18, 19). We have measured mean
free paths of ~300 nm in our wires (15), implying
a quasi-ballistic regime in micrometer-long wires.
With these numbers, we expect Majorana zero-
energy states to become observable below 1 K
and around 0.15 T.

A typical sample is shown in Fig. 1B.We first
fabricate a pattern of narrow (50-nm) and wider
(300-nm) gates on a silicon substrate (20). The
gates are covered by a thin Si3N4 dielectric be-
fore we randomly deposit InSb nanowires. Next,
we electrically contact those nanowires that
have landed properly relative to the gates. The
lower contact in Fig. 1B fully covers the bottom
part of the nanowire. We have designed the up-
per contact to only cover half of the top part of
the nanowire, avoiding complete screening of
the underlying gates. This allows us to change
the Fermi energy in the section of the nanowire
(NW) with induced superconductivity. We have
used either a normal (N) or superconducting (S)
material for the lower and upper contacts, re-
sulting in three sample variations: (i) N-NW-S,
(ii) N-NW-N, and (iii) S-NW-S. Here, we dis-
cuss our main results on the N-NW-S devices,
whereas the other two types, serving as control
devices, are described in (20).

To perform spectroscopy on the induced su-
perconductor, we created a tunnel barrier in the
nanowire by applying a negative voltage to a
narrow gate (dark green area in Fig. 1, B and C).
A bias voltage applied externally between the N
and S contacts drops almost completely across
the tunnel barrier. In this setup, the differential
conductance dI/dV at voltage V and current I is
proportional to the density of states at energy E =
eV (where e is the charge on the electron) relative
to the zero-energy dashed line in Fig. 1C. Figure
1D shows an example taken at B = 0. The two
peaks at T250 meV correspond to the peaks in the
quasi-particle density of states of the induced
superconductor, providing a value for the in-
duced gap, D ≈ 250 meV. We generally find a
finite dI/dV in between these gap edges. We ob-
serve pairs of resonances with energies symmetric
around zero bias superimposed on nonresonant

currents throughout the gap region. Symmetric
resonances likely originate from Andreev bound
states (21, 22), whereas nonresonant current in-
dicates that the proximity gap has not fully de-
veloped (23).

Figure 2 summarizes our main result. Figure
2A shows a set of dI/dV-versus-V traces taken at

increasingB fields in 10-mTsteps from 0 (bottom
trace) to 490 mT (top trace), offset for clarity. We
again observe the gap edges at T250 meV. When
we apply a B field between ~100 and ~400 mT
along the nanowire axis, we observe a peak at
V= 0. The peak has an amplitude up to ~0.05·2e2/h
and is clearly discernible from the background
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Fig. 1. (A) Outline of theoretical proposals. (Top) Conceptual device layout with a semiconducting
nanowire in proximity to an s-wave superconductor. An external B field is aligned parallel to the wire.
The Rashba spin-orbit interaction is indicated as an effective magnetic field, Bso, pointing perpendicular
to the nanowire. The red stars indicate the expected locations of a Majorana pair. (Bottom) Energy, E,
versus momentum, k, for a 1D wire with Rashba spin-orbit interaction, which shifts the spin-down band
(blue) to the left and the spin-up band (red) to the right. Blue and red parabolas are for B = 0; black
curves are for B ≠ 0, illustrating the formation of a gap near k = 0 of size Ez (m is the Fermi energy with
m = 0 defined at the crossing of parabolas at k = 0). The superconductor induces pairing between states
of opposite momentum and opposite spin, creating a gap of size D. (B) Implemented version of the-
oretical proposals. Scanning electron microscope image of the device with normal (N) and super-
conducting (S) contacts. The S contact only covers the right part of the nanowire. The underlying gates,
numbered 1 to 4, are covered with a dielectric. [Note that gate 1 connects two gates, and gate 4
connects four narrow gates; see (C).] (C) (Top) Schematic of our device. (Bottom) illustration of energy
states. The green rectangle indicates the tunnel barrier separating the normal part of the nanowire on
the left from the wire section with induced superconducting gap, D. [In (B), the barrier gate is also
shown in green.] An external voltage, V, applied between N and S drops across the tunnel barrier. Red
stars again indicate the idealized locations of the Majorana pair. Only the left Majorana is probed in
this experiment. (D) Example of differential conductance, dI/dV, versus V at B = 0 and 65 mK, serving
as a spectroscopic measurement on the density of states in the nanowire region below the
superconductor. Data are from device 1. The two large peaks, separated by 2D, correspond to the quasi-
particle singularities above the induced gap. Two smaller subgap peaks, indicated by arrows, likely
correspond to Andreev bound states located symmetrically around zero energy. Measurements are
performed in dilution refrigerators with the use of the standard low-frequency lock-in technique
(frequency = 77 Hz, excitation = 3 mV) in the four-terminal (devices 1 and 3) or two-terminal (device 2)
current-voltage geometry.
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We use InSb nanowires (15), which are
known to have strong spin-orbit interaction and
a large g factor (16). From our earlier quantum-
dot experiments, we extract a spin-orbit length
lso ≈ 200 nm corresponding to a Rashba param-
eter a ≈ 0.2 eV·Å (17). This translates to a spin-
orbit energy scale a2m*/(2ħ2) ≈ 50 meV (m* =
0.015me is the effective electron mass in InSb,
me is the bare electron mass, and ħ is Planck’s
constant h divided by 2p). Importantly, the g
factor in bulk InSb is very large (g ≈ 50), yield-
ing EZ/B ≈ 1.5 meV/T. As shown below, we find
an induced superconducting gap D ≈ 250 meV.
Thus, for m = 0, we expect to enter the topo-
logical phase for B ~ 0.15 T where EZ starts to
exceed D. The energy gap of the topological
superconductor is estimated to be a few kelvin
(17), if we assume a ballistic nanowire. The
topological gap is substantially reduced in a dis-
ordered wire (18, 19). We have measured mean
free paths of ~300 nm in our wires (15), implying
a quasi-ballistic regime in micrometer-long wires.
With these numbers, we expect Majorana zero-
energy states to become observable below 1 K
and around 0.15 T.

A typical sample is shown in Fig. 1B.We first
fabricate a pattern of narrow (50-nm) and wider
(300-nm) gates on a silicon substrate (20). The
gates are covered by a thin Si3N4 dielectric be-
fore we randomly deposit InSb nanowires. Next,
we electrically contact those nanowires that
have landed properly relative to the gates. The
lower contact in Fig. 1B fully covers the bottom
part of the nanowire. We have designed the up-
per contact to only cover half of the top part of
the nanowire, avoiding complete screening of
the underlying gates. This allows us to change
the Fermi energy in the section of the nanowire
(NW) with induced superconductivity. We have
used either a normal (N) or superconducting (S)
material for the lower and upper contacts, re-
sulting in three sample variations: (i) N-NW-S,
(ii) N-NW-N, and (iii) S-NW-S. Here, we dis-
cuss our main results on the N-NW-S devices,
whereas the other two types, serving as control
devices, are described in (20).

To perform spectroscopy on the induced su-
perconductor, we created a tunnel barrier in the
nanowire by applying a negative voltage to a
narrow gate (dark green area in Fig. 1, B and C).
A bias voltage applied externally between the N
and S contacts drops almost completely across
the tunnel barrier. In this setup, the differential
conductance dI/dV at voltage V and current I is
proportional to the density of states at energy E =
eV (where e is the charge on the electron) relative
to the zero-energy dashed line in Fig. 1C. Figure
1D shows an example taken at B = 0. The two
peaks at T250 meV correspond to the peaks in the
quasi-particle density of states of the induced
superconductor, providing a value for the in-
duced gap, D ≈ 250 meV. We generally find a
finite dI/dV in between these gap edges. We ob-
serve pairs of resonances with energies symmetric
around zero bias superimposed on nonresonant

currents throughout the gap region. Symmetric
resonances likely originate from Andreev bound
states (21, 22), whereas nonresonant current in-
dicates that the proximity gap has not fully de-
veloped (23).

Figure 2 summarizes our main result. Figure
2A shows a set of dI/dV-versus-V traces taken at

increasingB fields in 10-mTsteps from 0 (bottom
trace) to 490 mT (top trace), offset for clarity. We
again observe the gap edges at T250 meV. When
we apply a B field between ~100 and ~400 mT
along the nanowire axis, we observe a peak at
V= 0. The peak has an amplitude up to ~0.05·2e2/h
and is clearly discernible from the background

* 

* 

s-wave
superconductor

B

Ε

k

µ

0.2

0

V  (µV)

B = 0

dI
/d

V
(2

e
2 /

h)

-400 0 400

2∆
2

D

-

B1 µm

B

1

2

3

4

S
N

A BsoBso

eV ∆
∆ **

1 2 3 4

C

∆

N

S

Fig. 1. (A) Outline of theoretical proposals. (Top) Conceptual device layout with a semiconducting
nanowire in proximity to an s-wave superconductor. An external B field is aligned parallel to the wire.
The Rashba spin-orbit interaction is indicated as an effective magnetic field, Bso, pointing perpendicular
to the nanowire. The red stars indicate the expected locations of a Majorana pair. (Bottom) Energy, E,
versus momentum, k, for a 1D wire with Rashba spin-orbit interaction, which shifts the spin-down band
(blue) to the left and the spin-up band (red) to the right. Blue and red parabolas are for B = 0; black
curves are for B ≠ 0, illustrating the formation of a gap near k = 0 of size Ez (m is the Fermi energy with
m = 0 defined at the crossing of parabolas at k = 0). The superconductor induces pairing between states
of opposite momentum and opposite spin, creating a gap of size D. (B) Implemented version of the-
oretical proposals. Scanning electron microscope image of the device with normal (N) and super-
conducting (S) contacts. The S contact only covers the right part of the nanowire. The underlying gates,
numbered 1 to 4, are covered with a dielectric. [Note that gate 1 connects two gates, and gate 4
connects four narrow gates; see (C).] (C) (Top) Schematic of our device. (Bottom) illustration of energy
states. The green rectangle indicates the tunnel barrier separating the normal part of the nanowire on
the left from the wire section with induced superconducting gap, D. [In (B), the barrier gate is also
shown in green.] An external voltage, V, applied between N and S drops across the tunnel barrier. Red
stars again indicate the idealized locations of the Majorana pair. Only the left Majorana is probed in
this experiment. (D) Example of differential conductance, dI/dV, versus V at B = 0 and 65 mK, serving
as a spectroscopic measurement on the density of states in the nanowire region below the
superconductor. Data are from device 1. The two large peaks, separated by 2D, correspond to the quasi-
particle singularities above the induced gap. Two smaller subgap peaks, indicated by arrows, likely
correspond to Andreev bound states located symmetrically around zero energy. Measurements are
performed in dilution refrigerators with the use of the standard low-frequency lock-in technique
(frequency = 77 Hz, excitation = 3 mV) in the four-terminal (devices 1 and 3) or two-terminal (device 2)
current-voltage geometry.

25 MAY 2012 VOL 336 SCIENCE www.sciencemag.org1004

REPORTS

 o
n 

M
ay

 2
5,

 2
01

2
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fro
m

 

!"#$%& '() * *+ ' ,&-".& /01%".02"34

'

*

'

*

'

*

5&-".& ( 5&-".& 6 5&-".& 7

!8 '9: ";0#&< 3/ 2=%&& * *+ ' >*3%;0? *043@"%& '$A&%.34,$.23%B ,&-".&< "4 @=".= 2=&
;0"4 /"4,"4#< 3/ 2="< A0A&% 0%& %&A%3,$.&,C !"&?, ,"%&.2"34< 0%& "4,".02&, @"2= 0%%3@<C 5&-".&
6 @0< ;&0<$%&, "4 0 7 0D"< -&.23% ;0#4&2C 5&-".&< 0%& /01%".02&, <";$?204&3$<?EC *043@"%&
,"0;&2&%< 0%& ((F (F 4; >,&-".&< ( 04, 7B 04, (FF (F 4; >,&-".& 6BC "8 '.=&;02". 3/ 0
,&-".& .%3<< <&.2"34C

( ; ( ; ( ;

6

'"#402$%&< 3/ :0G3%040 /&%;"34< "4 =E1%", <$A&%.34,$.23% <&;".34,$.23% 4043@"%& ,&-".&<
HC :3$%"I8 JC K$38 'C:C !%3?3-8 'CLC M?"<<0%,8 9CMCNC:C O0II&%<8 PCMC J3$@&4=3-&4

#$%&'()* +)&',- .*,$(/01 Q4'1 4043@"%&< 0%& #%3@4 1E ;&20?3%#04". -0A3% A=0<& &A"20DE
/%3; #3?, .020?E<2<8 0< ,&<.%"1&, "4 L&/C >!"BC R=& @"%&< "4 2="< @3%I 0%& #%3@4 34 '"
<$1<2%02&<C !"%<28 <2&;< 2=02 .34<"<2< 3/ Q4M 04, Q4N< <&#;&42< 0%& #%3@4C R=&4 0 <20.I"4#
/0$?2 04, ,"<?3.02"34 /%&& S"4.1?&4,& Q4'1 <&#;&42 3/ ="#= ;31"?"2E >(FT U (FT.;6V>H<B "<
#%3@4 "4 2=& ((( .%E<20? ,"%&.2"34C N <"4#?& 102.= 3/ @"%&< "< $<&, /3% 0?? * *+ ' ,&-".&< "4
2="< A0A&%C

# #2 3 .*4(5* 6$7)(5$,(&% 8)&5*.9)*
(B A ,3A&, <"?".34 <$1<2%02&< 0%& .3-&%&, 1E 6WU 4; 3/ 2=&%;0? 3D",&C 5$& 23 <.%&&4"4# /%3;
?3.0? #02&< <$1<2%02&< 0%& "4&//&.2"-& 0< 10.I #02&<C
6B N A&%"3,". A022&%4 3/ (U ;".%34 ?34# 04, 7FF 4; @",& R"VN$ #02&< >U 4;V(F4;B "< ,&/"4&,
1E (FF IH &?&.2%34 1&0; ?"2=3#%0A=E 04, &?&.2%34 1&0; &-0A3%02"34C
7B O3223; #02& ?0E&% "< .3-&%&, 1E TF 4; 3/ ?"2=3#%0A=".0??E ,&/"4&, 04, ,C.C <A$22&%&, '"7*T

,"&?&.2%".C N%&0< /3% .3420.2< 23 #02&< 0%& ?&/2 /%&& 3/ ,"&?&.2%".C
TB N <&.34, ?0E&% 3/ /"4&% #02&< >UF 4; @",&8 UF 4; <A0."4#B "< ,&/"4&, $<"4# 2=& <0;&
;&2=3,C !"4& #02&< 0%& /01%".02&, "4 0 <&A0%02& <2&A 23 %&,$.& A%3D";"2E &DA3<$%&C
UB N <&.34, ?0E&% 3/ '"7*T .3-&%< 132= /"4& 04, @",& #02&<C R=$<8 @",& #02&< 0%& .3-&%&, 1E
WF 4; 3/ ,"&?&.2%".8 /"4& #02&< 0%& .3-&%&, 1E TF 4; 3/ ,"&?&.2%".C
XB Q4'1 4043@"%&< 3/ WF (6F 4; ,"0;&2&% 0%& 2%04</&%%&, 3423 2=& <$1<2%02& .3420"4"4# #02&
A022&%4<C *043@"%&< ?04, %04,3;?E8 <3;& 0%& <&?&.2&, /3% .3420.2"4#C
YB '$A&%.34,$.2"4# .3420.2< 0%& ,&/"4&, 1E <A$22&%"4# *1R"* >YU 4;B /%3; 0 *1VR" 20%#&2
>YFV7F 02C ZB @"2= 2="4 /"?; .%"2".0? 2&;A&%02$%& R[ \ Y JC 'A$22&%"4# ,34& "4 2=& #%3$A 3/ RC:C
J?0A@"GI @"2= 0<<"<204.& 3/ 5C]C R=3&4C N @"4,3@ "4 2=& 6FF 4; 2=".I M::N ^UFI %&<"<2 =0< 0
13$4,0%E 0?34# 2=& .&42&% 3/ 2=& 4043@"%& @"2= 0?"#4;&42 0..$%0.E 3/ 6F 7F 4;C M%"3% 23
<A$22&%"4# 4043@"%&< 0%& &2.=&, "4 N%#34 A?0<;0C
WB *3%;0? R"VN$ .3420.2< >6F 4; R"V(6U 4; N$B 0%& ;0,& 23 2=& 4043@"%&< 04, 23 2=& #02&<C
M%"3% 23 2=& ,&A3<"2"34 3/ R"VN$ 2=& 4043@"%&< 0%& A0<<"-02&, "4 0;;34"$; <$?/",&C

*1R"*R"VN$
Q4'1 4043@"%&

<"?".34 3D",&

<"?".34 4"2%",&@",& #02&<
/"4& #02&<

O OO> B
N

O

V. Mourik, K. Zuo, S.M. Frolov, S.R. Plissard, 
E.P.A.M. Bakkers, L.P. Kouwenhoven,

Science 336, 1003 (2012)

N S



!"#$%& '() * *+ ' ,&-".& /01%".02"34

'

*

'

*

'

*

5&-".& ( 5&-".& 6 5&-".& 7

!8 '9: ";0#&< 3/ 2=%&& * *+ ' >*3%;0? *043@"%& '$A&%.34,$.23%B ,&-".&< "4 @=".= 2=&
;0"4 /"4,"4#< 3/ 2="< A0A&% 0%& %&A%3,$.&,C !"&?, ,"%&.2"34< 0%& "4,".02&, @"2= 0%%3@<C 5&-".&
6 @0< ;&0<$%&, "4 0 7 0D"< -&.23% ;0#4&2C 5&-".&< 0%& /01%".02&, <";$?204&3$<?EC *043@"%&
,"0;&2&%< 0%& ((F (F 4; >,&-".&< ( 04, 7B 04, (FF (F 4; >,&-".& 6BC "8 '.=&;02". 3/ 0
,&-".& .%3<< <&.2"34C

( ; ( ; ( ;

6

'"#402$%&< 3/ :0G3%040 /&%;"34< "4 =E1%", <$A&%.34,$.23% <&;".34,$.23% 4043@"%& ,&-".&<
HC :3$%"I8 JC K$38 'C:C !%3?3-8 'CLC M?"<<0%,8 9CMCNC:C O0II&%<8 PCMC J3$@&4=3-&4

#$%&'()* +)&',- .*,$(/01 Q4'1 4043@"%&< 0%& #%3@4 1E ;&20?3%#04". -0A3% A=0<& &A"20DE
/%3; #3?, .020?E<2<8 0< ,&<.%"1&, "4 L&/C >!"BC R=& @"%&< "4 2="< @3%I 0%& #%3@4 34 '"
<$1<2%02&<C !"%<28 <2&;< 2=02 .34<"<2< 3/ Q4M 04, Q4N< <&#;&42< 0%& #%3@4C R=&4 0 <20.I"4#
/0$?2 04, ,"<?3.02"34 /%&& S"4.1?&4,& Q4'1 <&#;&42 3/ ="#= ;31"?"2E >(FT U (FT.;6V>H<B "<
#%3@4 "4 2=& ((( .%E<20? ,"%&.2"34C N <"4#?& 102.= 3/ @"%&< "< $<&, /3% 0?? * *+ ' ,&-".&< "4
2="< A0A&%C

# #2 3 .*4(5* 6$7)(5$,(&% 8)&5*.9)*
(B A ,3A&, <"?".34 <$1<2%02&< 0%& .3-&%&, 1E 6WU 4; 3/ 2=&%;0? 3D",&C 5$& 23 <.%&&4"4# /%3;
?3.0? #02&< <$1<2%02&< 0%& "4&//&.2"-& 0< 10.I #02&<C
6B N A&%"3,". A022&%4 3/ (U ;".%34 ?34# 04, 7FF 4; @",& R"VN$ #02&< >U 4;V(F4;B "< ,&/"4&,
1E (FF IH &?&.2%34 1&0; ?"2=3#%0A=E 04, &?&.2%34 1&0; &-0A3%02"34C
7B O3223; #02& ?0E&% "< .3-&%&, 1E TF 4; 3/ ?"2=3#%0A=".0??E ,&/"4&, 04, ,C.C <A$22&%&, '"7*T

,"&?&.2%".C N%&0< /3% .3420.2< 23 #02&< 0%& ?&/2 /%&& 3/ ,"&?&.2%".C
TB N <&.34, ?0E&% 3/ /"4&% #02&< >UF 4; @",&8 UF 4; <A0."4#B "< ,&/"4&, $<"4# 2=& <0;&
;&2=3,C !"4& #02&< 0%& /01%".02&, "4 0 <&A0%02& <2&A 23 %&,$.& A%3D";"2E &DA3<$%&C
UB N <&.34, ?0E&% 3/ '"7*T .3-&%< 132= /"4& 04, @",& #02&<C R=$<8 @",& #02&< 0%& .3-&%&, 1E
WF 4; 3/ ,"&?&.2%".8 /"4& #02&< 0%& .3-&%&, 1E TF 4; 3/ ,"&?&.2%".C
XB Q4'1 4043@"%&< 3/ WF (6F 4; ,"0;&2&% 0%& 2%04</&%%&, 3423 2=& <$1<2%02& .3420"4"4# #02&
A022&%4<C *043@"%&< ?04, %04,3;?E8 <3;& 0%& <&?&.2&, /3% .3420.2"4#C
YB '$A&%.34,$.2"4# .3420.2< 0%& ,&/"4&, 1E <A$22&%"4# *1R"* >YU 4;B /%3; 0 *1VR" 20%#&2
>YFV7F 02C ZB @"2= 2="4 /"?; .%"2".0? 2&;A&%02$%& R[ \ Y JC 'A$22&%"4# ,34& "4 2=& #%3$A 3/ RC:C
J?0A@"GI @"2= 0<<"<204.& 3/ 5C]C R=3&4C N @"4,3@ "4 2=& 6FF 4; 2=".I M::N ^UFI %&<"<2 =0< 0
13$4,0%E 0?34# 2=& .&42&% 3/ 2=& 4043@"%& @"2= 0?"#4;&42 0..$%0.E 3/ 6F 7F 4;C M%"3% 23
<A$22&%"4# 4043@"%&< 0%& &2.=&, "4 N%#34 A?0<;0C
WB *3%;0? R"VN$ .3420.2< >6F 4; R"V(6U 4; N$B 0%& ;0,& 23 2=& 4043@"%&< 04, 23 2=& #02&<C
M%"3% 23 2=& ,&A3<"2"34 3/ R"VN$ 2=& 4043@"%&< 0%& A0<<"-02&, "4 0;;34"$; <$?/",&C

*1R"*R"VN$
Q4'1 4043@"%&

<"?".34 3D",&

<"?".34 4"2%",&@",& #02&<
/"4& #02&<

O OO> B
N

O



0 1 2 3 4 5 6
VZ/∆

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

E
/∆

p
r

N = 4, Rectangular,CLEAN : {Z,σ} = {3, 0.05}, NS
LZ = 4, Lsc = 0, L∆ = 0, Lpr = 0 +∞, L∆0 = 0, U0 = 0
∆ = ∆pr = 0.025, µ = −0.300(0), α = 1.340(0), g

gS
= 1

5

6

7

8

9

10

11

12

13

14

! "#!#

0.0 0.5 1.0 1.5 2.0
VZ/∆

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

E
/∆

p
r

5.6

6.4

7.2

8.0

8.8

9.6

10.4

11.2



To close or not to close: the fate of the superconducting gap across the topological quantum phase
transition in Majorana-carrying semiconductor nanowires
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What is observed in the experiment?
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Zero-bias peaks in spin-orbit coupled superconducting wires with and without
Majorana end-states
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Near-zero-energy end states in topologically trivial spin-orbit coupled superconducting nanowires
with a smooth confinement

G. Kells, D. Meidan, and P. W. Brouwer
Dahlem Center for Complex Quantum Systems and Fachbereich Physik,

Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
(Dated: July 13, 2012)

A one-dimensional spin-orbit coupled nanowire with proximity-induced pairing from a nearby s-wave super-
conductor may be in a topological nontrivial state, in which it has a zero energy Majorana bound state at each
end. We find that the topological trivial phase may have fermionic end states with an exponentially small energy,
if the confinement potential at the wire’s ends is smooth. The possible existence of such near-zero energy levels
implies that the mere observation of a zero-bias peak in the tunneling conductance is not an exclusive signature
of a topological superconducting phase even in the ideal clean single channel limit.

“The small energy ! of the Andreev end-states results from the ineffectiveness of a smooth potential to couple the 
two Majorana modes for the two spin channels. This near-degeneracy will be lifted in the presence of perturbations 
with an abrupt spatial dependence that couple the different spin-orbit bands. 

Examples of such perturbations are scattering from point-like impurities (which couple left-moving and right-
moving particles), or a the abrupt vanishing of the pairing potential, which happens, e.g., if not all of the 
semiconducting wire is covered with the superconducting contact.”

arXiv:1207.3067



Disentangling Majorana fermions from conventional zero energy states in
semiconductor quantum wires

T. D. Stanescu1 and Sumanta Tewari2
1Department of Physics, West Virginia University, Morgantown, WV 26506

2Department of Physics and Astronomy, Clemson University, Clemson, SC 29634

A proposed signature for the Majorana zero-energy quasiparticle predicted to occur in semicon-
ductor nanowires proximity-coupled to an s-wave superconductor is the zero-bias conductance peak
(ZBCP) for tunneling into the end of the wire. Recently, it has been shown that, in the presence of
a smooth confining potential, nearly ZBCPs can occur even in the topologically trivial phase. Here
we show that, for a smooth confinement, the emergence of the nearly ZBCP at Zeeman fields cor-
responding to the topologically trivial phase is necessarily accompanied by a gap closing signature
in the end-of-wire local density of state (LDOS). A similar behavior is found for nearly ZBCPs that
appear in the presence of strong disorder. Our results strengthen the identification of the ZBCP
observed in the recent Delft measurements, which show no gap-closing signatures, with topological
Majorana fermions localized at the ends of the wire.
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Disorder-induced ZBP4

FIG. 4: (Color online) LDOS integrated over the barrier re-

gion for a system with the chemical potential near the bottom

of the forth band (∆µ = 0 and smooth confinement corre-

sponding to V (x) shown in Fig. 1B. For Γ > Γc ≈ 0.3meV

a ZBP corresponding to the Majorana bound states local-

ized near the finite barrier is clearly visible. Notice the

absence of any signature associated with the closing of the

quasiparticle gap at the topological quantum phase transition

(Γ = Γc). The smooth background inside the induced gap

∆ind = 250µeV is due to contributions from the low-energy

states that penetrate though the barrier and hybridize with

metallic states from the leads. Constant field cuts (shifted for

clarity) are shown in the right panel.

gence of the ZBCP with increasing Γ. When the barrier

is as in Fig. 1(b) the localized end states at the wire ends

can easily penetrate to the other side of the barrier and

hybridize with the metallic lead. This introduces some

broadening to the LDOS in Fig. 3 bottom panel as com-

pared to the top panel, but the qualitative features of the

LDOS are very similar in the two cases.

To illustrate the behavior of the end-of-wire LDOS for

a small chemical potential (µ < µc ∼ ∆) of the nanowire,

in Fig. 4 we have plotted the LDOS integrated over the

barrier region for a system with the chemical potential

near the bottom of the fourth band. As discussed earlier,

in this case the BdG states from the top band are delo-

calized in the nanowire and therefore do not contribute

significantly to the LDOS. Consequently, the gap-closing

signature of the TQPT is not visible in Fig. 4 with in-

creasing Γ, even though for Γ > Γc a ZBCP appears

due to a end-localized MF state. Note also the smooth

background inside the induced gap ∆ind = 250µeV which

is due to contributions from the low-energy states that

penetrate though the barrier and hybridize with metal-

lic states from the leads. In Fig. 1 bottom panel we

have shown that the BdG states from the lower bands

typically have a considerable spectral weight beyond the

quantum wire if the barrier potential at the wire-end is

smooth. These states are then expected to hybridize with

the metallic states in the lead. We have modeled such

hybridization by introducing a damping proportional to

the spectral weight of the states beyond the wire end. As

shown in Fig. 4 the resultant LDOS then shows a consid-
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FIG. 5: (Color online) Local density of states at the end of the

wire in the presence of strong disorder. Top panel: constant

magnetic field with Γ = 0.65meV. Bottom: constant chemi-

cal potential ∆µ = 1meV. The closing of the gap associated

with states localized near the wire end is clearly visible in the

magnetic field dependence of the LDOS. The disorder poten-

tial has constant values inside patches with a characteristic

length scale ld ≈ 17nm. These values vary randomly in the

range |Vd(x, y)| ≤ 3.5meV. We assume hard-wall confinement

at both ends of the wire.

erable background within the induced gap at ∼ 250µeV
which is reminiscent of the data in Ref. [14]. Since the

LDOS at the end of the wire is expected to be related

to dI/dV , which is the experimentally measured differ-
ential tunneling conductance data, we expect that for

µ < µc ∼ ∆ the bulk gap closing at the TQPT should

not be seen in tunneling conductance measurements al-

though the signature of the MFs would clearly show up in

the zero-bias-conductance peak. This is consistent with

the available experimental data [14]. Since the ZBCP

arising from the non-Majorana end states (for a soft con-

finement potential) must necessarily be accompanied by a

‘gap-closing’ signature as a function of Γ, the experimen-

tal ZBCP [14], which is not preceded by such a closing

of the gap with Γ, is unlikely to be due to this effect.

For zero bias peaks arising in the topologically trivial

phase from strong disorder effects we find similar results.

In Fig. 5 (top panel) we show the end-of-wire LDOS as

function of the chemical potential for a disordered wire

at constant Zeeman field. Near zero bias peaks appear

for large values of µ corresponding to the topologically

trivial phase (µ above ∼ 0.65 meV). In the bottom panel

of Fig. 5 we show the dispersion of the ZBCP with the

Zeeman field for a constant value of µ in the topolog-

Also here the ZBP is accompanied 
by the gap-closing signal

The observed ZBP is more likely to be induced by MF



BUT
There are still other features for which there 

is no agreement between theory and 
experiment, and even after fine tuning (in the 

theoretical models) it is not possible to 
“adjust” those features all TOGETHER.

Thank you for the attention
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