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Blank

Phase slips in topological superconductors are peculiar for the
reason that they occur in multiples of 4π (instead of 2π in
conventional superconductors)...

...we re-establish this fact via a beautiful analogy to the particle
physics concept of dynamic symmetry breaking by explicitly finding
a ``hidden" zero mode in the fermion spectrum computed in the
background of a 2π phase-slip (the ``missing meson" problem of
quantum chromodynamics)

Main result
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where N is the number of lattice sites, c†i (ci) is the elec-
tron creation (annihilation) operator at site i, µi is the
chemical potential at site i, t > 0 is the hopping matrix
element, and �i,i+1

is the complex order parameter, de-
fined on the link between sites i, i+1. This model can be
thought of as the large magnetic field regime of the model
described in Ref. 3. The model supports both topological
and conventional phases by tuning of the chemical po-
tential, with the phase transitions occurring at |µ| = 2t.
Thus, we can model both topological and conventional
segments by varying µi as a function of position along
the wire.

To describe the dynamics of the order parameter in
the superconductor, we need to choose whether we are
describing a Josephson junction or a continuous thin su-
perconducting wire. As we are interested in the e↵ect
of the electron degrees of freedom on phase slips, these
details will not be especially important. In the next sec-
tion, we shall focus on the technically simpler problem of
phase slips at a Josephson junction (weak link).

IV. PHASE SLIPS AT A WEAK LINK: THE
HIDDEN ZERO MODE

In this section, we construct a theory of phase slips in
the weak link geometry illustrated in Fig. 3(b): a semi-
conducting wire on top of a superconducting wire with
a single weak link. We start with this geometry as it in-
volves fewer degrees of freedom than the continuous wire
geometry illustrated in Fig. 3(a).

We explicitly construct an e↵ective, low energy, model
of the weak link geometry starting from the Kitaev
model (1) in appendix A. From the point of view of su-
perconductivity, the weak link geometry is a Josephson
junction, that can be characterized by the phase di↵er-
ence � across the weak link. From the point of view of the
electrons in the semiconducting nano-wire, the weak link
is a topological-conventional-topological junction. Asso-
ciated with each topological-conventional interface, there
is a Majorana fermion. By assumption, the weak link is
short compared to the Fermi-wavelength in the nanowire,
and therefore the two Majorana fermions interact to form
a single complex fermion cw that is localized on the weak
link. The low frequency e↵ective action involves � and
cw degrees of freedom associated with the weak link and
is given by

S
J

=

Z

dt



1

2

1

8EC
(@t�)2 � EJ(1 � cos(�)) (2)

+ c†w

⇣

i@t � EM cos(�/2)
⌘

cw

i

.

In this model, the first term is phenomenological in origin
and describes the charging energy EC = e2/2C due to
the capacitance C associated with the weak link. The
EJ term describes the 2⇡ periodic part of the potential
energy and is primarily related to the electronic states
of the semiconducting nanowire outside the gap. There
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FIG. 4. (a) Instanton trajectory in the sine-Gordon model,
Eq. (4). (b) Schematic representation of the dilute instanton
gas composed of 2⇡ phase slips and �2⇡ anti-phase-slips.

can be a secondary contribution to the EJ term from
the Josephson energy associated with the weak link in
the underlying superconductor. The final term describes
the sub-gap fermion cw, localized at the weak link. The
energy scale EM and EJ can be obtained from the Kitaev
model, see appendix A.

We begin by sketching the semi-classical dynamics of
the phase only (i.e. sine-Gordon) model, without the
fermionic term, as described by the real time action

S� =

Z

dt



1

2

1

8EC
(@t�)2 � EJ (1 � cos(�))

�

. (3)

The potential energy associated with the second term
of this action is 2⇡ periodic, thus we would expect that
the phase would be localized near 0,±2⇡,±4⇡ . . . . How-
ever, quantum fluctuations driven by the first term can
connect these minima via phase slips. Following the in-
stanton prescription, we can obtain a semiclassical ap-
proximation for the tunneling matrix element25,26. The
prescription states that we must first go to the imaginary
time (Euclidean) description via t ! i⌧

S̃� =

Z

d⌧



1

2

1

8EC
(@⌧�)2 + EJ (1 � cos(�))

�

. (4)

Going to the Euclidean description results in the change
of the sign of the potential energy term. Thus, the
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minima at 0 and 2⇡ in the real time description, be-
come maxima in the Euclidean description. Moreover,
in the Euclidean description there is a classical trajec-
tory �

cl

(⌧) that connects these maxima: �
cl

(�1) = 0
and �

cl

(1) = 2⇡, which is illustrated in Fig. 4(a). The
instanton trajectory leads to the value of the tunneling
matrix element, which at lowest order is

h0|eiHt|2⇡i ⇠ e�
˜S�[�cl]. (5)

where S̃�[�
cl

], is the value of the action associated with
the classical trajectory �

cl

(⌧).
A complimentary approach to studying dynamics is

to study the thermodynamical ground state. Instanton
trajectories extremize the action and are therefore im-
portant in the description of the thermodynamic ground
state. Indeed, we can think of the low temperature
ground state, associated with S̃�, as a dilute gas of phase
slips and anti-phase-slips25,26, which is schematically il-
lustrated in Fig. 4(b).

At this point we are ready to ask the question of what
is the e↵ect of Fermions, i.e. the third term in Eq. 2,
on the phase slips and therefore on the ground state. To
answer this question, we consider the partition function
corresponding to the thermodynamic ground state

Z =

Z

D�Dcw Dc†w e�
˜SJ , (6)

where S̃
J

is the Euclidean action associated with S
J

. We
are particularly interested in the low temperature regime
T ! 0, in which the integral in S̃

J

runs over a long stretch
of imaginary time from ⌧ = 0 to ⌧ = � = 1/T . We will
answer the question about the role of the fermions in two
ways. First, we will integrate out the fermions and obtain
an e↵ective phase-only partition function that takes into
account the contribution of the fermions. Second, we will
appeal to a beautiful analogy to a problem in particle
physics to show how the fermionic term breaks 2⇡ phase
rotation symmetry in the ground state.

A. Method 1: Integrating out fermion

In this subsection, our goal is to integrate over the
fermionic degrees of freedom in the partition function
and convert the action Eq. (2) to an e↵ective action de-
pending only on the phase, �. Since the fermionic part
of the Lagrangian is quadratic, we can integrate over the
fermionic degrees of freedom in Eq. (6) for an arbitrary
trajectory �(⌧) and obtain the expression

Z /
Z

D� det[Kf (�)]e�
˜S� . (7)

Here, we use the proportionality sign to accommodate the
normalization of the fermion path integral, and Kf (�) is

the Lagrangian density of the fermionic part of the action

Sf (�) =

Z

d⌧ c†wKf (�)cw,

=

Z

d⌧c†w [@⌧ + EM cos(�/2)] cw,

(8)

subject to an anti-periodic boundary condition cw(�) =
�cw(0).

To compute the fermionic determinant, we make use
of the fact that det[Kf (�)] =

Q

n �n, where �n’s come
from the eigenvalue problem

Kf (�)un(⌧) = �nun(⌧). (9)

Solving the eigenvalue problem, for arbitrary �(⌧), we
find the implicit expression for the eigenfunctions un

un(⌧) = e
R ⌧
0 (�n�EM cos[�(⌧ 0

)/2]) d⌧ 0
. (10)

With the anti-periodic boundary conditions, we obtain

�n =
i⇡(2n + 1)

�
+

I
1

�
(11)

where I
1

=
R �

0

d⌧ EM cos(�/2) and n is an integer. Using
a few well known identities as in Ref. 29, we now find

det[Kf (�)] =
Y

n

✓

i⇡(2n + 1)

�
+

I
1

�

◆

,

=

"

Y

n

✓

i⇡(2n + 1)

�

◆

#

cosh(I
1

/2).

(12)

Thus we find that the partition function becomes

Z / Z
e↵

=

Z

D� cosh(I
1

/2)e�
˜S� . (13)

We interpret this partition function as follows. The
fermion can be in one of two states (either even or odd
parity), since there are no terms in the Hamiltonian
that connect these states, the partition function splits
into two parts: one part for even parity and the other
part for odd parity, manifested in cosh(I

1

/2)e�
˜S� =

1

2

h

e�
˜S��I1/2 + e�

˜S�+I1/2

i

. The even and odd parity

states are separated by the energy EM cos(�/2), and the
e↵ective action becomes

S̃��e↵

=

Z ⌧

0



d⌧
1

2

1

8EC
(@t�)2 � EJ(1 � cos(�))

±EM

2
cos(�/2)

�

, (14)

where the sign of the last term is determined by the parity
of the fermionic state. We note that this action is called
the double sine-Gordon model.
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FIG. 8. The potential profiles of V ±(�) in the action (25)
are plotted in solid (red) and dotted (blue) lines for for V±
respectively, with EM/EJ = 0.25. The dashed (green) line is
the potential without the Majorana fermions, i.e., EM = 0.
The panel (a) shows the typical situation for EL < EM/4⇡2

with EL/EJ = 0.002, where two degenerate minima sit at
� ⇡ ±2⇡. The panel (b) shows the typical situation for EL >
EM/4⇡2 with EL/EJ = 0.02, where the potential minimum
is at � = 0 and two local minima are around � ⇡ ±2⇡.

is trapped inside the ring and � = 2⇡. Then, we turn o↵
the external flux at t = 0 and observe the relaxation of
phase from � = 2⇡ to 0 which manisfests itself as voltage
spike across the Josephson junction.

As shown in Sec. IV, the low energy fermionic degrees
of freedom of the topological superconducting wire couple
to the gauge invariant phase di↵erence. The e↵ective
action is given by

S =

Z T

0

d⌧ (⌧)†
1

2
[11@⌧ + EM cos�(⌧)�z] (⌧). (24)

The presence of fermions influences the tunneling rate be-
tween di↵erent phase minima. As we showed in Sec. IV,
the e↵ect of the low energy fermion can be investigated
by two routes as detailed below.

1. Integrating out fermions

Following procedures in Sec. IV A, we can first inte-
grate out the fermionic action Eq. (24) and obtain the
e↵ective actions for � = 0

S±
e↵

=

Z �

0

d⌧



1

2

1

8EC
(@⌧�(⌧))2 + EJ(1 � cos�(⌧))

+EL�
2(⌧) ± EM

2
cos(�(⌧)/2)

�

. (25)

We observe that integrating out of fermionic degrees of
freedom simply adds the term ±EM cos(�/2)/2 into the
original bosonic action with the choice of ± sign depend-
ing on the fermion parity of the system.

To understand the e↵ective actions, we first plot the
profiles of the potential term

V ±(�) = EJ(1� cos�(⌧)) + EL�
2(⌧)± EM

2
cos(�(⌧)/2),

(26)

in Fig. 8 with a shift to make all V ±(0) = 0. The ini-
tial condition is prepared such that the superconducting
wire is at its ground state for � = 2⇡. Therefore, with
EM > 0, the e↵ective action should take the sector S+

e↵

,
which will be assumed throughout the following discus-
sions. We note that the e↵ective potential V +(�) be-
haves qualitatively di↵erent depending on EL is greater
or smaller than EM/4⇡2. When the inductance energy
is dominates, EL > EM/4⇡2, the potential has a global
minimum at � = 0 and two local minima at � = ±2⇡.
In contrast, when the Majorana fermion energy becomes
substantial, EL < EM/4⇡2, there are two degenerate
minima at � ⇡ ±2⇡ and a local minimum at � = 0.

From the potential profiles in the EL < EM/4⇡2

regime, we find that a phase slip from � = 2⇡ to � = 0 is
energetically unfavorable as V +(0) > V +(2⇡). Instead,
a phase slip of 4⇡, tunneling between � = ±2⇡, would
lead to a stable state. As discussed earlier, such a phase
slip would not change the states of a qubit based on this
system.

For the regime where EL > EM/4⇡2, an initial state
at � = 2⇡ can relax to � = 0 state since now V +(0) <

V +(2⇡). The relaxation rate is given by �
2⇡!0

= Ke�S0
0

where K corresponds to the attempt rate for the tun-
neling and S0

0

is the adjusted action evaluated along the
bouncing trajectory that starts from the initial energy
minimum �i ⇡ 2⇡ to the bouncing point �b and then
back to �i.26 Here, the adjusted action is defined by
S0 = S+

e↵

� R

d⌧V +(�i) such that the corresponding po-
tential V 0(�) = V +(�)�V +(�i) vanishes at the potential
minimum �i. As a rough first approximation, we can as-
sume that K is not a↵ected by the presence of Majorana
fermions and plays no role for our discussion.

To compare the relaxation rates, �M
2⇡!0

(Majorana
fermions present) and �NM

2⇡!0

(Majorana fermions ab-
sent), we shall now compute the S0

0

for both cases. As the
bouncing trajectory is a stationary path of the equation
of motion, one can show that

S0
0

=
1p
EC

Z �b

�i

d�
p

V 0(�). (27)

In the case of EL = EM = 0, we have �i = 2⇡ and �b = 0,
and the action is S0

0

= 4
p

2EJ/EC . When EL/EJ ⌧ 1,
we still have �i ⇡ 2⇡ and �b ⇡ 0, and we can approximate
S0

0

⇡ 4
p

2EJ/EC . Qualitatively, the presence of a small
inductance energy EL/EJ ⌧ 1 increases the relaxation
rate only slightly, i.e., decreasing the action such that
S0

0

<⇠ S0
0

|EL=0

.
We observe that the suppression of tunneling rate due

to the Majorana fermions is given by e��S
0
0 , where

�S0
0

= S0
0

� S0
0

|EM=0

, (28)

is the di↵erence between the actions. From Eq. (27), one

can see that �S0
0

is of the form �S0
0

=
q

EJ
EC

f
⇣

EL
EJ

, EM
EJ

⌘

.

In the limit EJ � EL � EM/(4⇡2), one can approxi-



Tunneling and instanton gas

G(�a, a, ⌧ ) =R
Dq exp

⇥
�1

~
R ⌧
0

�m
2 q̇2 + V (q)

�⇤

�mq̈ + V 0
(q) = 0

Sin =

R a
�a dq

p
2mV (q)

ES = 2(

R
d⌧mq̇2in/2⇡)

1/2
(D0

)

�1/2 e�Sin

D0
= det

0
(�2S/��2|in)/ det(�2S/��2|0)
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B. Method 2: the hidden zero mode

As we have argued, the quantum (as well as the low
temperature thermodynamic) ground state of S̃� is com-
posed of a superposition of quantum states where � lo-
calized at multiples of 2⇡. Due to quantum fluctuations,
states with di↵erent �’s are connected by instantons. In
this subsection, we explicitly show that this picture is
significantly modified in the presence of the fermion de-
gree of freedom, by considering the fermionic path in-
tegral in the background of a phase slip. Indeed, what
we find is that 2⇡ phase slips are strongly suppressed by
the appearance of a “hidden” zero mode in the fermionic
determinant. As a result, the 2⇡ periodic symmetry of
the spectrum is broken down to 4⇡ periodic symmetry
in accord to the e↵ective action that was obtained in the
previous section. This mechanism of symmetry breaking
was first studied in the context of high energy physics,
specifically it was used by t’Hooft to explain the “missing
meson” problem of quantum chromodynamics in Ref. 24,
see also Refs. 25 and 26.

Consider a bounce (phase-slip followed by an anti-
phase-slip), such that �(0) = 2⇡ and �(�) = 0. To be
concrete, we will focus on phase slips with the functional

form cos(�(⌧)/2) = tanh
⇣

⌧��/2

w

⌘

. In describing the rare

instanton gas, the instantons must be separated by long
stretches of imaginary time. Therefore, to understand a
single instanton, we must look towards the limit � ! 1.
What do we expect in this regime? Following the above
discussion of the partition function, we expect that the
matrix element must be (see Ref. 25 and 26 for details)

h0|eiHt|2⇡i / det[Kf,2⇡]

det [Kf,0]
e�

˜S�[�cl], (15)

where Kf,2⇡ (Kf,0) is the Lagrangian density operator
in the presence (absence) of a bounce. Kf,0 is necessary
for normalization. In what follows, we will use the simi-
lar subscripts

2⇡(
0

) to indicate operators in the presence
(absence) of a bounce. Specifically using Eq. 12, the ratio
of fermion determinants is

det[Kf,2⇡]

det [Kf,0]
=

cosh
⇣

1

2

R �

0

cos(�[⌧ ]/2) d⌧
⌘

cosh(�/2)
, (16)

which becomes ⇠ e��/2 in the limit � ! 1, since with
the bounce, the integrand in the numerator will be neg-
ative for a large part of the interval [0,�], and thus
R �

0

cos(�[⌧ ]/2) d⌧ ⌧ �.
To uncover the “hidden” zero mode in the fermionic de-

terminant, we first rewrite the fermionic action, Eq. (8),
in a doubled form

Sf (�) =

Z

d⌧  †Lf (�) (17)

=

Z

d⌧ †
✓

@⌧ + EM cos(�/2) 0
0 @⌧ � EM cos(�/2)

◆

 ,

where  † =
�

c†w, cw

�

, subjected to anti-periodic bound-
ary conditions  (�) = � (0). Evidently, we have
det[Kf (�)] =

p

det[Lf (�)], which can be shown explic-
itly by using the fact det[Lf ] =

Q

i �̄i, where �̄i are eigen-
values of the di↵erential equations

Lf (�)

✓

ui(⌧)
vi(⌧)

◆

= �̄i

✓

ui(⌧)
vi(⌧)

◆

. (18)

The eigenvalues �̄i can be obtained in the similar way
as Eqs. (9), (10) and (11), and take the form �̄±n =
i⇡(2n+1)

� ± I1
� for all integer n. Here, �̄+

n correspond to

ui sector while �̄�n correspond to vi sector. As expected,
the product of all �̄i gives det[Kf (�)]2.

To facilitate the analysis, we transform the di↵erential
operator Lf in Eq. (18) into a di↵erence operator Lf . By
discretizing the interval ⌧ 2 [0,�] with N lattice points,
we first arrange the amplitudes of the wave function at
each lattice site, un and vn with n 2 1, . . . , N , in a vector
form

⌅ = (u
1

, u
2

, . . . , uN , v
1

, v
2

, . . . , vN )T , (19)

Then, the di↵erence equation corresponding to Eq. (18)
becomes Lf⌅ = �⌅, where the di↵erence operator takes
the form Lf = Lu

f � Lv
f . We then have

Lu
f =



1

2�
(�i+1,j � �i,j+1

) + �i�i,j

�

,

Lv
f =



1

2�
(�i+1,j � �i,j+1

) � �i�i,j

�

,

(20)

where i, j 2 1, . . . , N , �n = cos(�(n�)/2) and � = �/N
is the step in imaginary time. Now, the determinant of
the di↵erence operator det[Lf ] is simply the product of
all eigenvalues of �.

However, discretization scheme in Eq. (20) su↵ers from
the notorious fermion doubling problem and e↵ectively
doubles the number of fermions both for u(⌧) and v(⌧)
sectors30. Hence, the continuum limit of the determinant
det[Lf ]|N!1 is not associated with det[Lf ] directly. In-
stead, one expects the relation det[Lf ]|N!1 ⇠ det[Lf ]2.
By introducing the proper normalization as in Eq. (16),
we find

det[Lf,2⇡]

det[Lf,0]

�

�

�

�

N!1
=

det[Lf,2⇡]2

det[Lf,0]2
=

det[Kf,2⇡]4

det[Kf,0]4
. (21)

We compute the spectrum of the di↵erence operator Lf

using anti-periodic boundary conditions with constant
�(⌧) and with a 2⇡ phase slip followed by a 2⇡ anti-
phase-slip, see Fig. 5(a). We have to use a phase-slip fol-
lowed by an anti-phase-slip in order to make the bound-
ary conditions on the fermions make sense. Without
phase-slips, the eigenspectrum of Lf,0 contains two lines
of eigenvalues in the complex plane with Re�i = ±EM ,
see Fig. 5(b). In the presence of the phase slips, the
eigenspectrum deforms as plotted in Fig. 5(b). However,
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B. Method 2: the hidden zero mode

As we have argued, the quantum (as well as the low
temperature thermodynamic) ground state of S̃� is com-
posed of a superposition of quantum states where � lo-
calized at multiples of 2⇡. Due to quantum fluctuations,
states with di↵erent �’s are connected by instantons. In
this subsection, we explicitly show that this picture is
significantly modified in the presence of the fermion de-
gree of freedom, by considering the fermionic path in-
tegral in the background of a phase slip. Indeed, what
we find is that 2⇡ phase slips are strongly suppressed by
the appearance of a “hidden” zero mode in the fermionic
determinant. As a result, the 2⇡ periodic symmetry of
the spectrum is broken down to 4⇡ periodic symmetry
in accord to the e↵ective action that was obtained in the
previous section. This mechanism of symmetry breaking
was first studied in the context of high energy physics,
specifically it was used by t’Hooft to explain the “missing
meson” problem of quantum chromodynamics in Ref. 24,
see also Refs. 25 and 26.

Consider a bounce (phase-slip followed by an anti-
phase-slip), such that �(0) = 2⇡ and �(�) = 0. To be
concrete, we will focus on phase slips with the functional

form cos(�(⌧)/2) = tanh
⇣

⌧��/2

w

⌘

. In describing the rare

instanton gas, the instantons must be separated by long
stretches of imaginary time. Therefore, to understand a
single instanton, we must look towards the limit � ! 1.
What do we expect in this regime? Following the above
discussion of the partition function, we expect that the
matrix element must be (see Ref. 25 and 26 for details)

h0|eiHt|2⇡i / det[Kf,2⇡]

det [Kf,0]
e�

˜S�[�cl], (15)

where Kf,2⇡ (Kf,0) is the Lagrangian density operator
in the presence (absence) of a bounce. Kf,0 is necessary
for normalization. In what follows, we will use the simi-
lar subscripts

2⇡(
0

) to indicate operators in the presence
(absence) of a bounce. Specifically using Eq. 12, the ratio
of fermion determinants is

det[Kf,2⇡]

det [Kf,0]
=

cosh
⇣

1

2

R �

0

cos(�[⌧ ]/2) d⌧
⌘

cosh(�/2)
, (16)

which becomes ⇠ e��/2 in the limit � ! 1, since with
the bounce, the integrand in the numerator will be neg-
ative for a large part of the interval [0,�], and thus
R �

0

cos(�[⌧ ]/2) d⌧ ⌧ �.
To uncover the “hidden” zero mode in the fermionic de-

terminant, we first rewrite the fermionic action, Eq. (8),
in a doubled form

Sf (�) =

Z

d⌧  †Lf (�) (17)

=

Z

d⌧ †
✓

@⌧ + EM cos(�/2) 0
0 @⌧ � EM cos(�/2)

◆

 ,

where  † =
�

c†w, cw

�

, subjected to anti-periodic bound-
ary conditions  (�) = � (0). Evidently, we have
det[Kf (�)] =

p

det[Lf (�)], which can be shown explic-
itly by using the fact det[Lf ] =

Q

i �̄i, where �̄i are eigen-
values of the di↵erential equations

Lf (�)

✓

ui(⌧)
vi(⌧)

◆

= �̄i

✓

ui(⌧)
vi(⌧)

◆

. (18)

The eigenvalues �̄i can be obtained in the similar way
as Eqs. (9), (10) and (11), and take the form �̄±n =
i⇡(2n+1)

� ± I1
� for all integer n. Here, �̄+

n correspond to

ui sector while �̄�n correspond to vi sector. As expected,
the product of all �̄i gives det[Kf (�)]2.

To facilitate the analysis, we transform the di↵erential
operator Lf in Eq. (18) into a di↵erence operator Lf . By
discretizing the interval ⌧ 2 [0,�] with N lattice points,
we first arrange the amplitudes of the wave function at
each lattice site, un and vn with n 2 1, . . . , N , in a vector
form

⌅ = (u
1

, u
2

, . . . , uN , v
1

, v
2

, . . . , vN )T , (19)

Then, the di↵erence equation corresponding to Eq. (18)
becomes Lf⌅ = �⌅, where the di↵erence operator takes
the form Lf = Lu

f � Lv
f . We then have

Lu
f =



1

2�
(�i+1,j � �i,j+1

) + �i�i,j

�

,

Lv
f =



1

2�
(�i+1,j � �i,j+1

) � �i�i,j

�

,

(20)

where i, j 2 1, . . . , N , �n = cos(�(n�)/2) and � = �/N
is the step in imaginary time. Now, the determinant of
the di↵erence operator det[Lf ] is simply the product of
all eigenvalues of �.

However, discretization scheme in Eq. (20) su↵ers from
the notorious fermion doubling problem and e↵ectively
doubles the number of fermions both for u(⌧) and v(⌧)
sectors30. Hence, the continuum limit of the determinant
det[Lf ]|N!1 is not associated with det[Lf ] directly. In-
stead, one expects the relation det[Lf ]|N!1 ⇠ det[Lf ]2.
By introducing the proper normalization as in Eq. (16),
we find

det[Lf,2⇡]

det[Lf,0]

�

�

�

�

N!1
=

det[Lf,2⇡]2

det[Lf,0]2
=

det[Kf,2⇡]4

det[Kf,0]4
. (21)

We compute the spectrum of the di↵erence operator Lf

using anti-periodic boundary conditions with constant
�(⌧) and with a 2⇡ phase slip followed by a 2⇡ anti-
phase-slip, see Fig. 5(a). We have to use a phase-slip fol-
lowed by an anti-phase-slip in order to make the bound-
ary conditions on the fermions make sense. Without
phase-slips, the eigenspectrum of Lf,0 contains two lines
of eigenvalues in the complex plane with Re�i = ±EM ,
see Fig. 5(b). In the presence of the phase slips, the
eigenspectrum deforms as plotted in Fig. 5(b). However,
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FIG. 5. (a) cos[�(⌧)/2] as a function of ⌧ for the no phase-
slip case (blue), and a phase-slip followed by an anti-phase-slip
trajectory (red), using � = 16. (b) Eigenspectrum of Lf,2⇡

with antiperiodic boundary conditions, � = 16, n⌧ = 128.
Blue dots represent the spectrum with no phase slips and red
dots represent the spectrum with a phase-slip followed by an
anti-phase slip. (c) Eigenspectrum of T · Lf,2⇡, no phase slip
on the left and phase-slip followed by an anti-phase slip on
the right. The fermionic spectrum on the right contains four
zero modes.

in the presence of phase-slips, the spectrum contains no
obvious zero modes.

The final step needed to uncover the zero mode is to
consider the operator Hf = T · Lf , where T = i�y ⌦ 11N

and 11N is a N ⇥ N identity matrix. We note that
this transformation does not change the determinant,
det[Hf ] = det[Lf ] (up to a sign, which gets cancelled in
the normalization). While the operator Lf is not hermi-
tian, the transformed operator Hf is hermitian. Indeed,
the eigenspectrum of the Hf operator without phase slips
looks like a gapped spectrum, with the gap set by EM ,
see Fig. 5(c). On the other hand, for the phase-slip fol-
lowed by an anti-phase-slip �(⌧) trajectory depicted in
Fig. 5(a), we find that the gap is occupied by four modes
with near zero eigenvalues. As the splitting of these
modes from zero depends exponentially on the separa-
tion of the two phase-slips, we shall refer to these modes
as the zero modes.

On closer inspection, the Hf Hamiltonian looks like the
Hamiltonian of polyacetylene. In continuum notation,
the operator Hf is

Hf =

✓

0 �@⌧ � EM cos(�/2)
@⌧ � EM cos(�/2) 0

◆

(22)

where ⌧ represents the position along the polyacetylene
chain. Now, we can leverage the well known properties of
the polyacetylene Hamiltonian to understand our Joseph-
son junctions action: each time the mass changes sign
(i.e. � phase slips by 2⇡) there appears an extra zero

8 16 32 64 128 256 512 1024

10-11

10-8

10-5

0.01

Number discrete points

Ratioofde
terminants zero modes

»Lf , 2 p »ê»Lf , 0»
Cosh@bê2D-4

FIG. 6. Ratio of determinants for the phase profile pic-
tured in Fig. 5(a) computed using di↵erent methods. (1)
following the prescription of Method 1 we integrate out the
fermionic degrees of freedom without discretization, and raise
the final answer to the fourth power to compensate for the
two fermion doublings in the discretized methods (labeled:
cosh(�/2)�4). (2) following prescription of Method 2, we
compute the fermion determinants on a discrete lattice (la-
beled: |Lf,2⇡|/|Lf,0|). (3) following Method 2, by con-
structing the ratio of the four smallest fermion eigenvalues
(�1,2⇡/�1,0) ⇥ · · · ⇥ (�4,2⇡/�4,0) of Hf,2⇡ and Hf,0, respec-
tively (labeled: zero modes). Comparison of the three curves
indicates that the suppression of tunneling is indeed controlled
by the zero modes, with the small o↵set being a non-universal
feature associated with the duration of the phase slip.

mode that is localized on the kink (phase-slip). Because
of Fermion doubling, in the discrete version we actually
find two zero-modes associated with each kink. In case
there is more than one kink, the zero modes will be split,
with the splitting being exponentially suppressed in the
separation of the kinks. Indeed, in Fig. 5(c) we see a
signature of this e↵ect, with four zero modes appearing
in the gap, once we introduce two kinks (a phase-slip fol-
lowed by an anti-phase-slip). In summary, going back to
the original undoubled model Eq. (2), each phase-slip is
associated with 1/2 zero mode.

We pause to remark on the relation between the bound-
ary conditions and the zero modes. In principle, we can
choose open, periodic, anti-periodic or some other form
of boundary conditions. Despite the choice of bound-
ary conditions, each 2⇡ phase slip will result in the ap-
pearance of two additional zero modes in the discretized
model. We note that for the case of anti-periodic (or
periodic) boundary conditions, in order for the sign of
EM cos(�(⌧)/2) to match across the boundary, phase
slips must be added in multiples of 4⇡. Finally, we add
that in order to obtain the correct value of the partition
function, we must indeed use anti-periodic boundary con-
ditions, see appendix of Ref. 29.

Having found that phase-slips in the order parameter
are associated with zero-modes in the fermion determi-
nant, we now demonstrate that these zero modes indeed
control the value of the fermion determinant. To test
this, we consider the two trajectory depicted in Fig. 5(a).
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FIG. 8. The potential profiles of V ±(�) in the action (25)
are plotted in solid (red) and dotted (blue) lines for for V±
respectively, with EM/EJ = 0.25. The dashed (green) line is
the potential without the Majorana fermions, i.e., EM = 0.
The panel (a) shows the typical situation for EL < EM/4⇡2

with EL/EJ = 0.002, where two degenerate minima sit at
� ⇡ ±2⇡. The panel (b) shows the typical situation for EL >
EM/4⇡2 with EL/EJ = 0.02, where the potential minimum
is at � = 0 and two local minima are around � ⇡ ±2⇡.

is trapped inside the ring and � = 2⇡. Then, we turn o↵
the external flux at t = 0 and observe the relaxation of
phase from � = 2⇡ to 0 which manisfests itself as voltage
spike across the Josephson junction.

As shown in Sec. IV, the low energy fermionic degrees
of freedom of the topological superconducting wire couple
to the gauge invariant phase di↵erence. The e↵ective
action is given by

S =

Z T

0

d⌧ (⌧)†
1

2
[11@⌧ + EM cos�(⌧)�z] (⌧). (24)

The presence of fermions influences the tunneling rate be-
tween di↵erent phase minima. As we showed in Sec. IV,
the e↵ect of the low energy fermion can be investigated
by two routes as detailed below.

1. Integrating out fermions

Following procedures in Sec. IV A, we can first inte-
grate out the fermionic action Eq. (24) and obtain the
e↵ective actions for � = 0

S±
e↵

=

Z �

0

d⌧



1

2

1

8EC
(@⌧�(⌧))2 + EJ(1 � cos�(⌧))

+EL�
2(⌧) ± EM

2
cos(�(⌧)/2)

�

. (25)

We observe that integrating out of fermionic degrees of
freedom simply adds the term ±EM cos(�/2)/2 into the
original bosonic action with the choice of ± sign depend-
ing on the fermion parity of the system.

To understand the e↵ective actions, we first plot the
profiles of the potential term

V ±(�) = EJ(1� cos�(⌧)) + EL�
2(⌧)± EM

2
cos(�(⌧)/2),

(26)

in Fig. 8 with a shift to make all V ±(0) = 0. The ini-
tial condition is prepared such that the superconducting
wire is at its ground state for � = 2⇡. Therefore, with
EM > 0, the e↵ective action should take the sector S+

e↵

,
which will be assumed throughout the following discus-
sions. We note that the e↵ective potential V +(�) be-
haves qualitatively di↵erent depending on EL is greater
or smaller than EM/4⇡2. When the inductance energy
is dominates, EL > EM/4⇡2, the potential has a global
minimum at � = 0 and two local minima at � = ±2⇡.
In contrast, when the Majorana fermion energy becomes
substantial, EL < EM/4⇡2, there are two degenerate
minima at � ⇡ ±2⇡ and a local minimum at � = 0.

From the potential profiles in the EL < EM/4⇡2

regime, we find that a phase slip from � = 2⇡ to � = 0 is
energetically unfavorable as V +(0) > V +(2⇡). Instead,
a phase slip of 4⇡, tunneling between � = ±2⇡, would
lead to a stable state. As discussed earlier, such a phase
slip would not change the states of a qubit based on this
system.

For the regime where EL > EM/4⇡2, an initial state
at � = 2⇡ can relax to � = 0 state since now V +(0) <

V +(2⇡). The relaxation rate is given by �
2⇡!0

= Ke�S0
0

where K corresponds to the attempt rate for the tun-
neling and S0

0

is the adjusted action evaluated along the
bouncing trajectory that starts from the initial energy
minimum �i ⇡ 2⇡ to the bouncing point �b and then
back to �i.26 Here, the adjusted action is defined by
S0 = S+

e↵

� R

d⌧V +(�i) such that the corresponding po-
tential V 0(�) = V +(�)�V +(�i) vanishes at the potential
minimum �i. As a rough first approximation, we can as-
sume that K is not a↵ected by the presence of Majorana
fermions and plays no role for our discussion.

To compare the relaxation rates, �M
2⇡!0

(Majorana
fermions present) and �NM

2⇡!0

(Majorana fermions ab-
sent), we shall now compute the S0

0

for both cases. As the
bouncing trajectory is a stationary path of the equation
of motion, one can show that

S0
0

=
1p
EC

Z �b

�i

d�
p

V 0(�). (27)

In the case of EL = EM = 0, we have �i = 2⇡ and �b = 0,
and the action is S0

0

= 4
p

2EJ/EC . When EL/EJ ⌧ 1,
we still have �i ⇡ 2⇡ and �b ⇡ 0, and we can approximate
S0

0

⇡ 4
p

2EJ/EC . Qualitatively, the presence of a small
inductance energy EL/EJ ⌧ 1 increases the relaxation
rate only slightly, i.e., decreasing the action such that
S0

0

<⇠ S0
0

|EL=0

.
We observe that the suppression of tunneling rate due

to the Majorana fermions is given by e��S
0
0 , where

�S0
0

= S0
0

� S0
0

|EM=0

, (28)

is the di↵erence between the actions. From Eq. (27), one

can see that �S0
0

is of the form �S0
0

=
q

EJ
EC

f
⇣

EL
EJ

, EM
EJ

⌘

.

In the limit EJ � EL � EM/(4⇡2), one can approxi-
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the potential without the Majorana fermions, i.e., EM = 0.
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with EL/EJ = 0.002, where two degenerate minima sit at
� ⇡ ±2⇡. The panel (b) shows the typical situation for EL >
EM/4⇡2 with EL/EJ = 0.02, where the potential minimum
is at � = 0 and two local minima are around � ⇡ ±2⇡.

is trapped inside the ring and � = 2⇡. Then, we turn o↵
the external flux at t = 0 and observe the relaxation of
phase from � = 2⇡ to 0 which manisfests itself as voltage
spike across the Josephson junction.

As shown in Sec. IV, the low energy fermionic degrees
of freedom of the topological superconducting wire couple
to the gauge invariant phase di↵erence. The e↵ective
action is given by

S =

Z T

0

d⌧ (⌧)†
1

2
[11@⌧ + EM cos�(⌧)�z] (⌧). (24)

The presence of fermions influences the tunneling rate be-
tween di↵erent phase minima. As we showed in Sec. IV,
the e↵ect of the low energy fermion can be investigated
by two routes as detailed below.

1. Integrating out fermions

Following procedures in Sec. IV A, we can first inte-
grate out the fermionic action Eq. (24) and obtain the
e↵ective actions for � = 0

S±
e↵

=

Z �

0

d⌧



1

2

1

8EC
(@⌧�(⌧))2 + EJ(1 � cos�(⌧))

+EL�
2(⌧) ± EM

2
cos(�(⌧)/2)

�

. (25)

We observe that integrating out of fermionic degrees of
freedom simply adds the term ±EM cos(�/2)/2 into the
original bosonic action with the choice of ± sign depend-
ing on the fermion parity of the system.

To understand the e↵ective actions, we first plot the
profiles of the potential term

V ±(�) = EJ(1� cos�(⌧)) + EL�
2(⌧)± EM

2
cos(�(⌧)/2),

(26)

in Fig. 8 with a shift to make all V ±(0) = 0. The ini-
tial condition is prepared such that the superconducting
wire is at its ground state for � = 2⇡. Therefore, with
EM > 0, the e↵ective action should take the sector S+

e↵

,
which will be assumed throughout the following discus-
sions. We note that the e↵ective potential V +(�) be-
haves qualitatively di↵erent depending on EL is greater
or smaller than EM/4⇡2. When the inductance energy
is dominates, EL > EM/4⇡2, the potential has a global
minimum at � = 0 and two local minima at � = ±2⇡.
In contrast, when the Majorana fermion energy becomes
substantial, EL < EM/4⇡2, there are two degenerate
minima at � ⇡ ±2⇡ and a local minimum at � = 0.

From the potential profiles in the EL < EM/4⇡2

regime, we find that a phase slip from � = 2⇡ to � = 0 is
energetically unfavorable as V +(0) > V +(2⇡). Instead,
a phase slip of 4⇡, tunneling between � = ±2⇡, would
lead to a stable state. As discussed earlier, such a phase
slip would not change the states of a qubit based on this
system.

For the regime where EL > EM/4⇡2, an initial state
at � = 2⇡ can relax to � = 0 state since now V +(0) <

V +(2⇡). The relaxation rate is given by �
2⇡!0

= Ke�S0
0

where K corresponds to the attempt rate for the tun-
neling and S0

0

is the adjusted action evaluated along the
bouncing trajectory that starts from the initial energy
minimum �i ⇡ 2⇡ to the bouncing point �b and then
back to �i.26 Here, the adjusted action is defined by
S0 = S+

e↵

� R

d⌧V +(�i) such that the corresponding po-
tential V 0(�) = V +(�)�V +(�i) vanishes at the potential
minimum �i. As a rough first approximation, we can as-
sume that K is not a↵ected by the presence of Majorana
fermions and plays no role for our discussion.

To compare the relaxation rates, �M
2⇡!0

(Majorana
fermions present) and �NM
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(Majorana fermions ab-
sent), we shall now compute the S0

0

for both cases. As the
bouncing trajectory is a stationary path of the equation
of motion, one can show that
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0

=
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V 0(�). (27)

In the case of EL = EM = 0, we have �i = 2⇡ and �b = 0,
and the action is S0

0

= 4
p

2EJ/EC . When EL/EJ ⌧ 1,
we still have �i ⇡ 2⇡ and �b ⇡ 0, and we can approximate
S0

0

⇡ 4
p

2EJ/EC . Qualitatively, the presence of a small
inductance energy EL/EJ ⌧ 1 increases the relaxation
rate only slightly, i.e., decreasing the action such that
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.
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to the Majorana fermions is given by e��S
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are plotted in solid (red) and dotted (blue) lines for for V±
respectively, with EM/EJ = 0.25. The dashed (green) line is
the potential without the Majorana fermions, i.e., EM = 0.
The panel (a) shows the typical situation for EL < EM/4⇡2

with EL/EJ = 0.002, where two degenerate minima sit at
� ⇡ ±2⇡. The panel (b) shows the typical situation for EL >
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is trapped inside the ring and � = 2⇡. Then, we turn o↵
the external flux at t = 0 and observe the relaxation of
phase from � = 2⇡ to 0 which manisfests itself as voltage
spike across the Josephson junction.

As shown in Sec. IV, the low energy fermionic degrees
of freedom of the topological superconducting wire couple
to the gauge invariant phase di↵erence. The e↵ective
action is given by

S =

Z T

0

d⌧ (⌧)†
1

2
[11@⌧ + EM cos�(⌧)�z] (⌧). (24)

The presence of fermions influences the tunneling rate be-
tween di↵erent phase minima. As we showed in Sec. IV,
the e↵ect of the low energy fermion can be investigated
by two routes as detailed below.

1. Integrating out fermions

Following procedures in Sec. IV A, we can first inte-
grate out the fermionic action Eq. (24) and obtain the
e↵ective actions for � = 0

S±
e↵

=

Z �

0

d⌧



1

2

1

8EC
(@⌧�(⌧))2 + EJ(1 � cos�(⌧))

+EL�
2(⌧) ± EM

2
cos(�(⌧)/2)

�

. (25)

We observe that integrating out of fermionic degrees of
freedom simply adds the term ±EM cos(�/2)/2 into the
original bosonic action with the choice of ± sign depend-
ing on the fermion parity of the system.

To understand the e↵ective actions, we first plot the
profiles of the potential term

V ±(�) = EJ(1� cos�(⌧)) + EL�
2(⌧)± EM

2
cos(�(⌧)/2),

(26)

in Fig. 8 with a shift to make all V ±(0) = 0. The ini-
tial condition is prepared such that the superconducting
wire is at its ground state for � = 2⇡. Therefore, with
EM > 0, the e↵ective action should take the sector S+

e↵

,
which will be assumed throughout the following discus-
sions. We note that the e↵ective potential V +(�) be-
haves qualitatively di↵erent depending on EL is greater
or smaller than EM/4⇡2. When the inductance energy
is dominates, EL > EM/4⇡2, the potential has a global
minimum at � = 0 and two local minima at � = ±2⇡.
In contrast, when the Majorana fermion energy becomes
substantial, EL < EM/4⇡2, there are two degenerate
minima at � ⇡ ±2⇡ and a local minimum at � = 0.

From the potential profiles in the EL < EM/4⇡2

regime, we find that a phase slip from � = 2⇡ to � = 0 is
energetically unfavorable as V +(0) > V +(2⇡). Instead,
a phase slip of 4⇡, tunneling between � = ±2⇡, would
lead to a stable state. As discussed earlier, such a phase
slip would not change the states of a qubit based on this
system.

For the regime where EL > EM/4⇡2, an initial state
at � = 2⇡ can relax to � = 0 state since now V +(0) <

V +(2⇡). The relaxation rate is given by �2⇡!0 = Ke�S0
0

where K corresponds to the attempt rate for the tun-
neling and S0

0

is the adjusted action evaluated along the
bouncing trajectory that starts from the initial energy
minimum �i ⇡ 2⇡ to the bouncing point �b and then
back to �i.26 Here, the adjusted action is defined by
S0 = S+

e↵

� R

d⌧V +(�i) such that the corresponding po-
tential V 0(�) = V +(�)�V +(�i) vanishes at the potential
minimum �i. As a rough first approximation, we can as-
sume that K is not a↵ected by the presence of Majorana
fermions and plays no role for our discussion.

To compare the relaxation rates, �M
2⇡!0

(Majorana
fermions present) and �NM

2⇡!0

(Majorana fermions ab-
sent), we shall now compute the S0

0

for both cases. As the
bouncing trajectory is a stationary path of the equation
of motion, one can show that

S0
0

=
1p
EC

Z �b

�i

d�
p

V 0(�). (27)

In the case of EL = EM = 0, we have �i = 2⇡ and �b = 0,
and the action is S0

0

= 4
p

2EJ/EC . When EL/EJ ⌧ 1,
we still have �i ⇡ 2⇡ and �b ⇡ 0, and we can approximate
S0

0

⇡ 4
p

2EJ/EC . Qualitatively, the presence of a small
inductance energy EL/EJ ⌧ 1 increases the relaxation
rate only slightly, i.e., decreasing the action such that
S0

0

<⇠ S0
0

|EL=0.
We observe that the suppression of tunneling rate due

to the Majorana fermions is given by e��S
0
0 , where

�S0
0
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� S0
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|EM=0, (28)

is the di↵erence between the actions. From Eq. (27), one

can see that �S0
0

is of the form �S0
0

=
q

EJ
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f
⇣

EL
EJ

, EM
EJ

⌘

.

In the limit EJ � EL � EM/(4⇡2), one can approxi-
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FIG. 8. The potential profiles of V ±(�) in the action (25)
are plotted in solid (red) and dotted (blue) lines for for V±
respectively, with EM/EJ = 0.25. The dashed (green) line is
the potential without the Majorana fermions, i.e., EM = 0.
The panel (a) shows the typical situation for EL < EM/4⇡2
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� ⇡ ±2⇡. The panel (b) shows the typical situation for EL >
EM/4⇡2 with EL/EJ = 0.02, where the potential minimum
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is trapped inside the ring and � = 2⇡. Then, we turn o↵
the external flux at t = 0 and observe the relaxation of
phase from � = 2⇡ to 0 which manisfests itself as voltage
spike across the Josephson junction.

As shown in Sec. IV, the low energy fermionic degrees
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to the gauge invariant phase di↵erence. The e↵ective
action is given by

S =
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2
[11@⌧ + EM cos�(⌧)�z] (⌧). (24)
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1
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2(⌧) ± EM

2
cos(�(⌧)/2)

�

. (25)
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cos(�(⌧)/2),

(26)

in Fig. 8 with a shift to make all V ±(0) = 0. The ini-
tial condition is prepared such that the superconducting
wire is at its ground state for � = 2⇡. Therefore, with
EM > 0, the e↵ective action should take the sector S+

e↵

,
which will be assumed throughout the following discus-
sions. We note that the e↵ective potential V +(�) be-
haves qualitatively di↵erent depending on EL is greater
or smaller than EM/4⇡2. When the inductance energy
is dominates, EL > EM/4⇡2, the potential has a global
minimum at � = 0 and two local minima at � = ±2⇡.
In contrast, when the Majorana fermion energy becomes
substantial, EL < EM/4⇡2, there are two degenerate
minima at � ⇡ ±2⇡ and a local minimum at � = 0.

From the potential profiles in the EL < EM/4⇡2

regime, we find that a phase slip from � = 2⇡ to � = 0 is
energetically unfavorable as V +(0) > V +(2⇡). Instead,
a phase slip of 4⇡, tunneling between � = ±2⇡, would
lead to a stable state. As discussed earlier, such a phase
slip would not change the states of a qubit based on this
system.

For the regime where EL > EM/4⇡2, an initial state
at � = 2⇡ can relax to � = 0 state since now V +(0) <

V +(2⇡). The relaxation rate is given by �
2⇡!0

= Ke�S0
0

where K corresponds to the attempt rate for the tun-
neling and S0

0

is the adjusted action evaluated along the
bouncing trajectory that starts from the initial energy
minimum �i ⇡ 2⇡ to the bouncing point �b and then
back to �i.26 Here, the adjusted action is defined by
S0 = S+

e↵

� R

d⌧V +(�i) such that the corresponding po-
tential V 0(�) = V +(�)�V +(�i) vanishes at the potential
minimum �i. As a rough first approximation, we can as-
sume that K is not a↵ected by the presence of Majorana
fermions and plays no role for our discussion.

To compare the relaxation rates, �M
2⇡!0

(Majorana
fermions present) and �NM

2⇡!0

(Majorana fermions ab-
sent), we shall now compute the S0

0

for both cases. As the
bouncing trajectory is a stationary path of the equation
of motion, one can show that

S0
0

=
1p
EC

Z �b

�i

d�
p

V 0(�). (27)

In the case of EL = EM = 0, we have �i = 2⇡ and �b = 0,
and the action is S0

0

= 4
p

2EJ/EC . When EL/EJ ⌧ 1,
we still have �i ⇡ 2⇡ and �b ⇡ 0, and we can approximate
S0

0

⇡ 4
p

2EJ/EC . Qualitatively, the presence of a small
inductance energy EL/EJ ⌧ 1 increases the relaxation
rate only slightly, i.e., decreasing the action such that
S0

0

<⇠ S0
0

|EL=0

.
We observe that the suppression of tunneling rate due

to the Majorana fermions is given by e��S
0
0 , where

�S0
0

= S0
0

� S0
0

|EM=0

, (28)

is the di↵erence between the actions. From Eq. (27), one

can see that �S0
0

is of the form �S0
0

=
q

EJ
EC

f
⇣

EL
EJ

, EM
EJ

⌘

.

In the limit EJ � EL � EM/(4⇡2), one can approxi-

9

(a) (b)

2/-2/ 0 2/-2/ 0

1

2

3
1.5

0.5

1

2

FIG. 8. The potential profiles of V ±(�) in the action (25)
are plotted in solid (red) and dotted (blue) lines for for V±
respectively, with EM/EJ = 0.25. The dashed (green) line is
the potential without the Majorana fermions, i.e., EM = 0.
The panel (a) shows the typical situation for EL < EM/4⇡2

with EL/EJ = 0.002, where two degenerate minima sit at
� ⇡ ±2⇡. The panel (b) shows the typical situation for EL >
EM/4⇡2 with EL/EJ = 0.02, where the potential minimum
is at � = 0 and two local minima are around � ⇡ ±2⇡.

is trapped inside the ring and � = 2⇡. Then, we turn o↵
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phase from � = 2⇡ to 0 which manisfests itself as voltage
spike across the Josephson junction.

As shown in Sec. IV, the low energy fermionic degrees
of freedom of the topological superconducting wire couple
to the gauge invariant phase di↵erence. The e↵ective
action is given by

S =

Z T

0

d⌧ (⌧)†
1

2
[11@⌧ + EM cos�(⌧)�z] (⌧). (24)

The presence of fermions influences the tunneling rate be-
tween di↵erent phase minima. As we showed in Sec. IV,
the e↵ect of the low energy fermion can be investigated
by two routes as detailed below.

1. Integrating out fermions

Following procedures in Sec. IV A, we can first inte-
grate out the fermionic action Eq. (24) and obtain the
e↵ective actions for � = 0

S±
e↵

=

Z �

0

d⌧



1

2

1

8EC
(@⌧�(⌧))2 + EJ(1 � cos�(⌧))

+EL�
2(⌧) ± EM

2
cos(�(⌧)/2)

�

. (25)

We observe that integrating out of fermionic degrees of
freedom simply adds the term ±EM cos(�/2)/2 into the
original bosonic action with the choice of ± sign depend-
ing on the fermion parity of the system.

To understand the e↵ective actions, we first plot the
profiles of the potential term

V ±(�) = EJ(1� cos�(⌧)) + EL�
2(⌧)± EM

2
cos(�(⌧)/2),

(26)

in Fig. 8 with a shift to make all V ±(0) = 0. The ini-
tial condition is prepared such that the superconducting
wire is at its ground state for � = 2⇡. Therefore, with
EM > 0, the e↵ective action should take the sector S+

e↵

,
which will be assumed throughout the following discus-
sions. We note that the e↵ective potential V +(�) be-
haves qualitatively di↵erent depending on EL is greater
or smaller than EM/4⇡2. When the inductance energy
is dominates, EL > EM/4⇡2, the potential has a global
minimum at � = 0 and two local minima at � = ±2⇡.
In contrast, when the Majorana fermion energy becomes
substantial, EL < EM/4⇡2, there are two degenerate
minima at � ⇡ ±2⇡ and a local minimum at � = 0.

From the potential profiles in the EL < EM/4⇡2

regime, we find that a phase slip from � = 2⇡ to � = 0 is
energetically unfavorable as V +(0) > V +(2⇡). Instead,
a phase slip of 4⇡, tunneling between � = ±2⇡, would
lead to a stable state. As discussed earlier, such a phase
slip would not change the states of a qubit based on this
system.

For the regime where EL > EM/4⇡2, an initial state
at � = 2⇡ can relax to � = 0 state since now V +(0) <

V +(2⇡). The relaxation rate is given by �
2⇡!0

= Ke�S0
0

where K corresponds to the attempt rate for the tun-
neling and S0

0

is the adjusted action evaluated along the
bouncing trajectory that starts from the initial energy
minimum �i ⇡ 2⇡ to the bouncing point �b and then
back to �i.26 Here, the adjusted action is defined by
S0 = S+

e↵

� R

d⌧V +(�i) such that the corresponding po-
tential V 0(�) = V +(�)�V +(�i) vanishes at the potential
minimum �i. As a rough first approximation, we can as-
sume that K is not a↵ected by the presence of Majorana
fermions and plays no role for our discussion.

To compare the relaxation rates, �M
2⇡!0

(Majorana
fermions present) and �NM

2⇡!0

(Majorana fermions ab-
sent), we shall now compute the S0

0

for both cases. As the
bouncing trajectory is a stationary path of the equation
of motion, one can show that

S0
0

=
1p
EC

Z �b

�i

d�
p

V 0(�). (27)

In the case of EL = EM = 0, we have �i = 2⇡ and �b = 0,
and the action is S0

0

= 4
p

2EJ/EC . When EL/EJ ⌧ 1,
we still have �i ⇡ 2⇡ and �b ⇡ 0, and we can approximate
S0

0

⇡ 4
p

2EJ/EC . Qualitatively, the presence of a small
inductance energy EL/EJ ⌧ 1 increases the relaxation
rate only slightly, i.e., decreasing the action such that
S0

0

<⇠ S0
0

|EL=0

.
We observe that the suppression of tunneling rate due

to the Majorana fermions is given by e��S
0
0 , where

�S0
0

= S0
0

� S0
0

|EM=0

, (28)

is the di↵erence between the actions. From Eq. (27), one

can see that �S0
0

is of the form �S0
0

=
q

EJ
EC

f
⇣

EL
EJ

, EM
EJ

⌘

.

In the limit EJ � EL � EM/(4⇡2), one can approxi-

10

0.08

0.09

0.10

0.11

0.002 0.004 0.006 0.008 0.010 0.012

FIG. 9. The �S0
0 in Eq. (28) is evaluated numerically and

shown in blue curve as a function of EL/EJ with EC/EJ = 1
and EM/EJ = 0.05. The red curve is the approximate result
shown in Eq. (30).
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EL

EJ
,
EM

EJ

◆

⇡ EM

2
p

2EJ

ln(EJ/EL) (29)

which leads to

�S0
0

⇡ EM

2
p

2ECEJ

ln(EJ/EL). (30)

It is however straightforward to evaluate �S0
0

numeri-
cally, which is shown in Fig. 9 as a function of EL/EJ

with the parameter EM/EJ = 0.05 and EC/EJ = 1.
The red line shows the approximation result in Eq. (30).
Here, the positive sign of �S0

0

indicates the suppression of
relaxation rate. In general, a smaller EL/EJ and larger
EM/EJ leads to a stronger suppresion. We also note that
the approximated form of f only provides a qualitative
trend of f(EL

EJ
, EM

EJ
). However, in the following subsec-

tion we will show that the approximate form Eq. (29) is
indeed the fingerprint of the zero mode physics.

2. Relation to zero modes

In the limit that EJ � EL � EM/(4⇡2), we can first
neglect the presence of the Majorana fermion and fol-
low the bouncing trajectory of action Eq. (23). Then,
the Majorana fermion can be integrated out with the as-
sumption that �(⌧) follows the bouncing trajectory. Such
a trajectory can be evaluated by realizing that

1

16EC
�̇2 � EJ(1 � cos �) � EL�2 = E, (31)

is conserved along the classical trajectory. From the ini-
tial condition, � = 2⇡ and �̇ = 0, we have E = �4⇡2EL

and hence the classical trajectory satisfies

d�

dt
= 4

p

Ec(EJ(1 � cos �) + EL�2 � 4⇡2EL). (32)

As discussed in Sec. IV B, zero modes appear when the
superconductor phase di↵erence �(⌧) passes through ⇡,
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FIG. 10. The time interval Tb as a function of EL/EJ is
evaluated numerically with EC/EJ = 1, c.f. Eq. (33), and
shown in the blue curve. The red curve is the approximated
result in Eq. (35).

i.e., from � > ⇡ to � < ⇡ or vise versa. For a bounc-
ing event, similar to the phase trajectory depicted in
Fig. 5(a), the superconducting phase �(⌧) passes through
⇡ twice, separated by a time interval of Tb. Therefore,
the zero energy eigenvalues at � = ⇡ split to finite ener-
gies �� = ±EMe�EMTb/2. When EL > 2EJ/(3⇡2) and
hence �b < ⇡, the imaginary time interval of Tb can be
readily evaluated from

Tb =
2

4
p

EC

Z ⇡

�b

d�
p

EJ(1 � cos �) + EL�2 � 4⇡2EL

.

(33)
For EL/EJ ⌧ 1, we can ignore the contributions from
EL/EJ from the integrand. Thus, this integral can be
approximated by

2
p

2ECEJTb ⇡
Z ⇡

�b

d�

| sin(�/2)| = � ln tan
�b

4
(34)

with �b ⇡ 2⇡
p

2EL/EJ . By droping the constant terms,
we have

Tb =
1

2
p

2ECEJ

ln(EJ/EL). (35)

In Fig. 10, we show the numerically evaluated Tb as a
function of EL/EJ with EC = EJ = 1. The approxi-
mated Tb in Eq. (35) is in good agreement with numerical
results.

From Fig. 5(c), we observe that most eigenvalues re-
main unchanged in the presence of an instanton despite
the appearance of zero modes. As the zero energy modes
split to

�� = ±EM

2
(EL/EJ)EM/(2

p
2ECEJ ), (36)

the tunneling rate is changed by the ratio of the deter-
minant of the fermionic kernel in the presence and in the
absence of the bounce. This ratio is dominated by

� /
p

det[Lf ]
p

det[Lf,0]
⇠ |��|

EM/2
=

✓

EL

EJ

◆EM/(2

p
2ECEJ )

.

(37)



Conclusions

The fact that phase-slips in topological wires occur in multiples of
4π is well known.

We show an alternative explanation of this fact by a beautiful
analogy to spontaneous symmetry breaking of the theta vacuum in
quantum chromodynamics. For the case of QCD, t'Hooft found
that in the background of the instanton of the gauge field, there is a
zero mode in the fermionic determinant. This zero mode results in
the vanishing of the transition rate between configurations of the
vacuum with different winding numbers.

Similarly, we find that in the background of a 2π phase slip, the
fermion determinant contains a ``hidden" zero mode, that results
in the vanishing (suppression) of the rate of 2π phase slips.
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