
Journal Club, October 9, 2012

arXiv:1209.6334v1 [quant-ph]

Observation of Radiation Pressure Shot Noise

T. P. Purdy, R. W. Peterson, and C. A. Regal

JILA, University of Colorado and NIST



Outline

I Standard quantum limit on measurement precision

I Quantum limit on the added noise

I Experimental setup and parameters

I Theoretical description of the device

I Ingredients for the observation of RPSN

I Experimental results



Standard quantum limit on measurement precision

Heisenberg microscope:

∆ximp ∼ λ,
∆pBA ∼ h/λ,

∆ximp ∆pBA ≥
h

2
.

Weak continuous measurement: imprecision vs back-action noise.

Optomechanical setup: radiation pressure force: F̂ = −~Gâ†â,

Ĥint = −x̂ · F̂

I x̂ is measured via the cavity phase shift.

I Photon shot noise (fluctuating force F̂ )
causes back-action.



What is the equivalent of Heisenberg uncertainty relation for weak
continuous measurement?

Constraint on the detector input and output noises

Noise is characterized by its power spectral density:

S̄AB [ω] =
1

2

∫
dte iωt

〈{
δÂ(t), δB̂(0)

}〉
,

Quantum constraint on noise detector:

S̄FF [ω]S̄II [ω]−
∣∣Re

(
S̄IF [ω]

)∣∣2 ≥ ~2

4
|Re (χIF [ω])|2

where χIF (t) = − i
~Θ(t)

〈[
Î (t), F̂ (0)

]〉
is the gain of the detector.



Quantum limit on the added noise

Detector output: signal + back-action + imprecision,

Imeas = AχIF (x + δxBA) + δIimp = AχIF (x + δxadd) ,

δxadd = δxBA + δximp, δximp = δIimp/(AχIF ), δxBA = AχxxδF .

Spectral density of xmeas = Imeas/(AχIF )

S̄meas
xx [ω] = S̄eq

xx [ω,T ] + S̄add
xx [ω].

Quantum limit on the added noise

S̄add
xx [ω] ≥ S̄eq

xx [ω,T = 0].



SQL : optimal working point of a detector, where the added noise is
minimized.
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Reported in this work: first experiment where radiation-pressure shot
noise is the dominant driving force of a solid object (RPSN comparable
to thermal forces).

1A. A. Clerk et al. Rev. Mod. Phys. 82 (2010)



Experimental setup and parameters
Micromechanical SiN membrane inside a Fabry-Perot optical cavity.

Mechanical mode:

I ωm/2π = 1.55 MHz

I Γ0/2π < 1 Hz

Optical modes:

I cavity linewidth: κ/2π ∼ 1 MHz

I ∆S ∼ 0 and ∆M ' ωm

Single-photon optomechanical coupling: g/2π = 17 Hz



Theoretical description of the device

Hamiltonian: H = H0 + Hκ + HΓ

H0 = ~ωmc
†c + ~∆1a

†
1a1 + ~∆2a

†
2a2 + ~g1a

†
1a1(c + c†)

+ ~g2a
†
2a2(c + c†) + εd,1(a1 + a†1) + εd,2(a2 + a†2)

Heisenberg-Langevin equations of motion:

ȧ1 = − i

~
[a1,H0]− κ

2
a1 +

√
κL (ξL1 + dx1) +

√
κintξint1 +

√
κRξinR1,

ȧ2 = − i

~
[a2,H0]− κ

2
a2 +

√
κLξL2 +

√
κintξint2 +

√
κRξR2,

ċ(t) = − i

~
[c ,H0] +

√
Γ0η



Regime of linearized optomechanics

Linearize the eom’s around classical coherent field amplitudes

a1(t) = ā1 + d1(t), a2(t) = ā2 + d2(t)

and solve in the frequency-domain for the quantum operators d1, d2

(optical) and z = Zzpf(c + c†)− z̄ (displacement).

Enhanced optomechanical coupling:

gia
†
i ai (c + c†)

↓

g̃i (di + d†i )(c + c†)

where g̃i = gi |āi | = gi
√
Ni ∝ εd,i

Increasing the driving power increases the measurement strength.



Mechanical spectrum

Szz(ω) = 〈z(−ω)z(ω)〉 can be calculated from the noise correlators:〈
ξi (ω)ξ†j (ω′)

〉
= δijδ(ω + ω′),

〈
ξ†i (ω)ξj(ω

′)
〉

= 0〈
η(ω)η†(ω′)

〉
= (nth + 1)δ(ω + ω′),

〈
η†(ω)η(ω′)

〉
= nthδ(ω + ω′)

〈dx1(ω)dx1(ω′)〉 = B1

Szz(ω)

Z 2
zpf

=
1

|N (ω)|2

(
Γ0(nth + 1)

|χm(ω)|2
+

Γ0nth
|χm(−ω)|2

+ 4ω2
mκ|ā1g1χc1(−ω)|2

+4ω2
mκ|ā2g2χc2(−ω)|2 + 4ω2

mκL|ā1g1 (χc1(ω) + χ∗c1(−ω)) |2B1

)
In particular Szz(ω) is used to calculate the change in the mechanical
response, needed to access the BA noise (δxBA = Aχxx δF )



Ingredients for the observation of RPSN

Signal (mode 1)

I provides the RPSN

I its transmitted shot intensity fluctuations constitute a record of the
optical force on the resonator.

I driven on resonance ∆S ∼ 0,

I measurement strength (g1|ā1|) modulated via driving stength
NS = |ā1|2 ' (εd,1/κ)2

Meter (mode 2):

I more weakly driven (NM � NS) on the first red sideband
(∆M ' ωm)

I provides cooling ΓM � Γ0, ΓS

I The resonator’s displacement spectrum is imprinted in the
transmitted intensity spectrum of this laser.



Effective phonon occupation:

nm =
nthΓ0 + nSΓS + nMΓM

Γm
, Γm = Γ0 + ΓS + ΓM

Regime where RPSN dominates:

RS =
CS

nth(1 + (2ωm/κ)2)
> 1

CS = 4NSg
2/κΓ0 is the multiphoton cooperativity.



Device A (Device B): NM = 3.4× 106 (7.0× 106), Nmax
S = 1.2× 108(4.4× 108),

ωm/2π = 1.575 MHz (1.551 MHz), Γm/2π = 3 kHz (1.43 kHz).



Correlation between signal and the meter beam
photocurrents

Cross-correlation function:

SISM (ω) = 〈I ∗S (ω)IM(ω)〉

Individual photocurrents:

SIS,M (ω) = 〈|IS,M(ω)|2〉

Peak correlation:

C(ωm) =
|SISM (ωm)|2

SIS (ωm)SIM (ωm)

∝ RS

1 + RS
= 0.4± 0.03,

indicates the fraction of dis-
placement spectrum due to
RPSN.

Red: |SISM (ω)|2 Black: SIS (ω)× SIM (ω)



Control of laser absorbtion heating

(4,4) mode

(2,2) mode


