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Idea

weakly couple M ≥ 3 of Mtot ≥ 4 (even) Majorana
modes of semiconductor nanowires on top of s-wave

superconductor island to metallic contacts

non-local Kondo impurity realized by spin-1/2 algebra
formed by 3 of 4 Majorana modes
experimentally observe non-locality of Majoranas in
conductance signatures of topological Kondo effect
estimate: charging energy EC and induced SC gap
∆NW of order 0.5− 1K; Kondo temperature TK . 0.1K
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Expected Features

topological Kondo effect
direct detection of quantum signatures due to
non-locality of Majorana modes

based on current experimental realizations
(e.g. nanowires)
unique transport signatures easily
distinguishable from competing effects
robust non-Fermi liquid (NFL) behavior for
very small temperatures
topological Kondo impurity states correspond
to logical qubit states
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Majorana Fermions in 1D Nanowires (Essentials)

Ε

k

µ

∆

ingredients:

1 semiconductor nanowire

2 (Rashba) spin-orbit interaction
(effective magnetic field BSO)

3 axial magnetic field (opens gap
between spin states at k = 0)

4 s-wave superconductor close by
(induce coupling between k and −k
electrons, proximity effect)

5 zero-energy Majorana end-modes
γ1 = f̂ † + f̂ and γ2 = i( f̂ † − f̂ )
(spin-less, charge-less)

fermionic zero mode
f̂ † = (γ1 − iγ2)/2 with {γi, γj} = 2δij
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Logical Qubit needs Four Majorana Modes

two Majoranas→ two-fold degenerate space

states |0〉 and |1〉 = f̂ †|0〉 with f̂ † = (γ1 − iγ2)/2

spin algebra: σ̂x = γ1, σ̂y = −γ2, and σ̂z = iγ1γ2

1 states |0〉 and |1〉 cannot form qubit
(different quasi-particle parity)

2 take at least four Majoranas γ1 to γ4

3 choose one subspace with states of equal
parity (e.g. |00〉 and |11〉) for logical qubit

spin-1/2 algebra from at least three Majoranas
Pauli matrices are bilinear products of the γi

for example: σ̂x = −iγ2γ3, σ̂y = iγ1γ3, and σ̂z = −iγ1γ2
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Signatures at Zero Bias Voltage
Mourik et al., Science 336, 1003 (2012)
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zero-bias peak (ZBP) in
conductance may indicate presence
of Majorana mode
ZBP rather stable against change of
magnetic field and gate voltage
non-locality not explicitly
used/tested in experiment
non-topological ZBP (e.g. due to
disorder) might be similar (stability,
appearance/disappearance)
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The “Traditional” Kondo Effect
e.g. A. Hewson, The Kondo Problem to Heavy Fermions (Cambridge 1997)

in quantum dots:
arise for coupling of itinerant electrons
to degenerate state manifold of
quantum spin S (Kondo impurity)
conduction electrons screen Kondo
impurity for small temperatures T . TK

opening of zero-bias conducting
channel in Coulomb blockade regime

Kondo model

H =
∑
kσ

εkĉ†kσ ĉkσ +
J
2

∑
kk′σσ′

(ĉ†kσσσσ′ ĉk′σ′) · S Wiel et al., Science
289, 2105 (2000)
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Schrieffer-Wolf transformation

map singly-occupied, spin-degenerate Anderson dot
H = Hleads − U/2

∑
σ d̂†σd̂σ + Ud̂†↑d̂↑d̂

†
↓d̂↓

to effective Kondo model (for U � T)

flip-flop processes due to coherent
tunneling through virtual states |0〉 or |d〉

perturbation theory: effective coupling of
|↑, ↓〉 and |↓, ↑〉 with energy ∝ −t2/U

particle number in dot conserved: restrict to
subspace with one electron on dot

effective anti-ferromagnetic Heisenberg
Hamiltonian

U

ϵσ − ϵ0

ϵd − ϵσ

t

t
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Poor Man’s Scaling
P.W. Anderson, JoPC: Sol. St. Phys. 3, 2436 (1970)

integrate out small shell δΛ of high-energy
states at edge of conduction band

second-order scattering processes in
Kondo Hamiltonian: ∝ J2

inverse proportional to bandwidth 1/Λ

proportional to number of intermediate
states: ρ δΛ (density of states ρ)

rescaled interaction strength J

δJ = −2ρJ2 δΛ

Λ

E

−Λ

0

U ∼ Λ

δΛ

δΛconduction
bandw

idth

integration yields inverse logarithmic scaling of J(Λ) for Λ & TK

J(Λ) ∼ 1
ln(Λ/TK) with TK ∼ U e−1/(ρJbare)
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Topological Kondo Hamiltonian

idea
replace spin-1/2 with topologically degenerate zero-energy

state space of three Majorana modes

charging energy EC conserves particle number N
(and parity) on SC island (corresponds to U)
three different leads weakly tunnel coupled to
separate Majorana modes
Schrieffer-Wolf transformation: virtual tunneling
through states with N ± 1

effective Hamiltonian (H = Hleads + Heff)

Heff =
∑
i 6=j

λ+
ij γiγjψ̂

†
i ψ̂j −

∑
i

λ−ii ψ̂
†
i ψ̂i

couplings λ±ij = (1/U+ ± 1/U−)titj

10



Topological Kondo Hamiltonian

idea
replace spin-1/2 with topologically degenerate zero-energy

state space of three Majorana modes

charging energy EC conserves particle number N
(and parity) on SC island (corresponds to U)
three different leads weakly tunnel coupled to
separate Majorana modes
Schrieffer-Wolf transformation: virtual tunneling
through states with N ± 1

effective Hamiltonian (H = Hleads + Heff)

Heff =
∑
i 6=j

λ+
ij γiγjψ̂

†
i ψ̂j −

∑
i

λ−ii ψ̂
†
i ψ̂i

couplings λ±ij = (1/U+ ± 1/U−)titj
10



Emergence of Kondo Problem

non-local term of effective Hamiltonian

HNL =
∑
i6=j

λ+
ij γiγjψ̂

†
i ψ̂j

use Majorana spin algebra: σ̂ = −i/2(γ × γ)
with γ = (γ1, γ2, γ3), for instance σ̂x = −iγ2γ3

parity of N determines “qubit subspace”
(either |00〉 and |11〉 or |01〉 and |10〉)

final Kondo Hamiltonian

HNL =
1
2

∑
α

λασ̂αĴα

coupling constants λα =
∑

ab |εαab|λ+
ab = 2γ+

ab

“non-local spin-1 object” Ĵα = i
∑

ab εαbaψ̂
†
aψ̂b
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Kondo Signatures in Linear Conductance

1 for TK < T: inverse logarithmic
scaling in weak coupling regime

2 for T � TK : power-law scaling
with G12 = 2e2/(3h)− |c12|T2/3,
non-Fermi liquid behavior

3 dashed line: conductance G12
for lead three decoupled =⇒
Ising Hamiltonian

4 flow to isotropic Kondo coupling
λα/λβ → 1 for T → 0

5 diagonal conductance (4e2/3h) enhanced due to “Andreev
reflection fixed point”

Kondo temperature TK ∼ EC e−1/(ρλbare) . 0.1K
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Possible Issues

very abstract effective model as starting point
how are Majoranas from different wires coupled?
topological protection of non-local state might be
weak for small island (large EC)
larger island with longer wires→ smaller EC →
direct tunneling into N ± 1 states?
induced gap ∆NW in nanowire large enough?
effects of disorder, . . .
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