Topological Kondo Effect with Majorana Fermions B. Béri and N. R. Cooper TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom (Received 26 July 2012; published 9 October 2012) Phys. Rev. Lett. 109, 156803 (2012) #### **Journal Club** Daniel Becker 16 October 2012 weakly couple $M \ge 3$ of $M_{\text{tot}} \ge 4$ (even) Majorana modes of semiconductor nanowires on top of s-wave superconductor island to metallic contacts weakly couple $M \ge 3$ of $M_{\text{tot}} \ge 4$ (even) Majorana modes of semiconductor nanowires on top of s-wave superconductor island to metallic contacts non-local Kondo impurity realized by spin-1/2 algebra formed by 3 of 4 Majorana modes weakly couple $M \ge 3$ of $M_{\text{tot}} \ge 4$ (even) Majorana modes of semiconductor nanowires on top of s-wave superconductor island to metallic contacts - non-local Kondo impurity realized by spin-1/2 algebra formed by 3 of 4 Majorana modes - experimentally observe non-locality of Majoranas in conductance signatures of topological Kondo effect weakly couple $M \ge 3$ of $M_{\text{tot}} \ge 4$ (even) Majorana modes of semiconductor nanowires on top of s-wave superconductor island to metallic contacts - non-local Kondo impurity realized by spin-1/2 algebra formed by 3 of 4 Majorana modes - experimentally observe non-locality of Majoranas in conductance signatures of topological Kondo effect - estimate: charging energy E_C and induced SC gap Δ_{NW} of order 0.5 1K; Kondo temperature $T_K \lesssim 0.1K$ #### topological Kondo effect direct detection of quantum signatures due to non-locality of Majorana modes - direct detection of quantum signatures due to non-locality of Majorana modes - based on current experimental realizations (e.g. nanowires) - direct detection of quantum signatures due to non-locality of Majorana modes - based on current experimental realizations (e.g. nanowires) - unique transport signatures easily distinguishable from competing effects - direct detection of quantum signatures due to non-locality of Majorana modes - based on current experimental realizations (e.g. nanowires) - unique transport signatures easily distinguishable from competing effects - robust non-Fermi liquid (NFL) behavior for very small temperatures - direct detection of quantum signatures due to non-locality of Majorana modes - based on current experimental realizations (e.g. nanowires) - unique transport signatures easily distinguishable from competing effects - robust non-Fermi liquid (NFL) behavior for very small temperatures - topological Kondo impurity states correspond to logical qubit states # Majorana Fermions in 1D Nanowires (Essentials) ingredients: 1 semiconductor nanowire #### ingredients: - semiconductor nanowire - 2 (Rashba) spin-orbit interaction (effective magnetic field B_{SO}) - 1 semiconductor nanowire - 2 (Rashba) spin-orbit interaction (effective magnetic field B_{SO}) - 3 axial magnetic field (opens gap between spin states at k = 0) #### ingredients: - semiconductor nanowire - (Rashba) spin-orbit interaction (effective magnetic field B_{SO}) - axial magnetic field (opens gap between spin states at k = 0) - 4 s-wave superconductor close by (induce coupling between k and -k electrons, proximity effect) #### ingredients: - semiconductor nanowire - 2 (Rashba) spin-orbit interaction (effective magnetic field B_{SO}) - 3 axial magnetic field (opens gap between spin states at k = 0) - 4 s-wave superconductor close by (induce coupling between k and -k electrons, proximity effect) - 5 zero-energy Majorana end-modes $\gamma_1 = \hat{f}^\dagger + \hat{f}$ and $\gamma_2 = \mathbf{i}(\hat{f}^\dagger \hat{f})$ (spin-less, charge-less) #### fermionic zero mode $$\hat{f}^{\dagger}=(\gamma_1-m{i}\gamma_2)/2$$ with $\{\gamma_i,\gamma_j\}=2\delta_{ij}$ - lacksquare states $|0\rangle$ and $|1\rangle=\hat{f}^\dagger|0\rangle$ with $\hat{f}^\dagger=(\gamma_1-{\it i}\gamma_2)/2$ - spin algebra: $\hat{\sigma}_x = \gamma_1$, $\hat{\sigma}_y = -\gamma_2$, and $\hat{\sigma}_z = i\gamma_1\gamma_2$ - lacksquare states |0 angle and $|1 angle=\hat{f}^\dagger|0 angle$ with $\hat{f}^\dagger=(\gamma_1-{\it i}\gamma_2)/2$ - spin algebra: $\hat{\sigma}_x = \gamma_1$, $\hat{\sigma}_y = -\gamma_2$, and $\hat{\sigma}_z = i\gamma_1\gamma_2$ - states $|0\rangle$ and $|1\rangle$ cannot form qubit (different quasi-particle parity) - lacksquare states |0 angle and $|1 angle=\hat{f}^\dagger|0 angle$ with $\hat{f}^\dagger=(\gamma_1-{\it i}\gamma_2)/2$ - spin algebra: $\hat{\sigma}_x = \gamma_1$, $\hat{\sigma}_y = -\gamma_2$, and $\hat{\sigma}_z = i\gamma_1\gamma_2$ - states $|0\rangle$ and $|1\rangle$ cannot form qubit (different quasi-particle parity) - 2 take at least four Majoranas γ_1 to γ_4 - lacksquare states |0 angle and $|1 angle=\hat{f}^\dagger|0 angle$ with $\hat{f}^\dagger=(\gamma_1-{\it i}\gamma_2)/2$ - spin algebra: $\hat{\sigma}_x = \gamma_1$, $\hat{\sigma}_y = -\gamma_2$, and $\hat{\sigma}_z = i\gamma_1\gamma_2$ - states $|0\rangle$ and $|1\rangle$ cannot form qubit (different quasi-particle parity) - **2** take at least four Majoranas γ_1 to γ_4 - choose one subspace with states of equal parity (e.g. $|00\rangle$ and $|11\rangle$) for logical qubit #### two Majoranas → two-fold degenerate space - lacksquare states |0 angle and $|1 angle=\hat{f}^\dagger|0 angle$ with $\hat{f}^\dagger=(\gamma_1-{\it i}\gamma_2)/2$ - spin algebra: $\hat{\sigma}_x = \gamma_1$, $\hat{\sigma}_y = -\gamma_2$, and $\hat{\sigma}_z = i\gamma_1\gamma_2$ - states $|0\rangle$ and $|1\rangle$ cannot form qubit (different quasi-particle parity) - 2 take at least four Majoranas γ_1 to γ_4 - 3 choose one subspace with states of equal parity (e.g. $|00\rangle$ and $|11\rangle$) for logical qubit #### spin-1/2 algebra from at least three Majoranas - lacktriangle Pauli matrices are bilinear products of the γ_i - for example: $\hat{\sigma}_x = -i\gamma_2\gamma_3$, $\hat{\sigma}_y = i\gamma_1\gamma_3$, and $\hat{\sigma}_z = -i\gamma_1\gamma_2$ # Signatures at Zero Bias Voltage Mourik et al., Science 336, 1003 (2012) - zero-bias peak (ZBP) in conductance may indicate presence of Majorana mode - ZBP rather stable against change of magnetic field and gate voltage - non-locality not explicitly used/tested in experiment - non-topological ZBP (e.g. due to disorder) might be similar (stability, appearance/disappearance) #### The "Traditional" Kondo Effect e.g. A. Hewson, The Kondo Problem to Heavy Fermions (Cambridge 1997) #### in quantum dots: - arise for coupling of itinerant electrons to degenerate state manifold of quantum spin S (Kondo impurity) - conduction electrons screen Kondo impurity for small temperatures $T \lesssim T_K$ - opening of zero-bias conducting channel in Coulomb blockade regime #### Kondo model $$H = \sum_{k\sigma} \epsilon_k \hat{c}^{\dagger}_{k\sigma} \hat{c}_{k\sigma} + rac{J}{2} \sum_{kk'\sigma\sigma'} (\hat{c}^{\dagger}_{k\sigma} m{\sigma}_{\sigma\sigma'} \hat{c}_{k'\sigma'}) \cdot m{S}$$ Wiel et al., Science **289**. 2105 (2000) map singly-occupied, spin-degenerate Anderson dot $H=H_{\mathrm{leads}}-U/2\sum_{\sigma}\hat{d}_{\sigma}^{\dagger}\hat{d}_{\sigma}+U\hat{d}_{\uparrow}^{\dagger}\hat{d}_{\uparrow}\hat{d}_{\downarrow}^{\dagger}\hat{d}_{\downarrow}$ to effective Kondo model (for $U\gg T$) map singly-occupied, spin-degenerate Anderson dot $$H=H_{\rm leads}-U/2\sum_{\sigma}\hat{d}_{\sigma}^{\dagger}\hat{d}_{\sigma}+U\hat{d}_{\uparrow}^{\dagger}\hat{d}_{\uparrow}\hat{d}_{\downarrow}^{\dagger}\hat{d}_{\downarrow}$$ to effective Kondo model (for $U\gg T$) • flip-flop processes due to coherent tunneling through virtual states $|0\rangle$ or $|d\rangle$ map singly-occupied, spin-degenerate Anderson dot $H=H_{\rm leads}-U/2\sum_{\sigma}\hat{d}_{\sigma}^{\dagger}\hat{d}_{\sigma}+U\hat{d}_{\uparrow}^{\dagger}\hat{d}_{\uparrow}\hat{d}_{\downarrow}^{\dagger}$ to effective Kondo model (for $U\gg T$) - flip-flop processes due to coherent tunneling through virtual states $|0\rangle$ or $|d\rangle$ - perturbation theory: effective coupling of $|\uparrow,\downarrow\rangle$ and $|\downarrow,\uparrow\rangle$ with energy $|\propto -t^2/U|$ map singly-occupied, spin-degenerate Anderson dot $H=H_{\rm leads}-U/2\sum_{\sigma}\hat{d}_{\sigma}^{\dagger}\hat{d}_{\sigma}+U\hat{d}_{\uparrow}^{\dagger}\hat{d}_{\uparrow}\hat{d}_{\uparrow}^{\dagger}\hat{d}_{\downarrow}$ to effective Kondo model (for $U\gg T$) - flip-flop processes due to coherent tunneling through virtual states $|0\rangle$ or $|d\rangle$ - perturbation theory: effective coupling of $|\uparrow,\downarrow\rangle$ and $|\downarrow,\uparrow\rangle$ with energy $|\propto -t^2/U|$ - particle number in dot conserved: restrict to subspace with one electron on dot map singly-occupied, spin-degenerate Anderson dot $H=H_{\rm leads}-U/2\sum_{\sigma}\hat{d}_{\sigma}^{\dagger}\hat{d}_{\sigma}+U\hat{d}_{\uparrow}^{\dagger}\hat{d}_{\uparrow}\hat{d}_{\uparrow}^{\dagger}\hat{d}_{\downarrow}$ to effective Kondo model (for $U\gg T$) - flip-flop processes due to coherent tunneling through virtual states $|0\rangle$ or $|d\rangle$ - perturbation theory: effective coupling of $|\uparrow,\downarrow\rangle$ and $|\downarrow,\uparrow\rangle$ with energy $|\propto -t^2/U|$ - particle number in dot conserved: restrict to subspace with one electron on dot - effective anti-ferromagnetic Heisenberg Hamiltonian P.W. Anderson, JoPC: Sol. St. Phys. 3, 2436 (1970) \blacksquare integrate out small shell $\delta\Lambda$ of high-energy states at edge of conduction band P.W. Anderson, JoPC: Sol. St. Phys. 3, 2436 (1970) - integrate out small shell $\delta\Lambda$ of high-energy states at edge of conduction band - second-order scattering processes in Kondo Hamiltonian: $\propto J^2$ P.W. Anderson, JoPC: Sol. St. Phys. 3, 2436 (1970) - \blacksquare integrate out small shell $\delta\Lambda$ of high-energy states at edge of conduction band - second-order scattering processes in Kondo Hamiltonian: $\propto J^2$ - lacktriangle inverse proportional to bandwidth $1/\Lambda$ P.W. Anderson, JoPC: Sol. St. Phys. 3, 2436 (1970) - integrate out small shell $\delta\Lambda$ of high-energy states at edge of conduction band - second-order scattering processes in Kondo Hamiltonian: $\propto J^2$ - \blacksquare inverse proportional to bandwidth $1/\Lambda$ - proportional to number of intermediate states: $\rho \delta \Lambda$ (density of states ρ) P.W. Anderson, JoPC: Sol. St. Phys. 3, 2436 (1970) - integrate out small shell $\delta\Lambda$ of high-energy states at edge of conduction band - second-order scattering processes in Kondo Hamiltonian: $\propto J^2$ - \blacksquare inverse proportional to bandwidth $1/\Lambda$ - proportional to number of intermediate states: $\rho \delta \Lambda$ (density of states ρ) #### rescaled interaction strength J $$\delta J = -2\rho J^2 \frac{\delta \Lambda}{\Lambda}$$ P.W. Anderson, JoPC: Sol. St. Phys. 3, 2436 (1970) - integrate out small shell $\delta\Lambda$ of high-energy states at edge of conduction band - second-order scattering processes in Kondo Hamiltonian: $\propto J^2$ - \blacksquare inverse proportional to bandwidth $1/\Lambda$ - proportional to number of intermediate states: $\rho \delta \Lambda$ (density of states ρ) #### rescaled interaction strength J $$\delta J = -2\rho J^2 \frac{\delta \Lambda}{\Lambda}$$ lacksquare integration yields inverse logarithmic scaling of $J(\Lambda)$ for $\Lambda\gtrsim T_K$ $$J(\Lambda) \sim rac{1}{\ln(\Lambda/T_K)}$$ with $T_K \sim U \, e^{-1/(ho J_{ m bare})}$ # Topological Kondo Hamiltonian #### idea replace spin-1/2 with topologically degenerate zero-energy state space of three Majorana modes - charging energy E_C conserves particle number N (and parity) on SC island (corresponds to U) - three different leads weakly tunnel coupled to separate Majorana modes - Schrieffer-Wolf transformation: virtual tunneling through states with $N\pm 1$ # Topological Kondo Hamiltonian #### idea replace spin-1/2 with topologically degenerate zero-energy state space of three Majorana modes - charging energy E_C conserves particle number N (and parity) on SC island (corresponds to U) - three different leads weakly tunnel coupled to separate Majorana modes - Schrieffer-Wolf transformation: virtual tunneling through states with $N\pm 1$ effective Hamiltonian ($$H = H_{\text{leads}} + H_{\text{eff}}$$) $$H_{\mathsf{eff}} = \sum_{i \neq j} \lambda_{ij}^+ \gamma_i \gamma_j \hat{\psi}_i^\dagger \hat{\psi}_j - \sum_i \lambda_{ii}^- \hat{\psi}_i^\dagger \hat{\psi}_i$$ lacksquare couplings $\lambda_{ij}^{\pm} = (1/U_+ \pm 1/U_-)t_it_j$ # **Emergence of Kondo Problem** #### non-local term of effective Hamiltonian $$H_{\mathsf{NL}} = \sum_{i \neq j} \lambda_{ij}^+ \gamma_i \gamma_j \hat{\psi}_i^\dagger \hat{\psi}_j$$ # **Emergence of Kondo Problem** #### non-local term of effective Hamiltonian $$H_{\mathsf{NL}} = \sum_{i \neq j} \lambda_{ij}^+ \gamma_i \gamma_j \hat{\psi}_i^\dagger \hat{\psi}_j$$ - use Majorana spin algebra: $\hat{\sigma} = -i/2(\gamma \times \gamma)$ with $\gamma = (\gamma_1, \gamma_2, \gamma_3)$, for instance $\hat{\sigma}_x = -i\gamma_2\gamma_3$ - parity of N determines "qubit subspace" (either $|00\rangle$ and $|11\rangle$ or $|01\rangle$ and $|10\rangle$) # **Emergence of Kondo Problem** #### non-local term of effective Hamiltonian $$H_{\mathsf{NL}} = \sum_{i \neq j} \lambda_{ij}^+ \gamma_i \gamma_j \hat{\psi}_i^\dagger \hat{\psi}_j$$ - use Majorana spin algebra: $\hat{\sigma} = -i/2(\gamma \times \gamma)$ with $\gamma = (\gamma_1, \gamma_2, \gamma_3)$, for instance $\hat{\sigma}_x = -i\gamma_2\gamma_3$ - parity of N determines "qubit subspace" (either $|00\rangle$ and $|11\rangle$ or $|01\rangle$ and $|10\rangle$) ### final Kondo Hamiltonian $$H_{\mathsf{NL}} = rac{1}{2} \sum_{lpha} \lambda_{lpha} \hat{\sigma}_{lpha} \hat{J}_{lpha}$$ - \blacksquare coupling constants $\lambda_{\alpha} = \sum_{ab} |\epsilon_{\alpha ab}| \, \lambda_{ab}^+ = 2 \gamma_{ab}^+$ - "non-local spin-1 object" $\hat{J}_{\alpha}=\pmb{i}\sum_{ab}\epsilon_{\alpha ba}\hat{\psi}_{a}^{\dagger}\hat{\psi}_{b}$ 1 for $T_K < T$: inverse logarithmic scaling in weak coupling regime - 1 for $T_K < T$: inverse logarithmic scaling in weak coupling regime - of for $T \ll T_K$: power-law scaling with $G_{12} = 2e^2/(3h) |c_{12}| T^{2/3}$, non-Fermi liquid behavior - 1 for $T_K < T$: inverse logarithmic scaling in weak coupling regime - for $T \ll T_K$: power-law scaling with $G_{12} = 2e^2/(3h) |c_{12}| T^{2/3}$, non-Fermi liquid behavior - 3 dashed line: conductance G_{12} for lead three decoupled \Longrightarrow Ising Hamiltonian - for $T_K < T$: inverse logarithmic scaling in weak coupling regime - of for $T \ll T_K$: power-law scaling with $G_{12} = 2e^2/(3h) |c_{12}| T^{2/3}$, non-Fermi liquid behavior - 3 dashed line: conductance G_{12} for lead three decoupled \Longrightarrow Ising Hamiltonian - 4 flow to isotropic Kondo coupling $\lambda_{\alpha}/\lambda_{\beta} \to 1$ for $T \to 0$ - for $T_K < T$: inverse logarithmic scaling in weak coupling regime - for $T \ll T_K$: power-law scaling with $G_{12} = 2e^2/(3h) |c_{12}| T^{2/3}$, non-Fermi liquid behavior - 3 dashed line: conductance G_{12} for lead three decoupled \Longrightarrow Ising Hamiltonian - flow to isotropic Kondo coupling $\lambda_{\alpha}/\lambda_{\beta} \to 1$ for $T \to 0$ 5 diagonal conductance $(4e^2/3h)$ enhanced due to "Andreev reflection fixed point" #### Possible Issues - very abstract effective model as starting point - how are Majoranas from different wires coupled? - topological protection of non-local state might be weak for small island (large E_C) - larger island with longer wires \rightarrow smaller $E_C \rightarrow$ direct tunneling into $N \pm 1$ states? - induced gap Δ_{NW} in nanowire large enough? - effects of disorder, . . .