Surface code with decoherence: An analysis of three superconducting architectures

Joydip Ghosh,^{1,*} Austin G. Fowler,^{2,*} and Michael R. Geller^{1,*}

¹Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA

²Centre for Quantum Computation and Communication Technology,

School of Physics, The University of Melbourne, Victoria 3010, Australia

(Dated: October 23, 2012)

We consider a realistic, multi-parameter error model and investigate the performance of the surface code for three possible fault-tolerant superconducting architectures. We map amplitude and phase damping to a diagonal Pauli "depolarization" channel via the Pauli twirl approximation, and obtain the logical error rate as a function of the qubit $T_{1,2}$ and intrinsic state preparation, gate, and readout errors. A numerical Monte Carlo simulation is performed to obtain the logical error rates and a leading order analytic model is constructed to estimate their scaling behavior below threshold. Our results suggest that large-scale fault-tolerant quantum computation should be possible with existing superconducting devices.

PACS numbers: 03.67.Lx, 03.67.Pp, 85.25.-j

arXiv:1210.5799

Journal Club Nov. 6, 2012.
Adrian Hutter

Outline

- 1. Surface code reminder
- 2. Decoherence model, error sources
- 3. Three superconducting archidectures
- 4. Threshold- T_1

Surface code quantum computing

- Based on Kitaev's toric code
 [Kitaev, Annals Phys. 303, 2 (2003)]
- Requires only nearest-neighbor CNOT and single-qubit control to allow for fault-tolerant universal quantum computing

[Groszkowski et al, Phys. Rev. B 84, 144516 (2011)]

 Threshold error rate per gate is 1% with MWPM based error correction

[Wang et al, Phys. Rev. A 83, 020302 (2011)]

Surface code quantum computing

 Below threshold, the probability of a logical error (i.e. the probability of a failure of error correction) is

$$\sim p^{\frac{d+1}{2}}$$

- p: physical error probability
- d: distance of the code (minimal number of single-qubit errors to create one logical error)

Error correction cycle

Figure taken from [Wang et al, PRA (2011)]

$$\sigma^z \sigma^z \sigma^z \sigma^z |\psi\rangle = |\psi\rangle$$

$$\sigma^x\sigma^x\sigma^x\sigma^x|\psi\rangle=|\psi\rangle$$

Error rates: analytics vs simulation

- Monte Carlo simulation: include effects of imperfect CNOT's → error propagation
- Analytical:
 - assume perfect four-qubit measurements
 - Failure probability is dominated by misidentifying $\frac{d+1}{2}$ errors as $\frac{d-1}{2}$ errors (100%) or as inequivalent $\frac{d+1}{2}$ errors (50%) $\Rightarrow p_L \sim p^{\frac{d+1}{2}}$
- \Rightarrow Excellent approximation for $p \ll p_c$ and small d

Error sources

Assume Markovian, uncorrelated, and independent errors

- Decoherence (c.f. next slide)
- Leakage (projection out of computational subspace)
- Unitary rotation errors

Decoherence model

- Amplitude damping: spontaneous emission of energy to environment (photon emission)
 - \rightarrow probability p_{AD}
- Phase damping: random phase kicks on a single qubit \rightarrow probability p_{PD}

$$1 - p_{AD} = e^{-t/T_1}$$

$$\sqrt{(1 - p_{AD})(1 - p_{PD})} = e^{-t/T_2}$$

Single-qubit evolution

Actual decoherence:

$$\mathfrak{E}(\rho) = \begin{pmatrix} 1 - \rho_{11}e^{-t/T_1} & \rho_{01}e^{-t/T_2} \\ \rho_{01}^*e^{-t/T_2} & \rho_{11}e^{-t/T_1} \end{pmatrix}$$

Aysmmetric depolarization channel (ADC):

$$\mathfrak{E}_{ADC}(\rho) = (1 - p_x - p_y - p_z)\rho + p_x X \rho X + p_y Y \rho Y + p_z Z \rho Z$$

ADC can be simmulated efficiently on a classical computer (c.f. *Gottesmann-Knill-Theorem*), but $\mathfrak{E}(\rho) \neq \mathfrak{E}_{ADC}(\rho)$!

 \rightarrow «Pauli Twirl Approximation»: simply remove all off-diagonal terms like $X\rho Y$

$$\Rightarrow p_{\chi}(t) = p_{\chi}(t) = \frac{1 - e^{-t/T_1}}{4}$$
 and $p_{\chi}(t) = \frac{1 - e^{-t/T_2}}{2} - \frac{1 - e^{-t/T_1}}{4}$

Architecture I: Textbook

Distance-3 surface code (textbook architecture)

- data qubit
- X syndrome qubit
- Z snydrome qubit

Architecture I: Textbook

- Transmon qubits arranged in 2D square lattice [Schoelkopf group, Yale]
- Nearest-neighbor tunable coupling (infinite on-off ratio is assumed)
- Single-qubit gates by use of DRAG pulses [Motzoi et al, Phys. Rev. Lett. **103**, 110501 (2009)]
- State preparation via ideal projective measurements + local rotation

Architecture I: Textbook

- Tunable couplers have been demonstrated.
- It is unknown whether they are practical for use in a large-scale qc because of the additional associated harware complexity.
- The textbook archidecture likely provides a bound on the performance of any possible superconducting surface code implementation.

Qubit-coupling under decoherence

Three-level qubits q_1 and q_2

controlled-Z between q_1 and q_2

$$H(t) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \omega_1(t) & 0 \\ 0 & 0 & 2\omega_1(t) - \eta \end{pmatrix}_{\mathbf{q}_1} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & \omega_2 & 0 \\ 0 & 0 & 2\omega_2 - \eta \end{pmatrix}_{\mathbf{q}_2} + g \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i\sqrt{2} \\ 0 & i\sqrt{2} & 0 \end{pmatrix}_{\mathbf{q}_1} \otimes \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i\sqrt{2} \\ 0 & i\sqrt{2} & 0 \end{pmatrix}_{\mathbf{q}_2}$$

$$\omega_1(t=0) = 8 \text{ GHz}, \ \omega_2 = 6 \text{ GHz}, \ \eta = 300 \text{ MHz}$$
 $T_1 = T_2 = 10 \mu \text{s}$

- \Rightarrow leakage is minimal for g=55~MHz and $t_{CZ}=11~ns$
- \rightarrow intrinsic error rate for CNOT is 1. 23 · 10⁻⁴

$$CNOT = (\mathbb{I} \otimes H) CZ (\mathbb{I} \otimes H)$$

Single-qubit Hadamard gates need 5 ns
 $\Rightarrow t_{CNOT} = 21 ns$

Architecture II: Helmer

[Helmer et al, EPL **85**, 50007 (2009)]

Distance-3 surface code (Helmer architecture)

Architecture II: Helmer

- Each qubit in a 2D lattice is coupled to a horizontal as well as a vertical cavity.
- Hor. and vert. cavities are maintained at different frequencies, qubit frequencies are varied between them.
- CNOT between adjacent qubits via effective two-qubit flip-flop interaction
- NOT scalable (required frequency range grows with numer of qubits)

Architecture III: DiVincenzo

[DiVincenzo, Phys. Script. 2009, 014020 (2009)]

Distance-3 surface code (DiVincenzo archidecture)

Bounded circles: qubits

Squares: resonators Colors: frequencies

Unbounded circles:

: data qubit block

: Z syndrome block

: X syndrome block

Architecture II: DiVincenzo

- Scalable (number of required qubit frequencies is indep. of number of qubits)
- Each qubit is dispersively coupled to two resonators
- Every data or syndrome qubit consists of four physical qubits
- Qubit and resonator frequencies are fixed
- CNOT gates via a cross-resonance protocol using microwaves

Parameters for the three archidectures

TABLE I	Parameters	used for t	the three	architectures.

	TIBLE 1. I didnietell doct for the three dientectures.						
			A	Architect	ures		
	Notation	Description	textbook	Helmer	DiVincenzo		
	T_1	qubit relaxation time	$1 10 \ \mu s$	1-10 μs	$1-40 \ \mu s$		
	T_2	qubit dephasing time	T_1	T_1	$2T_1$		
	t_{QSP}	state preparation time	40 ns	40 ns	40 ns		
	$t_{ m loc}$	local rotation time	5 ns	5 ns	5 ns		
	$t_{ m meas}$	measurement time	35 ns	35 ns	35 ns		
	$t_{\rm CNOT}$	CNOT gate time	21 ns	20 ns	20 ns		
П	$t_{ m cycle}$	time duration of a single cycle	164 ns	160 ns	400 ns		
	$p_{ m intr}$	leakage probability for CNOT	10^{-4}	10^{-3}	10^{-3}	ו. ר	
٦	$p_{ m meas}$	measurement error probability	10^{-2}	10^{-2}	10^{-2}	├ estimates	
	p_{QSP}	state preparation error probability	10^{-2}	10^{-2}	10^{-2}]_	

For **textbook** and **Helmer**:

- Additional source of dephasing in tunable transoms \rightarrow assume $T_1 = T_2$
- $t_{\text{cycle}} = t_{\text{QSP}} + t_{\text{loc}} + 4 \cdot t_{\text{CNOT}} + t_{\text{meas}}$

Finding threshold- T_1

For **textbook**:

Summary of threshold- T_1

	Thresholds		
Architecture	logical X error	logical Z error	
Textbook	$2.6~\mu s$	$2.6~\mu s$	
Helmer	$2.8~\mu s$	$2.8~\mu s$	
Divincenzo	$10 \ \mu s$	$5 \mu s$	

- For T_1 above threshold: going from L=3 to L=5 helps, otherwise it hurs.
- Textbook & Helmer: $T_2 = T_1 \rightarrow \text{symmetry between X and Z}$
- **DiVincenzo**: $T_2 = 2T_1 \rightarrow \text{higher prob. for X errors than Z errors}$

Conclusions

- For an estimated intrinsic error probability $(10^{-4} \text{ resp. } 10^{-3})$, decoherence times of a few μs are sufficient for small-distance surface code quantum computing.
- The threshold values are «within the reach of current state-of-the-art design of superconducting qubits».
- «The time requirement for qubit state preparation and read-out is, however, yet to be achieved experimentally up to the order assumed in this work.»