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Developing a theoretical framework for conducting electronic fluids qua]natlvely d.lstmct from those described by
Landau’s Fermi- hqmd theory is of central importance to many d matter physics.
One such problem is that, above the transition temperature and near optlmal dopmg, hlgh -transition-temperature
copper-oxide superconductors exhibit ‘strange metal’ behaviour that is inconsistent with being a traditional Landau
Fermi liquid. Indeed, a microscopic theory of a strange-metal quantum phase could shed new light on the interesting
low-temperature behaviour in the pseudogap regime and on the d-wave superconductor itself. Here we present a theory
for a specific example of a strange metal—the ‘d-wave metal’. Using variational wavefunctions, gauge theoretic
arguments, and ultimately large-scale density matrix renormalization group calculations, we show that this
remarkable quantum phase is the ground slate ofa reasonable m.lcroscoplc Hamiltonian—the usual t-J model with
electron Kinetic energy t and t pi J d with a frustrated electron ‘ring-exchange’ term,
which we here examine extensively on the square lattice two-leg ladder. These findings constitute an explicit
theoretical example of a genuine non-Fermi-liquid metal existing as the ground state of a realistic model.
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Anisotropic resistivity p:
effective 2D description
p o T in contrast to
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t-j-K model
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slave-boson technique for d-wave metal

> electron operator can be written as product of charge carrying
slave boson (chargon) and spin-half fermionic spinon

cs(r) = b(r)fs(r)
» b(r) is given by a d-wave Bose-metal wavefunction
» fs(r) is given by a Slater determinant
> Use a constraint so the Hilbert space does not change size:
(r)b(r) = Z fi(r = c(res(r) = ne(r)
S
» This is achieved by strongly coupling b(r) and f(r) via an
emergent gauge field
» The Bose-metal itself consists of two fermionic slave particles
(partons) b(r) = di(r)da(r) coupled via a gauge field to
implement the constraint:

d (r)di(r) = dj(r)da(r) = b'(r)b(r)



Mean-field solution

» Project 2D system on quasi-1D ladder geometry. In this case
a two-leg ladder with up to L, = 48 sites in length and
electron density p = 1/3.

> in mean-field approximation: 5 1D gapless modes
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» Because of the constraints: kl(r?j)l + kl(;;)l = kpqgo = 2kgr = 27p



Gauge theory description + solution using bosonization

» Kinetic energy density (linearized) in the parton language:

hiinetic = Z Z Pv, kY)d(ky aX)dl(l,l;y)

ky=0,m P=R/L
+ Y Praadlp(=id)dap + Y D Purf(—idx)fep
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» Bosonize the fields:
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» Bosonize the interaction terms as well
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» After bosonization, the constraint is simply:
0(0) + 9((11) =04 = HfT + 9&

» perform an orthonormal transformation on the 8 and ¢ fields:

O = \2(91‘? —0ry)
01— = \@(951(:)1) - ‘9511))
Optor = 7(9” + 0y + 057 + 057 + 2040)
0, = 73(0(0) + 65 — 040)
04 = V3 Ot + O — 951(?[) + 9517;) + 2042
2V/2 3

» Gauge field fluctuations render the 6,, 04 fields massive: only
3 modes remain
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DMRG phase diagram
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Conclusion

v

A two-leg ladder model to describe the strange metal phase is
introduced

> It shows strong non-Fermi-liquid behaviour

» The model is to some extend analytically accessible using
slave-boson technique and bosonization

> The two-leg ladder d-wave metal is extendable to systems
with more legs.

» The d-wave symmetry of its metallic phase suggests that
there may be incipient d-wave superconductivity



