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Outline
● There are 2D spin lattice models for which

● Excitations are anyonic quasiparticles

● Energy eigenstates are topologically ordered

● Anyons are characterized by their quantum dimension

● The 'amount' of topological order (measured by the topological entanglement entropy) in a 
state is governed by the quantum dimensions of the relevant anyons

● It is possible to define defects in topological spin models. These are not excitations, but act 
a bit like anyons

● How do these effect the TEE?



  

Quantum Dimension
● An anyon model is defined by a set of particle types and fusion rules

● The quantum dimensions of the anyons then satisfy

● The total quantum dimension of the anyon model is defined as 

● The dimension of the Hilbert space of N anyons of type a is then

{1, a ,b , c ,... } a×b=cd

da×db=d cd d

D2
=∑x

dx
2

d a
N

D2



  

● Two anyon models are relevant to this work. First: D(Z
2
)

 

● Next: Ising

Relevant Anyon Models

{1,e ,m , } e×e=m×m=×=1

d1=de=dm=d=1 D=2

{1, ,} ×=1

d1=d=1 D=2

×=1

d=2

e×m=

×=



  

● Ground states of local, gapped 2D Hamiltonians satisfy the area law

● This states that, if we take the reduced density matrix of a region A, the von 
Neumann entropy will satisfy

● Here L is the length of the boundary of A, and n is the number of disconnected 
boundary regions (typically 1)

● The first term captures the short range correlations in the state. The second is 
non-zero only if there are topological correlations present

● If the excited states are consistent with an anyon model of dimension D

Topological  Entanglement Entropy

S  A=S A= L−n

=log D

S  A=−A logA



  

● By calculating the entropy for different regions, we can isolate the topological 
contribution

● This particular choice of regions has a nice feature: we can use it to analyze 
anyons in D

1

● When an anyon of type a is in there

● When there are multiple anyons that fuse to a result x
1
 with probability P

x
, leaving 

x
2
 in D

2

Topological  Entanglement Entropy

=−2=−2 log D

Sann=S ASBSC−S AB−SBC−SCAS ABC

=−[I A ;BC −I  A ; B−I A ,C]

Sann a=−2 log D /da

Sann {x }=−2 log D−∑x
Px log [Px /d x1

dx2
]



  

● We consider a spin lattice model whose excitations are D(Z
2
) anyons

● (a) Stabilizer operators, used as terms in the Hamiltonian. Ground state is +1 
eigenspace of all these. Excited states are plaquettes in -1 eigenspace.

● (b) Plaquettes are excited in pairs of the same colour. This is an example of an 
operator that creates two excited white plaquettes (electric charges, e)

● (c) Same for black plaquettes (magnetic charges, m). The    particle is the 
composite of the two

Spin Lattice Model





  

● Adding the defects (d) allows charges to become fluxes, and vice-versa

● This allows an    to become 'hidden' in pairs of defects

● The defects (known as 'twists') therefore act like the     particles of the Ising anyon 
model, and the     behave like the

● Does the TEE act accordingly?   

Defects




 



  

● The TEE was calculated for various configurations of twists

● (a) a single twist inside the annulus

● Calculation yields
 

● This is exactly what would result if the twist was an Ising   

Results

Sann  =−log 2



Sann  =−2 log D /d=−2 log 2/2=−log 2



  

● The TEE was calculated for various configurations of twists

● (b) two connected twists, and hence collectively act like the vacuum

● Calculation yields
 

● This is exactly what would result if the two twists were collectively vacuum   

Results

Sann ×=1=−2 log2

Sann ×=1=−2 log D /d1=−2 log D



  

● The TEE was calculated for various configurations of twists

● (b) two unconnected twists, and hence collectively act like the vacuum  or a single 
fermion, both with probability 0.5

● Calculation yields
 

● Again, exactly the same as the Ising case   

Results

Sann ×=1∨=−log 2

Sann ×=1∨=−2 log D−∑x
Px log [Px / d x1

d x2
]

=−2 log 2−2×0.5 log [0.5/1]=−log 2



  

● The TEE identifies properties of topologically ordered ground states

● It can also be used to identify properties of anyons (quantum dimension)

● Defects are considered with anyon like fusion behaviour

● This behaviour leads to an expected quantum dimension

● The behaviour of the TEE in the presence of the defects is exactly consistent with 
the expected quantum dimension

Conclusions
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