Measures of quantum synchronization in continuous variable systems

Andrea Mari, ¹ Alessandro Farace, ¹ Nicolas Didier, ^{2,3} Vittorio Giovannetti, ¹ and Rosario Fazio ¹ NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56127 Pisa, Italy ² Département de Physique, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada ³ Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada

arXiv:1304.5925

Stefan Walter

Condensed Matter Journal Club 30.04.2013

Motivation

Why study synchronization?

Motivation

Why study synchronization?

Happens all over in nature:

- neuronal networks
- chemical reactions
- pacemaker heart cells
- fireflies

•

Outline

- 1. Synchronization
- 2. Measures for *classical* Synchronization
- 3. Measures for quantum Synchronization
- 4. Synchronization in opto-mechanical systems

Synchronization

Ingredients to synchronization:

Two or more mutually coupled dynamical systems

C. Huygens, Œuvres Completes de Christiaan Huygens, Vol.15 (1893), Vol. 17 (1932)

- Classical non-linear dynamical systems
- Self-sustained oscillators
 (each oscillators stable limit cycle)

Synchronization

Ingredients to synchronization:

Two or more mutually coupled dynamical systems

- Classical non-linear dynamical systems
- Self-sustained oscillators
 (each oscillators stable limit cycle)

Classical Synchronization

$$S_1: q_1(t), p_1(t)$$

$$S_2: q_2(t), p_2(t)$$

different initial states

mutual interaction

$$S_1^{(0)} \neq S_2^{(0)}$$

 $\lambda S_1 S_2$

Complete synchronization

$$p_{-}(t) := [p_{1}(t) - p_{2}(t)]/\sqrt{2} \to 0 \text{ for } t \to \infty$$

$$q_{-}(t) := [q_1(t) - q_2(t)]/\sqrt{2} \to 0 \text{ for } t \to \infty$$

Phase synchronization

$$\varphi_{-}(t) := [\varphi_{1}(t) - \varphi_{2}(t)] \rightarrow \varphi_{0} \in [0, 2\pi] \text{ for } t \rightarrow \infty$$

$$\varphi_j(t) = \arctan[p_j(t)/q_j(t)]$$

Quantum Synchronization

Extension to quantum systems not straight forward

$$[q_j(t), p_{j'}(t)] = i\delta_{jj'}$$

- $\Rightarrow q_{-}(t), p_{-}(t)$ gen. coordinates of same mode
- ⇒ Heisenberg!

Introduce a measure of *qm complete* synchronization

$$S_c(t) := \langle q_-(t)^2 + p_-(t)^2 \rangle^{-1}$$

Heisenberg principle $\langle q_-(t)^2 \rangle \langle p_-(t)^2 \rangle \geq 1/4$

$$S_c(t) \le \frac{1}{2\sqrt{\langle q_-(t)^2 \rangle \langle p_-(t)^2 \rangle}} \le 1$$

Quantum Synchronization

Introduce a measure of qm phase synchronization

$$a_j(t) := [q_j(t) + ip_j(t)]/\sqrt{2} = [r_j(t) + a'_j(t)]e^{i\varphi_j(t)}$$
$$\langle a_j(t)\rangle = r_j(t)e^{i\varphi_j(t)}$$

$$\Rightarrow a'_j(t) = [q'_j(t) + ip'_j(t)]/\sqrt{2}$$

 $q_j'(t)$ fluctuations of amplitude

 $p_j'(t)$ fluctuations of phase

Quantum Synchronization

Introduce a measure of qm phase synchronization

$$a_j(t) := [q_j(t) + ip_j(t)]/\sqrt{2} = [r_j(t) + a'_j(t)]e^{i\varphi_j(t)}$$
$$\langle a_j(t) \rangle = r_j(t)e^{i\varphi_j(t)}$$
$$\Rightarrow a'_j(t) = [q'_j(t) + ip'_j(t)]/\sqrt{2}$$

if the phases of $\langle a_1(t) \rangle$ and $\langle a_2(t) \rangle$ are locked, then

$$p'_{-}(t) = [p'_{1}(t) - p'_{2}(t)]/\sqrt{2}$$

$$\mathcal{S}_p(t) := \frac{1}{2} \langle p'_-(t)^2 \rangle^{-1} \le 1$$
 (pos. P-function)

$$H = \sum_{j=1,2} \left[\Delta_j a_j^{\dagger} a_j + \omega_j b_j^{\dagger} b_j - g a_j^{\dagger} a_j (b_j + b_j^{\dagger}) + i E(a_j - a_j^{\dagger}) \right]$$
$$- \mu (b_1 b_2^{\dagger} + b_2^{\dagger} b_1)$$

$$\dot{a}_j = [-\kappa - i\Delta_j + ig(b_j + b_j^{\dagger})]a_j + E + \sqrt{2\kappa}a_j^{in}$$

$$\dot{b}_j = [-\gamma - i\omega_j]b_j + iga_j^{\dagger}a_j + i\mu b_{3-j} + \sqrt{2\gamma}b_j^{in}$$

Semiclassical treatment:

$$O(t) = \langle O(t) \rangle + O'(t)$$

mean value describing classical trajectories

small qm fluctuations

qm Langevin equations:

set of classical non-linear DEQ

qm fluctuations

$$\begin{array}{l}
C_{i,\ell}(t) = \langle \{R_i(t)R_\ell(t)^\dagger\} \rangle / 2 \\
R = (a_1', a_1'^\dagger, b_1', b_1', b_1'^\dagger, a_2', a_2'^\dagger, b_2', b_2'^\dagger)
\end{array}
\Rightarrow \begin{array}{l}
\langle q_-(t)^2 \rangle \\
\langle p_-(t)^2 \rangle
\end{array}
\Rightarrow \mathcal{S}_c$$

Semiclassical treatment:

$$O(t) = \langle O(t) \rangle + O'(t)$$

mean value describing classical trajectories

small qm fluctuations

qm Langevin equations:

set of classical non-linear DEQ qm fluctuations

$$C'(t) = U(t)C(t)U^{\dagger}(t)$$

$$U(t) = \operatorname{diag}[e^{-i\varphi_{a_1}(t)}, e^{i\varphi_{a_1}(t)}, ...] \Rightarrow \langle p'_{-}(t)^2 \rangle \Rightarrow \mathcal{S}_p$$

Conclusion

- Proposal of a measure for quantum synchronization of coupled continuous variable systems inspired by classical synchronization
- Universal bounds by quantum mechanics to level of synchronization
- Application to an opto-mechanical system

