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We introduce and characterize two di↵erent measures which quantify the level of synchronization
of interacting continuous variable quantum systems. The two measures allow to extend to the
quantum domain the notions of complete and phase synchronization. The Heisenberg principle sets
a universal bound to complete synchronization. The measure of phase synchronization is in principle
unbounded, however in the absence of quantum resources (e.g. squeezing) the synchronization level is
bounded below a certain threshold. We elucidate some interesting connections between entanglement
and synchronization and, finally, discuss an application based on quantum opto-mechanical systems.

In the 17th century, C. Huygens noticed that the oscil-
lations of two pendulum clocks with a common support
tend to synchronize (Fig. 1.a) [1]. Since then, analo-
gous phenomena have been observed in a large variety
of di↵erent contexts, e.g. neuron networks, chemical re-
actions, heart cells, fireflies, etc. [2]. They are all in-
stances of what it is called the spontaneous synchroniza-

tion e↵ect where two or more systems, in the complete ab-
sence of any external time-dependent driving force, tend
to synchronize their motion solely due to their mutual
coupling. The emergence of spontaneous synchroniza-
tion in so many di↵erent physical settings encouraged its
investigation within classical non-linear dynamical sys-
tems. Here, given the time evolution of two dynami-
cal variables, like the position of two pendula, standard
methods exist to verify whether their motion is synchro-
nized [2]. For quantum systems however the same ap-
proaches cannot be straightforwardly extended due to
the absence of a clear notion of phase space trajectories.
The aim of this work is to address this problem, develop-
ing a consistent and quantitative theory of synchroniza-
tion for continuous variable (CV) systems evolving in the
quantum regime [3]. To this aim we introduce two di↵er-
ent quantum measures of synchronization extrapolating
them from notions of complete and phase synchroniza-
tion introduced for classical models. We will show that
quantum mechanics set bounds on the achievable level
of synchronization between two CV systems and we will
discuss the relationship between entanglement and syn-
chronization. We finally apply our approach for studying
the dynamics of coupled opto-mechanical systems [4, 5].

In the quantum domain synchronization has been stud-
ied in various contexts, like quantum information proto-
cols [6], two-level systems [7] and stochastic systems [8].
While our measures could in principle be extended also to
these cases, our endeavor is specifically framed in the re-
search line investigating the spontaneous synchronization
of micro- and nano-mechanical systems [9–15]. Recent
experimental advances allow to realize opto-mechanical
arrays composed of two or more coupled mechanical res-
onators controlled close to their quantum regime by laser
driving [16–19]. Such devices have all the properties
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FIG. 1. (Color online) Original Huygens’ sketch [1] of two syn-
chronizing pendulum clocks (a) and the quantum mechanical
analogue consisting of two (or more) coupled opto-mechanical
systems (b). Here, mechanical resonators are driven into
self-sustained oscillations by the non-linear radiation pressure
force of independent optical modes. A weak mechanical in-
teraction is responsible for the spontaneous synchronization
of the limit cycles. All symbols are defined in the main text.

(non-linear dynamics, limit cycles, etc.) which are nec-
essary for the emergence of spontaneous synchronization
[9, 20] and indeed some first experimental evidences of
this e↵ect have been found [14, 15].

Quantum synchronization measures:– In a purely clas-
sical setting, synchronization is mostly studied in the
context of autonomous non-linear systems undergoing
limit cycles or chaotic evolution (linear systems being
usually excluded because they converge to constant or
unstable solutions). In this scenario one can identify
di↵erent forms of synchronization [2]. Complete syn-

chronization is achieved when (say) two subsystems S1

and S2, initialized into independent configurations, ac-
quire identical trajectories under the e↵ects of mutual
interactions. Specifically, given two CV classical sys-
tems characterized by the (dimensionless) canonical vari-
ables q1(t), p1(t) and q2(t), p2(t) describing the evolution
of S1 and S2 in phase space, complete synchronization is
reached when the quantities q�(t) := [q1(t) � q2(t)]/

p
2

and p�(t) := [p1(t)�p2(t)]/
p
2 asymptotically vanish for

large enough times [21]. Phase synchronization is instead
achieved when, under the same conditions detailed above,
only the phases 'j(t) = arctan[pj(t)/qj(t)] are locked:
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Why study synchronization?

Happens all over in nature:

• neuronal networks
• chemical reactions
• pacemaker heart cells
• fireflies
• ...
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Synchronization

Two or more mutually coupled dynamical systems 

Ingredients to synchronization:

.
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• Classical non-linear dynamical systems
• Self-sustained oscillators
(each oscillators stable limit cycle)



Synchronization

Two or more mutually coupled dynamical systems 

Ingredients to synchronization:

• Classical non-linear dynamical systems
• Self-sustained oscillators
(each oscillators stable limit cycle)



Classical Synchronization

different initial states

Complete synchronization

mutual interaction
S(0)
1 6= S(0)

2

�S1S2

q1(t), p1(t)S1 :

q2(t), p2(t)S2 :

Phase synchronization

p�(t) := [p1(t)� p2(t)]/
p
2 ! 0 for t ! 1

q�(t) := [q1(t)� q2(t)]/
p
2 ! 0 for t ! 1

'j(t) = arctan[pj(t)/qj(t)]

'�(t) := ['1(t)� '2(t)] ! '0 2 [0, 2⇡] for t ! 1



Quantum Synchronization

Extension to quantum systems not straight forward
[qj(t), pj0(t)] = i�jj0

Introduce a measure of qm complete synchronization

Sc(t) := hq�(t)2 + p�(t)
2i�1

hq�(t)2ihp�(t)2i � 1/4Heisenberg principle

Sc(t) 
1

2
p

hq�(t)2ihp�(t)2i
 1

q�(t), p�(t)) gen. coordinates of same mode
) Heisenberg!



Quantum Synchronization

Introduce a measure of qm phase synchronization

aj(t) := [qj(t) + ipj(t)]/
p
2 = [rj(t) + a0j(t)]e

i'j(t)

haj(t)i = rj(t)e
i'j(t)

) a0j(t) = [q0j(t) + ip0j(t)]/
p
2

q0j(t)

p0j(t)

fluctuations of amplitude

fluctuations of phase



Quantum Synchronization

Introduce a measure of qm phase synchronization

aj(t) := [qj(t) + ipj(t)]/
p
2 = [rj(t) + a0j(t)]e

i'j(t)

haj(t)i = rj(t)e
i'j(t)

) a0j(t) = [q0j(t) + ip0j(t)]/
p
2

if the phases of ha1(t)i ha2(t)iand are locked, then
p0�(t) = [p01(t)� p02(t)]/

p
2

Sp(t) :=
1

2
hp0�(t)2i�1  1 (pos. P-function)



Synchronization in Optomechanics

H =
X

j=1,2

[�ja
†
jaj + !jb

†
jbj � ga†jaj(bj + b†j) + iE(aj � a†j)]

� µ(b1b
†
2 + b†2b1)
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ȧj = [�� i�j + ig(bj + b†j)]aj + E +
p
2ainj

ḃj = [�� � i!j ]bj + iga†jaj + iµb3�j +
p
2�binj



Synchronization in Optomechanics

Semiclassical treatment: O(t) = hO(t)i+O0(t)

mean value describing 
classical trajectories

small qm fluctuations

qm Langevin equations:
set of classical non-linear DEQ

Ci,`(t) = h{Ri(t)R`(t)
†}i/2

R = (a01, a
0†
1 , b

0
1, b

0†
1 , a

0
2, a

0†
2 , b

0
2, b

0†
2 )

qm fluctuations

hq�(t)2i
hp�(t)2i

) ) Sc



Synchronization in Optomechanics

Semiclassical treatment: O(t) = hO(t)i+O0(t)

mean value describing 
classical trajectories

small qm fluctuations

qm Langevin equations:
set of classical non-linear DEQ

qm fluctuations

) )
U(t) = diag[e�i'a1 (t), ei'a1 (t), ...]

Sphp0�(t)2i
C 0(t) = U(t)C(t)U †(t)
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FIG. 2. (Color online) Subfigure (a): simulation of the com-
plete (blue) and phase (green) synchronization measures (1)
and (5) between the mechanical resonators as functions of
time (in units of ⌧ = 2⇡/!1). The dashed lines indicate the
corresponding time averaged asymptotic values, i.e. the quan-
tities S̄

x

= lim
T!1

1
T

R
T

0
S
x

(t)dt for x = c, p. Setting !1 = 1
as a reference unit of frequency, the other physical parame-
ters which have been used in the simulation are: !2 = 1.005,
� = 0.005, �

j

= �!
j

,  = 0.15, g = 0.005, µ = 0.02, n
b

= 0
and E = 320. Subfigure (b): time averaged complete (cir-
cles) and phase (squares) synchronization and Gaussian dis-
cord D

G

(diamonds) as functions of the coupling constant
µ. Subfigure (c): time averaged synchronization measures as
functions of the bath mean phonon number n

b

. Subfigure (d):
Synchronization between two arbitrary mechanical modes of
a chain of 20 coupled opto-mechanical systems as a function
of the lattice distance h. All subsystems are assumed to have
the same mechanical frequency ! = 1.

variance matrix is C 0(t) = U(t)C(t)U(t)†, from which
we can directly extract the mechanical variance hp02�(t)i
entering Eq.(5).

A simulation of the complete and phase synchroniza-
tion between the mechanical modes is plotted in Fig.
2.a using realistic values for the parameters [4, 5] (see
caption for details). After an initial transient, the sys-
tem reaches a periodic steady state in which Sc(t) and
Sp(t) are significantly larger then zero, implying that
both complete and phase synchronization take place in
the system. Their value is consistent with the funda-
mental limit (2) imposed by the Heisenberg principle
and with the heuristic bound (7) presented in the pre-
vious section. Indeed we numerically find that quantum
squeezing in the p0�(t) quadrature, needed to overcome
the non-classicality threshold (6), is absent in the system.
Fig. 2.b and Fig. 2.c report instead the behavior of the
time averaged measures of complete and phase synchro-
nization for di↵erent values of the coupling constant and
of the bath temperature. We vary µ from zero [27] to a
maximum threshold above which the classical equations
are perturbed too much destroying the limit cycles.

Finally we have checked if quantum correlations are
present in the system verifying that, consistently with
the di↵erence between entanglement and synchronization
detailed in the previous section, for many choices of the
parameters entanglement negativity is always zero even
though synchronization is reached. On the contrary, non-
zero level of Gaussian quantum discord [28] (Fig. 2.b)
between the two mechanical modes is observed for all
values of µ that lead to synchronization. Still our data
are not su�cient to clarify the functional relationship
between discord and synchronization (if exists).

The synchronization observed between the oscillators
is expected to emerge also when more than two parties
are present in the setup. In particular we focus on the
case of a (closed) chain formed by N opto-mechanical
systems with first neighbor interactions (the Hamiltonian
being the natural generalization of (8) with uniform pa-
rameters). As before, we enforce the driving detuning
condition � = �! and set the laser intensities E in or-
der that each opto-mechanical system converges to a sta-
ble limit-cycle. Once these prerequisites are fulfilled we
linearize the dynamics around the classical steady state,
which is assumed to be the same (synchronized) in each
site, i.e. haj(t)i = ↵(t) and hbj(t)i = �(t) for all j. This
corresponds to a mean-field approximation applied only

to the classical dynamics, while the fluctuation terms a0j
and b0j can be treated exactly (without mean-field) since
the associated Hamiltonian is quadratic. Fig. 2.d reports
the results obtained for two mechanical modes separated
by h lattice steps: we notice that the synchronization
level among the various elements persists even if an ex-
ponential decay in h is present (a behavior which is con-
sistent with the one-dimensional topology induced by the
selected interactions).

Summary:– We have quantitatively studied the phe-
nomenon of spontaneous synchronization in the setting
of coupled CV quantum systems. We have shown that
quantum mechanics sets universal limits to the level of
synchronization and discussed the relationship between
this phenomenon and the emergence of quantum corre-
lations. Finally we have analyzed the spontaneous syn-
chronization of opto-mechanical arrays driven into self-
sustained oscillations. A large number of open aspects
are worth being further investigated, among which: the
interplay between quantum correlations and synchroniza-
tion, the application of this theory to other physical sys-
tems and the interpretation of synchronization as a useful
resource for quantum communication and quantum con-
trol.

[1] C. Huygens, Œuvres Complètes de Christiaan Huygens,
vol. 15 pp. 243 (1893) Martinus Nijho↵, The Hague; ibid.
vol. 17 pp. 183 (1932).
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Conclusion

• Proposal of a measure for quantum synchronization of
coupled continuous variable systems inspired by 
classical synchronization

• Universal bounds by quantum mechanics to level of 
synchronization

• Application to an opto-mechanical system
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