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‘We study electronic properties of AA-stacked graphene bilayers. In the single-particle approxima-
tion such a system has one electron band and one hole band crossing the Fermi level. If the bilayer
is undoped, the Fermi surfaces of these bands coincide. Such a band structure is unstable with
respect to a set of spontaneous symmetry violations. Specifically, strong on-site Coulomb repulsion
stabilizes antiferromagnetic order. At small doping and low temperatures, the homogeneous phase
is unstable, and experiences phase separation into an undoped antiferromagnetic insulator and a
metal. The metallic phase can be either antiferromagnetic (commensurate or incommensurate) or
paramagnetic depending on the system parameters. We derive the phase diagram of the system on
the doping-temperature plane and find that, under certain conditions, the transition from param-
agnetic to antiferromagnetic phase may demonstrate re-entrance. When disorder is present, phase
separation could manifest itself as a percolative insulator-metal transition driven by doping.



AA-stacked graphene bilayer

@ Not energetically favourable over
AB stacking
= need a pinning mechanism




AA-stacked graphene bilayer
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AB stacking
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= need a pinning mechanism
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Single-particle description
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Spectrum
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Fermi surface nesting, prone to instabilities (PRL 109, 206801 (2012))




Antiferromagnetism with mean field

On-site repulsion U ~ 4 — 10 eV
U 1 1
Hin = 5 l;(”niaa - 5)(nnia6' - 5)

Order parameter A, = U <drTuaTdnia 1) (magnetization along x)

"G-type" Ajg =N =—-Aip=—-Doyu=A



Antiferromagnetism with mean field
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Self consistency

g = ﬂ/A2 + (G + 10)?
2,3) — :F\/AZ + (ICk _ tO)Q

Minimization of the grand potential w.r.t. A
(s)
Q=E)— ZTZ —_— log ( W€y )/T)

Zero temperature
A(x,0) = Ao/ 1 —x/x,
1 (x,0) = Ap(sgn(x) — x/2x.)

Transition temperature Tyg ~ 0.567A at x = 0 for small U



Phase diagram
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Re-entrant behavior: ordering with increasing 7. Artifact of mean
field?




Validity of mean field

@ Mermin-Wagner theorem = no magnetic long-range order in 2D
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However, Mermin-Wagner theorem not always relevant (e.g. Baier,
Bick, Wetterich PRB 70, 125111 (2004)). Samples may be smaller than
the averaging length.
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@ Mean field reasonable locally if {pp < Egw

@ Breakdown of MF T* > 0.8Tvr; Tmr still a good estimate of the
transition temperature

@ MF not quantitatively good for large U



Incommensurate AFM

Spatial modulation of the order parameter Ay, = € 4"U <dju. aTdnia 1)



Incommensurate AFM

Spatial modulation of the order parameter Ay, = € 4"U <dju. aTdnia 1)
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@ Incommensurate AFM wins only for low T (less symmetrical)

@ Hides re-entrance for low U



Phase separation

In some regions of (x, T), Ou/0x < 0 = unphysical
Separation of two phases (comm. AFM, incomm. AFM) with locked

electron densities x, x»
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x2 > x1 = percolative metal-‘insulator’ transition upon doping
(arXiv:1302.1994)




Phase diagram

@ Actual values of x., T,
strongly depend on U
T.~50KforU =5.5eV
T.> RTforU > 6.5¢eV
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Conclusions

@ Magnetic properties of AA-stacked bilayer graphene

@ Antiferromagnetism observable (maybe up to RT)

@ Possibility of re-entrance, incommensurate AFM, phase
separation and percolative metal-insulator transition; some may
be artifacts
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