Journal Club, May 14, 2013

Phys. Rev. Lett. **110**, 170401 (2013)

Macroscopic Quantum Mechanics in a Classical Spacetime

Huan Yang, Haixing Miao, Da-Shin Lee, Bassam Helou, and Yanbei Chen

California Institute of Technology

Outline

- 1 Semiclassical gravity
 - Diòsi-Penrose model
 - Many-particle Schrödinger-Newton equation
- 2 Center of mass Schrödinger-Newton equation
 - Evolution of Gaussian states
- 3 Experimental test

Semiclassical gravity

Classical theory of spacetime that supports quantum matter,

$$G_{\mu
u}=8\pi\langle\psi|\hat{T}_{\mu
u}|\psi
angle$$
 .

Flaw:

It does not allow state reduction \rightarrow violates $abla^{
u}G_{\mu
u}=0$

Consequence:

We need an interpretation of QM that does not require state reduction yet still explains the phenomenology of quantum measurements.

Diòsi-Penrose model^{1,2}

Relates the process of decoherence and state reduction to gravity.

Basic idea:

Decoherence rate for a superposition state $\frac{|\psi_1\rangle+|\psi_2\rangle}{\sqrt{2}}$:

$$\Gamma \sim rac{\Delta E_G}{\hbar}, \qquad \Delta E_G = |U_g(1,1) + U_g(2,2) - 2U_g(1,2)|,$$

 $U_g(i,j)$ = Newtonian interaction between mass densities.

¹L. Diòsi, Phys. Lett. 105A (1984)

²R. Penrose, Gen. Relativ. Gravit. 28 (1996)

Many-particle Schrödinger-Newton equation

Wavefunction of *n* nonrelativistic particles: $\varphi(t, \mathbf{X})$

$$i\hbar\partial_t\varphi=\sum_k\left[-\frac{\hbar^2\nabla_k^2}{2m_k}+\frac{m_k\,U(t,\mathbf{x}_k)}{2}\right]\varphi+V(\mathbf{X})\varphi\,,$$

3*n-D* coordinate vector: $\mathbf{X} \equiv (\mathbf{x}_1, \dots, \mathbf{x}_n)$ Potential energy: $V(\mathbf{X})$

Newtonian potential:

$$abla^2 U(t, \mathbf{x}) = 4\pi \sum_j \int \mathrm{d}^{3n} \mathbf{X} \, |\varphi(t, \mathbf{X})|^2 m_j \, \delta(\mathbf{x} - \mathbf{x}_j) \, .$$

Separation of scales

■ We only probe the c.m. motion,

 $au_{meas} \gg ext{time}$ at which atoms oscillates internally

■ 1 Hz
$$<\omega_{c.m.}<$$
 1 kHz, 1 g $<$ $M<$ 10 kg, $\Delta x_{c.m.}\sim\sqrt{\hbar/(M\omega_{c.m.})}\sim 10^{-19}-10^{-17} m.$

Internal motions of atoms

$$\langle x^2 \rangle = \frac{\hbar^2}{mk_BT} \int_0^{+\infty} \frac{g(\nu)}{h\nu/k_BT} \left(\frac{1}{2} + \frac{1}{e^{h\nu/k_BT} - 1} \right) d\nu$$

= $\Delta x_{zp} + \Delta x_{th}$

■ Appropriate regime: $\Delta x_{zp} \gg \Delta x_{th} \gg \Delta x_{c.m}$

Center of mass SN equation

 $\mathbf{x} = \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{k}$ $\mathbf{y}_{k} \equiv \mathbf{x}_{k} - \mathbf{x}$ Center of mass:

Motion of atom k:

Standard quantum mechanics:

Interaction depending only on the separation of atoms,

$$\varphi(t, \mathbf{X}) = \Psi(t, \mathbf{x}) \chi_{int}(t, \mathbf{Y}), \qquad \mathbf{Y} \equiv (\mathbf{y}_1, \dots, \mathbf{y}_{n-1})$$

Independent evolution of Ψ and χ_{int} ,

$$i\hbar\partial_t \Psi(t,\mathbf{x}) = H_{c.m.} \Psi(t,\mathbf{x}),$$

 $i\hbar\partial_t \chi_{int}(t,\mathbf{Y}) = H_{int} \chi_{int}(t,\mathbf{Y}).$

Classical gravity:

Assuming separability, $\varphi = \Psi \chi_{int}$,

$$i\hbar\frac{\partial\Psi}{\partial t} = \left[-\frac{\hbar^2\nabla^2}{2M} + \frac{1}{2}M\omega_{c.m.}^2x^2 + \frac{1}{2}\mathcal{C}(x-\langle x\rangle)^2\right]\Psi.$$

Expectation of the center of mass position: $\langle x \rangle = \langle \Psi | \hat{x} | \Psi \rangle$

SN coupling constant:

$$\mathcal{C} = -\frac{1}{2}\frac{\partial^2}{\partial z^2} \left[\int \frac{G\tilde{\rho}_{\text{int}}(\boldsymbol{y})\tilde{\rho}_{\text{int}}(\boldsymbol{y}')}{|\boldsymbol{z}+\boldsymbol{y}-\boldsymbol{y}'|} d\boldsymbol{y} d\boldsymbol{y}' \right]_{\boldsymbol{z}=\boldsymbol{0}}$$

Gravitational frequency: $\omega_{SN} = \sqrt{C/M}$

Estimates for the gravitational frequency ω_{SN}

Assuming homogeneous mass distribution,

$$\mathcal{C}^{hom} pprox \mathit{GM}
ho_0, \qquad \omega_{\mathit{SN}}^{hom} pprox \sqrt{\mathit{G}
ho_0}.$$

Assuming high mass concentration near lattice site,

$$\omega_{SN}^{\mathrm{crystal}} = \sqrt{\frac{Gm}{12\sqrt{\pi}\Delta x_{\mathrm{zp}}^3}}.$$

Silicon crystal at low temperature ($T \sim 10 \text{ K}$):

$$\omega_{SN}^{\mathrm{crystal}} \approx 0.036 \, \mathrm{s}^{-1} \approx 100 \times \omega_{SN}^{\mathrm{hom}}$$

Evolution of Gaussian states

Gaussian states remain Gaussian under the SN equation for the center of mass.

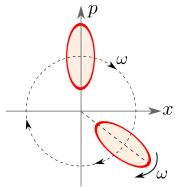
Dynamics of $\langle \hat{x} \rangle$ and $\langle \hat{p} \rangle$ is unchanged,

$$\langle \dot{\hat{\pmb{x}}} \rangle = \langle \hat{\pmb{p}} \rangle / \pmb{M}, \qquad \langle \dot{\hat{\pmb{p}}} \rangle = - \pmb{M} \omega_{\textit{c.m.}}^2 \langle \hat{\pmb{x}} \rangle.$$

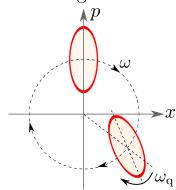
Second order moments: $V_{AB} = \langle \hat{A}\hat{B} + \hat{A}\hat{B} \rangle/2 - \langle \hat{A} \rangle \langle \hat{B} \rangle$

$$\dot{V}_{xx} = 2V_{xp}/M\,, \qquad \dot{V}_{pp} = -2M(\omega_{c.m.}^2 + \omega_{SN}^2)V_{xp}\,, \ \dot{V}_{xp} = V_{pp}/M - M(\omega_{c.m.}^2 + \omega_{SN}^2)V_{xx}.$$

Schrödinger



Schrödinger-Newton



Uncertainty ellipse rotates at
$$\omega_q = \sqrt{\omega_{c.m.}^2 + \omega_{SN}^2}$$

Experimental test

- Prepare a mechanical resonator in a squeezed state.
- Let it evolve for a duration τ .
- Carry out state tomography.

$$\Delta heta = \omega_{c.m.} au \left(rac{\omega_{SN}}{\omega_{c.m.}}
ight)^2$$
 small, but reproducible

Could be detected in an optomechanical setup with:

backaction (radiation-pressure) \approx thermal noise.

$$Q = \frac{\omega_{c.m}}{\gamma_m} \quad \gtrsim \quad \left(\frac{\omega_{c.m.}}{\omega_{SN}}\right)^2$$