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Semiclassical gravity

Semiclassical gravity

Classical theory of spacetime that supports quantum
matter, A
G =8 (Y| TL|Y) .

Flaw:
It does not allow state reduction — violates V*G,, =0

Consequence:

We need an interpretation of QM that does not require
state reduction yet still explains the phenomenology of
quantum measurements.



Semiclassical gravity
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Diosi-Penrose model

Didsi-Penrose model!-2

Relates the process of decoherence and state reduction

to gravity.
Basic idea:
Decoherence rate for a superposition state M:
V2
rNATEG’ AEg =|Uy(1,1) + Ug(2,2) — 2U,(1,2)],

U, (1, ) = Newtonian interaction between mass densities.

L. Diosi, Phys. Lett. 105A (1984)
2R. Penrose, Gen. Relativ. Gravit. 28 (1996)




Semiclassical gravity
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SN equation

Many-particle Schrodinger-Newton equation

Wavefunction of n nonrelativistic particles: ¢(t, X)

h2 2
ihdyp = Z { Vi, e U1 xk)] e+ V(X)p,

2mk 2

3n-D coordinate vector: X=(Xq,...,Xp)
Potential energy: 4

Newtonian potential:

VaU(t, x) = 47rZ/d3”X (8, X)|2m; (X — X;) .



Center of mass Schrdodinger-Newton equation

Separation of scales

m We only probe the c.m. motion,
Tmeas > time at which atoms oscillates internally
B1Hz<wem <1kHz, 19g<M<10Kkg,

AXem ~ I/ (Mwem) ~1071° —107""m.

m Internal motions of atoms

R gv) (1 1
2\ __ _ -
o) = kaT/O hu/ksT <2 gkt — 1> dv

= AXzp + AXip

m Appropriate regime: AXzp > AXih > AXe.m.



Center of mass Schrdodinger-Newton equation

Center of mass SN equation

1 n
Center of mass: X=— X
Motion of atom k: Yk = Xk — X

Standard quantum mechanics:
Interaction depending only on the separation of atoms,

gO(t,X) :w(t7x)ant(t7Y)7 Y= (y17-~'7yn71)

Independent evolution of ¥ and i,
Ihat\U(t, X) = Hc.m.w(ta X) )
ihatx,-,,t(t, Y) = HintXint(t7 Y) .



Center of mass Schrdodinger-Newton equation

Classical gravity:
Assuming separability, © =WV Xint,

U ral Ry

oV AV
2

1 1
+ Eng”"Xz + =C(x — (x>)2} v,
Expectation of the center of mass position: (x) = (V|X|¥)

SN coupling constant:

_1 82 / Gﬁint(y)ﬁint(y/)
2022 z+y-—Y|

dydy’}

z=0

Gravitational frequency: wsn = /C/M



Center of mass Schrdodinger-Newton equation

Estimates for the gravitational frequency wgy
Assuming homogeneous mass distribution,
Chom ~ GMpo, wg‘,)vm ~ Gpo.

Assuming high mass concentration near lattice site,

wcrystal o Gm
SN 127AX3

Silicon crystal at low temperature (T ~ 10 K):

crystal -1 o hom
W~ 0,036 s &~ 100 x Wi



Center of mass Schrdodinger-Newton equation
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Gaussian states

Evolution of Gaussian states

Gaussian states remain Gaussian under the SN equation
for the center of mass.

Dynamics of (X) and (p) is unchanged,

(x) = B)M,  (p) = —Mufp (%).
Second order moments: Va5 = (AB + AB)/2 — (A)(B)

Vix = 2V /M, Vop = —2M(w3 . + win) Vip
pr = Vpp/M — M(w3 . + won) Vix-



Center of mass Schrdodinger-Newton equation

Gaussian states
Schrodinger Schrodinger-Newton
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Uncertainty ellipse rotates at wq = /w3, + w3y



Experimental test

Experimental test

m Prepare a mechanical resonator in a squeezed state.
m Let it evolve for a duration 7.
m Carry out state tomography.

2
A0 = wemT ( il ) small, but reproducible

We.m.

Could be detected in an optomechanical setup with:
m backaction (radiation-pressure) ~ thermal noise.

2
W, m w m
. O — ¢ Z ( < )
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