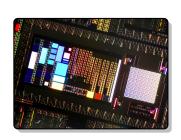
Quantum annealing with more than one hundred qubits

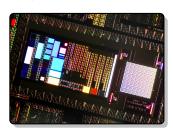
Sergio Boixo, ¹ Troels F. Rønnow, ² Sergei V. Isakov, ² Zhihui Wang, ³ David Wecker, ⁴ Daniel A. Lidar, ⁵ John M. Martinis, ⁶ and Matthias Troyer* ²

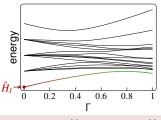
arXiv:1304.4595


Journal Club
Daniel Becker

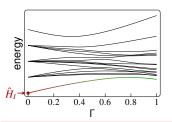
ı

■ **D-Wave One** device successfully used to solve NP hard optimization problems


- **D-Wave One** device successfully used to solve NP hard optimization problems
- quantum annealing with 108 qubits on D-Wave One device performed (adiabatic quantum computation)


- **D-Wave One** device successfully used to solve NP hard optimization problems
- quantum annealing with 108 qubits on D-Wave One device performed (adiabatic quantum computation)
- large-scale entanglement of annealed state after times much longer than coherence time of device

- **D-Wave One** device successfully used to solve NP hard optimization problems
- quantum annealing with 108 qubits on D-Wave One device performed (adiabatic quantum computation)
- large-scale entanglement of annealed state after times much longer than coherence time of device
- promising prospects to see "quantum speedup" in larger systems (**D-Wave Two** with 512 qubits)

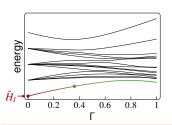

1 encode computational problem into Hamiltonian \hat{H}_P (spin glass, ground state is solution)

$$\hat{H}_P = \sum_i h_i \hat{\sigma}_z^{(i)} + \sum_{i < j} J_{ij} \hat{\sigma}_z^{(i)} \hat{\sigma}_z^{(j)}$$

- 1 encode computational problem into Hamiltonian \hat{H}_P (spin glass, ground state is solution)
- 2 prepare system in known ground state of simple initial Hamiltonian

$$\hat{H}_I = \sum_i \hat{\sigma}_x^{(i)}$$

$$\hat{H}_P = \sum_i h_i \hat{\sigma}_z^{(i)} + \sum_{i < j} J_{ij} \hat{\sigma}_z^{(i)} \hat{\sigma}_z^{(j)}$$


- 1 encode computational problem into Hamiltonian \hat{H}_P (spin glass, ground state is solution)
- 2 prepare system in known ground state of simple initial Hamiltonian

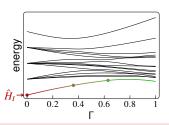
$$\hat{H}_I = \sum_i \hat{\sigma}_x^{(i)}$$

3 switch adiabatically between initial and problem Hamiltonian in time T

time sweep with
$$\Gamma := t/T$$

$$\hat{H}(\Gamma) = (1 - \Gamma)\hat{H}_I + \Gamma\hat{H}_P$$

$$\hat{H}_P = \sum_i h_i \hat{\sigma}_z^{(i)} + \sum_{i < j} J_{ij} \hat{\sigma}_z^{(i)} \hat{\sigma}_z^{(j)}$$


- 1 encode computational problem into Hamiltonian \hat{H}_P (spin glass, ground state is solution)
- 2 prepare system in known ground state of simple initial Hamiltonian

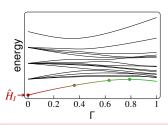
$$\hat{H}_I = \sum_i \hat{\sigma}_x^{(i)}$$

switch adiabatically between initial and problem Hamiltonian in time T

time sweep with
$$\Gamma := t/T$$

$$\hat{H}(\Gamma) = (1 - \Gamma)\hat{H}_I + \Gamma\hat{H}_P$$

$$\hat{H}_P = \sum_i h_i \hat{\sigma}_z^{(i)} + \sum_{i < j} J_{ij} \hat{\sigma}_z^{(i)} \hat{\sigma}_z^{(j)}$$


- 1 encode computational problem into Hamiltonian \hat{H}_P (spin glass, ground state is solution)
- prepare system in known ground state of simple initial Hamiltonian

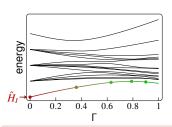
$$\hat{H}_I = \sum_i \hat{\sigma}_x^{(i)}$$

switch adiabatically between initial and problem Hamiltonian in time T

time sweep with
$$\Gamma:=t/T$$
 $\hat{H}(\Gamma)=(1-\Gamma)\hat{H}_I+\Gamma\hat{H}_P$

the smaller gap to excited states the slower the sweep

$$\hat{H}_P = \sum_i h_i \hat{\sigma}_z^{(i)} + \sum_{i < j} J_{ij} \hat{\sigma}_z^{(i)} \hat{\sigma}_z^{(j)}$$


- 1 encode computational problem into Hamiltonian \hat{H}_P (spin glass, ground state is solution)
- 2 prepare system in known ground state of simple initial Hamiltonian

$$\hat{H}_I = \sum_i \hat{\sigma}_x^{(i)}$$

3 switch adiabatically between initial and problem Hamiltonian in time T

time sweep with
$$\Gamma:=t/T$$
 $\hat{H}(\Gamma)=(1-\Gamma)\hat{H}_I+\Gamma\hat{H}_P$

the smaller gap to excited states the slower the sweep

$$\hat{H}_P = \sum_i h_i \hat{\sigma}_z^{(i)} + \sum_{i < j} J_{ij} \hat{\sigma}_z^{(i)} \hat{\sigma}_z^{(j)}$$


- 1 encode computational problem into Hamiltonian \hat{H}_P (spin glass, ground state is solution)
- 2 prepare system in known ground state of simple initial Hamiltonian

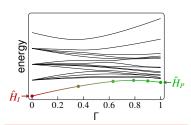
$$\hat{H}_I = \sum_i \hat{\sigma}_x^{(i)}$$

switch adiabatically between initial and problem Hamiltonian in time T

time sweep with
$$\Gamma:=t/T$$
 $\hat{H}(\Gamma)=(1-\Gamma)\hat{H}_I+\Gamma\hat{H}_P$

- the smaller gap to excited states the slower the sweep
- perfect scheme for vanishing temperature and noise

$$\hat{H}_P = \sum_i h_i \hat{\sigma}_z^{(i)} + \sum_{i < j} J_{ij} \hat{\sigma}_z^{(i)} \hat{\sigma}_z^{(j)}$$


- 1 encode computational problem into Hamiltonian \hat{H}_P (spin glass, ground state is solution)
- prepare system in known ground state of simple initial Hamiltonian

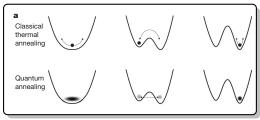
$$\hat{H}_I = \sum_i \hat{\sigma}_x^{(i)}$$

3 switch adiabatically between initial and problem Hamiltonian in time T

time sweep with
$$\Gamma:=t/T$$
 $\hat{H}(\Gamma)=(1-\Gamma)\hat{H}_I+\Gamma\hat{H}_P$

- the smaller gap to excited states the slower the sweep
- perfect scheme for vanishing temperature and noise

$$\hat{H}_P = \sum_i h_i \hat{\sigma}_z^{(i)} + \sum_{i < j} J_{ij} \hat{\sigma}_z^{(i)} \hat{\sigma}_z^{(j)}$$


- equivalent to quantum circuit model
- D-Wave: "no errorcorrection needed"

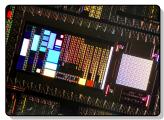
Classical VS Quantum Annealing

general principle

slowly increase ratio of:

- 1 size of energy barrier between system states
- 2 thermal (classical) and quantum fluctuations

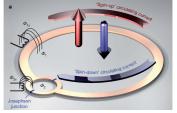
classical:

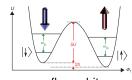

keep Hamiltonian constant and adiabatically cool the system

quantum:

keep temperature constant (at zero) and adiabatically switch Hamiltonian

D-Wave's Quantum Annealing Device

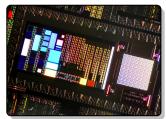

a "special purpose optimization engine"



photograph of 512 qubit D-Wave chip

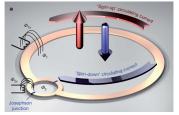
design parameters:

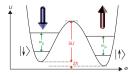
- quadratic lattice of 8 flux qubits per unit cell (temp. $\sim 20mK$)
- flux qubit pairs inductively coupled
- interaction tunable in size and sign
- coherence time: tens of nanoseconds



flux qubit

D-Wave's Quantum Annealing Device

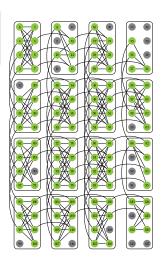

a "special purpose optimization engine"



photograph of 512 qubit D-Wave chip

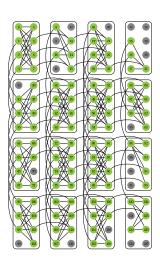
design parameters:

- quadratic lattice of 8 flux qubits per unit cell (temp. $\sim 20mK$)
- flux qubit pairs inductively coupled
- interaction tunable in size and sign
- coherence time: tens of nanoseconds

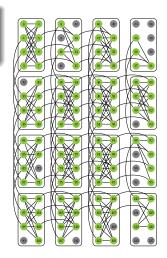


flux qubit

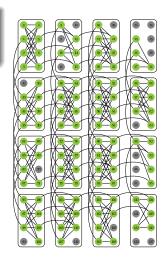
spin glass Hamiltonian $\hat{H}_P = \sum_i h_i \hat{\sigma}_z^{(i)} + \sum_{i < i} J_{ij} \hat{\sigma}_z^{(i)} \hat{\sigma}_z^{(j)}$


the promise

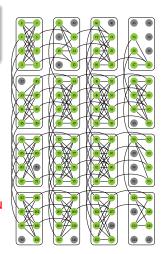
the promise


solve (NP hard?) optimization problem encoded into "Chimera" graph

■ flux qubits → vertices of graph


the promise

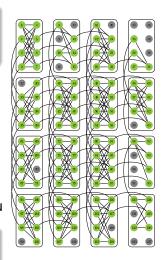
- flux qubits → vertices of graph
- lacktriangle programmable qubit couplers \longrightarrow edges with interaction strength J_{ij}


the promise

- lacktriangle programmable qubit couplers \longrightarrow edges with interaction strength J_{ij}
- ground state of spin glass Hamiltonian
 → solution of optimization problem

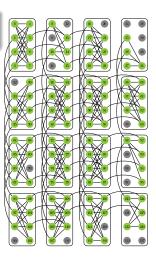
the promise

- flux qubits → vertices of graph
- $lue{}$ programmable qubit couplers \longrightarrow edges with interaction strength J_{ij}
- ground state of spin glass Hamiltonian
 → solution of optimization problem
- implementable problems include: pattern matching, seating arrangements, Sudoku


the promise

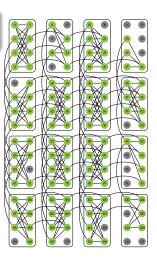
solve (NP hard?) optimization problem encoded into "Chimera" graph

- flux qubits → vertices of graph
- programmable qubit couplers \longrightarrow edges with interaction strength J_{ij}
- ground state of spin glass Hamiltonian → solution of optimization problem
- implementable problems include: pattern matching, seating arrangements, Sudoku


the ultimate goal

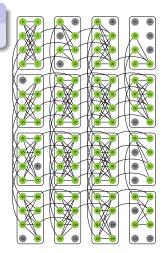
solve NP hard problems faster than classical computers (not in polynomial time)

the "D-Wave One" device


128 flux qubits in a lattice of 4×4 unit cells

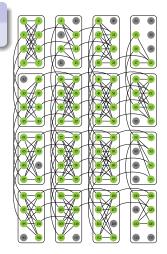
the "D-Wave One" device

128 flux gubits in a lattice of 4×4 unit cells


■ 108 of 128 green qubits activated and calibrated to zero on-site energy $h_i = 0$

the "D-Wave One" device

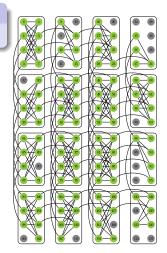
128 flux qubits in a lattice of 4×4 unit cells


- 108 of 128 green qubits activated and calibrated to zero on-site energy $h_i = 0$
- random sign ± 1 of interactions, equal magnitude: $J_{ij} = \pm |J|$

the "D-Wave One" device

128 flux qubits in a lattice of 4×4 unit cells

- 108 of 128 green qubits activated and calibrated to zero on-site energy $h_i = 0$
- random sign ± 1 of interactions, equal magnitude: $J_{ij} = \pm |J|$
- 1000 random instances of spin glass


the "D-Wave One" device

128 flux qubits in a lattice of 4×4 unit cells

- 108 of 128 green qubits activated and calibrated to zero on-site energy $h_i = 0$
- random sign ± 1 of interactions, equal magnitude: $J_{ij} = \pm |J|$
- 1000 random instances of spin glass

for each instance:

■ 1000 D-Wave annealing runs $(5 - 20\mu s)$ total annealing time)

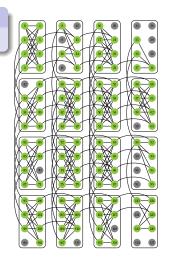
the "D-Wave One" device

128 flux qubits in a lattice of 4×4 unit cells

- 108 of 128 green qubits activated and calibrated to zero on-site energy $h_i = 0$
- random sign ± 1 of interactions, equal magnitude: $J_{ii} = \pm |J|$
- 1000 random instances of spin glass

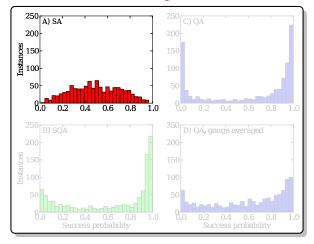
for each instance:

- 1000 D-Wave annealing runs $(5 20\mu s)$ total annealing time)
- 10000 sweeps of simulated classical annealing (32, 4, 0.8 µs)

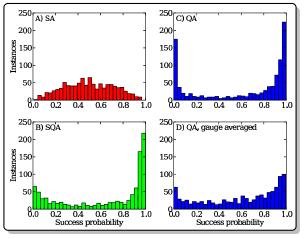

the "D-Wave One" device

128 flux qubits in a lattice of 4×4 unit cells

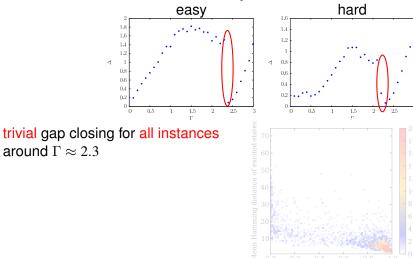
- 108 of 128 green qubits activated and calibrated to zero on-site energy $h_i = 0$
- random sign ± 1 of interactions, equal magnitude: $J_{ii} = \pm |J|$
- 1000 random instances of spin glass


for each instance:

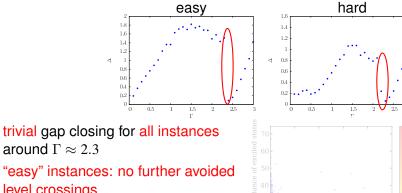
- 1000 D-Wave annealing runs $(5 20\mu s)$ total annealing time)
- 10000 sweeps of simulated classical annealing (32, 4, 0.8μ s)
- 7000 sweeps of simulated quantum annealing


Comparing Success Probability Histograms

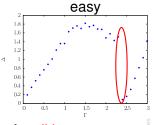
classical simulated annealing: monomodal distribution

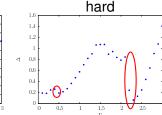


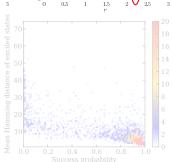
Comparing Success Probability Histograms

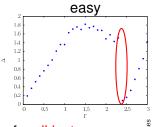

classical simulated annealing: monomodal distribution

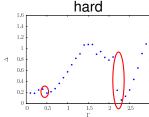
quantum annealing: bimodal distribution

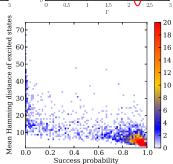


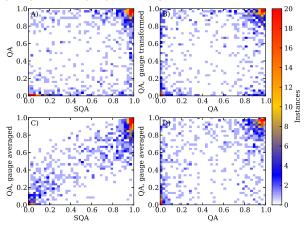

around $\Gamma \approx 2.3$


■ "easy" instances: no further avoided level crossings

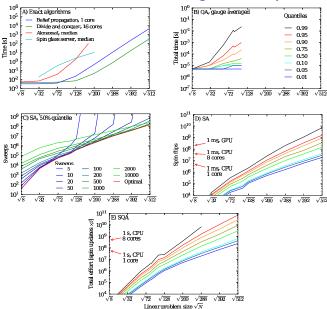

around $\Gamma \approx 2.3$



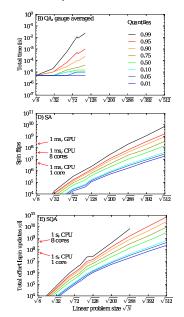

- trivial gap closing for all instances around $\Gamma \approx 2.3$
- "easy" instances: no further avoided level crossings
- lacktriangle "hard" instances: small gap avoided level crossings for small Γ

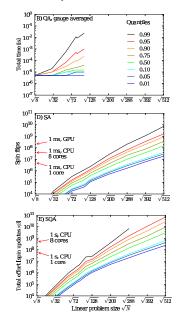


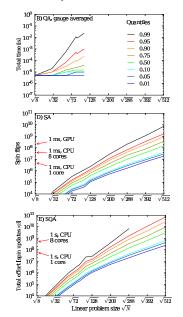
- trivial gap closing for all instances around $\Gamma \approx 2.3$
- "easy" instances: no further avoided level crossings
- "hard" instances: small gap avoided level crossings for small Γ
- Hamming distance between ground and excited state larger for hard instances

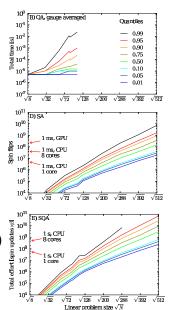


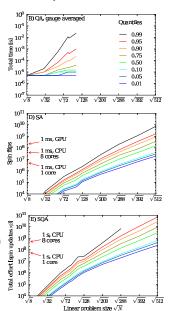
Correlations Between QA and SQA


gauge averaging to compensate calibration errors


 uncorrelated measurement and simulation results explained by calibration errors


- for D-Wave device (QA) only upper limit → scaling curves too flat
- exact numerical methods scale exponentially with \sqrt{N}


- for D-Wave device (QA) only upper limit → scaling curves too flat
- exact numerical methods scale exponentially with \sqrt{N}
- better scaling than $\exp[O(\sqrt{N})]$ for annealing curves


- for D-Wave device (QA) only upper limit → scaling curves too flat
- exact numerical methods scale exponentially with \sqrt{N}
- better scaling than $\exp[O(\sqrt{N})]$ for annealing curves
- no indication for speedup of QA compared to simulated classical annealing (SA)

- for D-Wave device (QA) only upper limit → scaling curves too flat
- exact numerical methods scale exponentially with \sqrt{N}
- better scaling than $\exp[O(\sqrt{N})]$ for annealing curves
- no indication for speedup of QA compared to simulated classical annealing (SA)
- polynomial speedup of QA compared to simulated quantum annealing (QSA)

- for D-Wave device (QA) only upper limit → scaling curves too flat
- exact numerical methods scale exponentially with \sqrt{N}
- better scaling than $\exp[O(\sqrt{N})]$ for annealing curves
- no indication for speedup of QA compared to simulated classical annealing (SA)
- polynomial speedup of QA compared to simulated quantum annealing (QSA)
- future work: quantum speedup of QA for larger systems?

concise summary: http://www.scottaaronson.com/blog/

Mathias Troyer:

 simulated classical annealing on standard PC faster than D-Wave device

Daniel Lidar:

concise summary: http://www.scottaaronson.com/blog/

Mathias Troyer:

- simulated classical annealing on standard PC faster than D-Wave device
- hardness of D-Wave problem unknown (could be less than NP)

Daniel Lidar:

concise summary: http://www.scottaaronson.com/blog/

Mathias Troyer:

- simulated classical annealing on standard PC faster than D-Wave device
- hardness of D-Wave problem unknown (could be less than NP)
- classical implementation of quantum Monte Carlo simulation of D-Wave device already efficient

Daniel Lidar:

concise summary: http://www.scottaaronson.com/blog/

Mathias Troyer:

- simulated classical annealing on standard PC faster than D-Wave device
- hardness of D-Wave problem unknown (could be less than NP)
- classical implementation of quantum Monte Carlo simulation of D-Wave device already efficient
- exponential decrease of spectral gap between ground and excited state with system size

Daniel Lidar:

concise summary: http://www.scottaaronson.com/blog/

Mathias Troyer:

- simulated classical annealing on standard PC faster than D-Wave device
- hardness of D-Wave problem unknown (could be less than NP)
- classical implementation of quantum Monte Carlo simulation of D-Wave device already efficient
- exponential decrease of spectral gap between ground and excited state with system size
- larger systems (more) volatile against: noise, thermal fluctuations, single-qubit decoherence

Daniel Lidar:

John A. Smolin, Graeme Smith, arXiv:1305.4904

classical (thermal) annealing NOT classical analog of quantum annealing

John A. Smolin, Graeme Smith, arXiv:1305.4904

classical (thermal) annealing NOT classical analog of quantum annealing

thermal annealing

John A. Smolin, Graeme Smith, arXiv:1305.4904

classical (thermal) annealing NOT classical analog of quantum annealing

thermal annealing

random initial states

John A. Smolin, Graeme Smith, arXiv:1305.4904

classical (thermal) annealing NOT classical analog of quantum annealing

thermal annealing

random initial states

stochastic outcome (success/failure)

John A. Smolin, Graeme Smith, arXiv:1305.4904

classical (thermal) annealing NOT classical analog of quantum annealing

thermal annealing

random initial states

stochastic outcome (success/failure)

monomodal success histogram

John A. Smolin, Graeme Smith, arXiv:1305.4904

classical (thermal) annealing NOT classical analog of quantum annealing

thermal annealing

random initial states

stochastic outcome (success/failure)

monomodal success histogram

quantum annealing

identical initial states

John A. Smolin, Graeme Smith, arXiv:1305.4904

classical (thermal) annealing NOT classical analog of quantum annealing

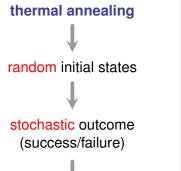
thermal annealing

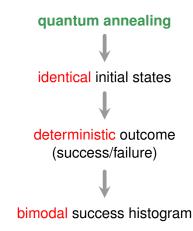
random initial states

stochastic outcome (success/failure)

monomodal success histogram

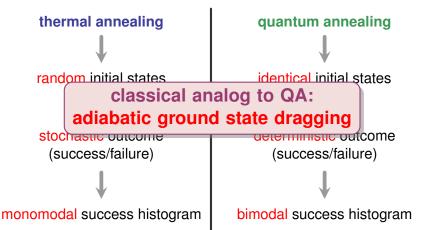
quantum annealing


identical initial states


deterministic outcome (success/failure)

John A. Smolin, Graeme Smith, arXiv:1305.4904

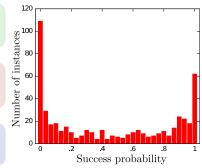
classical (thermal) annealing NOT classical analog of quantum annealing



monomodal success histogram

John A. Smolin, Graeme Smith, arXiv:1305.4904

classical (thermal) annealing NOT classical analog of quantum annealing


Classical Adiabatic Ground State Dragging

John A. Smolin, Graeme Smith, arXiv:1305.4904

adiabatic switching
$$V(\Gamma) = (1-\Gamma)V_{\mathsf{trans}} + \Gamma V_{\mathsf{lsing}}$$

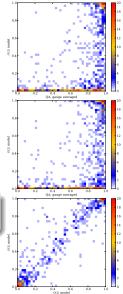
equations of motion $rac{d}{dt} heta_i=\dot{ heta}_i$ and $rac{d}{dt}\dot{ heta}_i=rac{d}{d heta_i}V(t)$

initial state $|\rightarrow\rightarrow\rightarrow\rightarrow\cdots\rightarrow\rangle$

Comment from Wang et al.

Wang et al., arXiv:1305.5837

- consider SO(3) model of semi-classical spins described by LLG equation
- SO(3) more realistic and similar to D-Wave problem
- bimodal distribution in ground state dragging of both classical models



Comment from Wang et al.

Wang et al., arXiv:1305.5837

 consider SO(3) model of semi-classical spins described by LLG equation

- SO(3) more realistic and similar to D-Wave problem
- bimodal distribution in ground state dragging of both classical models
- weak correlations between classical models and quantum system

■ D-Wave One device successfully used to solve NP hard optimization problems?

- D-Wave One device successfully used to solve NP hard optimization problems?
 - ---- hardness of problem unknown.

- D-Wave One device successfully used to solve NP hard optimization problems?
 - \longrightarrow hardness of problem unknown.
- quantum annealing with 108 qubits performed?

- D-Wave One device successfully used to solve NP hard optimization problems?
 - \longrightarrow hardness of problem unknown.
- quantum annealing with 108 qubits performed?
 - ---- probably. local quantum tunneling involved

- D-Wave One device successfully used to solve NP hard optimization problems?
 - \longrightarrow hardness of problem unknown.
- quantum annealing with 108 qubits performed?
 probably, local quantum tunneling involved
- large-scale entanglement of annealed state?

- D-Wave One device successfully used to solve NP hard optimization problems?
 - \longrightarrow hardness of problem unknown.
- quantum annealing with 108 qubits performed?
 probably. local quantum tunneling involved
- large-scale entanglement of annealed state?
 - --- unknown but doubtable.

- D-Wave One device successfully used to solve NP hard optimization problems?
 - ---- hardness of problem unknown.
- quantum annealing with 108 qubits performed?
 probably. local quantum tunneling involved
- large-scale entanglement of annealed state? → unknown but doubtable.
- promising prospects to see "quantum speedup" in larger systems?

- D-Wave One device successfully used to solve NP hard optimization problems?
 - ---- hardness of problem unknown.
- quantum annealing with 108 qubits performed?
 probably. local quantum tunneling involved
- large-scale entanglement of annealed state? → unknown but doubtable.
- promising prospects to see "quantum speedup" in larger systems? —> doubtable.

- D-Wave One device successfully used to solve NP hard optimization problems?
 - \longrightarrow hardness of problem unknown.
- quantum annealing with 108 qubits performed?
 probably. local quantum tunneling involved
- large-scale entanglement of annealed state? → unknown but doubtable.
- promising prospects to see "quantum speedup" in larger systems? —> doubtable.
- quantum speedup will require quantum error correction (D. Lidar)