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Central Claims of Paper
D-Wave One device successfully used to solve NP
hard optimization problems

quantum annealing with 108 qubits on D-Wave One
device performed (adiabatic quantum computation)
large-scale entanglement of annealed state after
times much longer than coherence time of device
promising prospects to see “quantum speedup” in
larger systems (D-Wave Two with 512 qubits)

2



Central Claims of Paper
D-Wave One device successfully used to solve NP
hard optimization problems
quantum annealing with 108 qubits on D-Wave One
device performed (adiabatic quantum computation)

large-scale entanglement of annealed state after
times much longer than coherence time of device
promising prospects to see “quantum speedup” in
larger systems (D-Wave Two with 512 qubits)

2



Central Claims of Paper
D-Wave One device successfully used to solve NP
hard optimization problems
quantum annealing with 108 qubits on D-Wave One
device performed (adiabatic quantum computation)
large-scale entanglement of annealed state after
times much longer than coherence time of device

promising prospects to see “quantum speedup” in
larger systems (D-Wave Two with 512 qubits)

2



Central Claims of Paper
D-Wave One device successfully used to solve NP
hard optimization problems
quantum annealing with 108 qubits on D-Wave One
device performed (adiabatic quantum computation)
large-scale entanglement of annealed state after
times much longer than coherence time of device
promising prospects to see “quantum speedup” in
larger systems (D-Wave Two with 512 qubits)

2



Adiabatic Quantum Computing
1 encode computational problem into

Hamiltonian ĤP (spin glass, ground
state is solution)

2 prepare system in known ground
state of simple initial Hamiltonian

ĤI =
∑

i σ̂
(i)
x

3 switch adiabatically between initial
and problem Hamiltonian in time T

time sweep with Γ := t/T

Ĥ(Γ) = (1− Γ)ĤI + ΓĤP

the smaller gap to excited states
the slower the sweep
perfect scheme for vanishing
temperature and noise
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equivalent to quan-
tum circuit model
D-Wave: “no error-
correction needed”
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ĤP

0 0.2 0.4 0.6 0.8 1
Γ

en
er

gy
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the smaller gap to excited states
the slower the sweep
perfect scheme for vanishing
temperature and noise

ĤI
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Classical VS Quantum Annealing

general principle
slowly increase ratio of:

1 size of energy barrier between system states
2 thermal (classical) and quantum fluctuations

Classical

thermal

annealing

Quantum

annealing

a

classical:
keep Hamiltonian constant and
adiabatically cool the system

quantum:
keep temperature constant (at
zero) and adiabatically switch

Hamiltonian
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D-Wave’s Quantum Annealing Device
a “special purpose optimization engine”

photograph of 512 qubit D-Wave chip U
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design parameters:
quadratic lattice of 8 flux qubits
per unit cell (temp. ∼ 20mK)
flux qubit pairs inductively coupled
interaction tunable in size and sign
coherence time: tens of nano-
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spin glass Hamiltonian
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The D-Wave Optimization Problem

the promise
solve (NP hard?) optimization problem

encoded into “Chimera” graph

flux qubits −→ vertices of graph
programmable qubit couplers −→ edges
with interaction strength Jij

ground state of spin glass Hamiltonian
−→ solution of optimization problem
implementable problems include: pattern
matching, seating arrangements, Sudoku

the ultimate goal
solve NP hard problems faster than class-

ical computers (not in polynomial time)
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What was Measured/Computed?

the “D-Wave One” device
128 flux qubits in a lattice of 4× 4 unit cells

108 of 128 green qubits activated and
calibrated to zero on-site energy hi = 0

random sign ±1 of interactions, equal
magnitude: Jij = ± |J|
1000 random instances of spin glass

for each instance:
1000 D-Wave annealing runs (5− 20µs
total annealing time)
10000 sweeps of simulated classical
annealing (32, 4, 0.8µs)

7000 sweeps of simulated quantum annealing
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Comparing Success Probability Histograms

classical simulated annealing: monomodal distribution

quantum annealing: bimodal distribution
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Easy and Hard Instances
easy hard

trivial gap closing for all instances
around Γ ≈ 2.3

“easy” instances: no further avoided
level crossings
“hard” instances: small gap avoided
level crossings for small Γ

Hamming distance between ground
and excited state larger for hard
instances
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Correlations Between QA and SQA

gauge averaging to compensate calibration errors

uncorrelated measurement and simulation
results explained by calibration errors
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Scaling of Computation Time
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Scaling of Computation Time

for D-Wave device (QA) only upper
limit −→ scaling curves too flat
exact numerical methods scale
exponentially with

√
N

better scaling than exp[O(
√

N)] for
annealing curves
no indication for speedup of QA
compared to simulated classical
annealing (SA)
polynomial speedup of QA compared
to simulated quantum annealing (QSA)
future work: quantum speedup of QA
for larger systems?
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Criticism
concise summary: http://www.scottaaronson.com/blog/

Mathias Troyer:
simulated classical annealing on standard PC
faster than D-Wave device

hardness of D-Wave problem unknown (could be
less than NP)
classical implementation of quantum Monte Carlo
simulation of D-Wave device already efficient
exponential decrease of spectral gap between
ground and excited state with system size
larger systems (more) volatile against: noise,
thermal fluctuations, single-qubit decoherence

Daniel Lidar:
error correction necessary for scalable quantum
annealing with D-Wave device
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Questioning the Evidence for Quantum Behavior
John A. Smolin, Graeme Smith, arXiv:1305.4904

classical (thermal) annealing NOT
classical analog of quantum annealing

thermal annealing

random initial states

stochastic outcome
(success/failure)

monomodal success histogram

quantum annealing

identical initial states

deterministic outcome
(success/failure)

bimodal success histogram

classical analog to QA:
adiabatic ground state dragging
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Classical Adiabatic Ground State Dragging
John A. Smolin, Graeme Smith, arXiv:1305.4904

classical SO(2) spins (compass needles)
potential energy

Vtrans = −
∑

i sin(θi)Bx

VIsing =
∑

i cos(θi)hi +
∑

i<j cos(θi) cos(θj)Jij

equations of motion
d
dtθi = θ̇i and d

dt θ̇i = d
dθi

V(t)

adiabatic switching
V(Γ) = (1− Γ)Vtrans + ΓVIsing

initial state
|→→→ · · · →〉
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Comment from Wang et al.
Wang et al., arXiv:1305.5837

consider SO(3) model of semi-classical spins
described by LLG equation
SO(3) more realistic and similar to D-Wave
problem
bimodal distribution in ground state dragging
of both classical models

weak correlations between classical models
and quantum system
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Summary

D-Wave One device successfully used to solve NP
hard optimization problems?

−→ hardness of problem unknown.
quantum annealing with 108 qubits performed?

−→ probably. local quantum tunneling involved

large-scale entanglement of annealed state?

−→ unknown but doubtable.

promising prospects to see “quantum speedup” in
larger systems?

−→ doubtable.

quantum speedup will require quantum error
correction (D. Lidar)

16



Summary

D-Wave One device successfully used to solve NP
hard optimization problems?
−→ hardness of problem unknown.

quantum annealing with 108 qubits performed?

−→ probably. local quantum tunneling involved

large-scale entanglement of annealed state?

−→ unknown but doubtable.

promising prospects to see “quantum speedup” in
larger systems?

−→ doubtable.

quantum speedup will require quantum error
correction (D. Lidar)

16



Summary

D-Wave One device successfully used to solve NP
hard optimization problems?
−→ hardness of problem unknown.
quantum annealing with 108 qubits performed?

−→ probably. local quantum tunneling involved
large-scale entanglement of annealed state?

−→ unknown but doubtable.

promising prospects to see “quantum speedup” in
larger systems?

−→ doubtable.

quantum speedup will require quantum error
correction (D. Lidar)

16



Summary

D-Wave One device successfully used to solve NP
hard optimization problems?
−→ hardness of problem unknown.
quantum annealing with 108 qubits performed?
−→ probably. local quantum tunneling involved

large-scale entanglement of annealed state?

−→ unknown but doubtable.

promising prospects to see “quantum speedup” in
larger systems?

−→ doubtable.

quantum speedup will require quantum error
correction (D. Lidar)

16



Summary

D-Wave One device successfully used to solve NP
hard optimization problems?
−→ hardness of problem unknown.
quantum annealing with 108 qubits performed?
−→ probably. local quantum tunneling involved
large-scale entanglement of annealed state?

−→ unknown but doubtable.
promising prospects to see “quantum speedup” in
larger systems?

−→ doubtable.

quantum speedup will require quantum error
correction (D. Lidar)

16



Summary

D-Wave One device successfully used to solve NP
hard optimization problems?
−→ hardness of problem unknown.
quantum annealing with 108 qubits performed?
−→ probably. local quantum tunneling involved
large-scale entanglement of annealed state?
−→ unknown but doubtable.

promising prospects to see “quantum speedup” in
larger systems?

−→ doubtable.

quantum speedup will require quantum error
correction (D. Lidar)

16



Summary

D-Wave One device successfully used to solve NP
hard optimization problems?
−→ hardness of problem unknown.
quantum annealing with 108 qubits performed?
−→ probably. local quantum tunneling involved
large-scale entanglement of annealed state?
−→ unknown but doubtable.
promising prospects to see “quantum speedup” in
larger systems?

−→ doubtable.
quantum speedup will require quantum error
correction (D. Lidar)

16



Summary

D-Wave One device successfully used to solve NP
hard optimization problems?
−→ hardness of problem unknown.
quantum annealing with 108 qubits performed?
−→ probably. local quantum tunneling involved
large-scale entanglement of annealed state?
−→ unknown but doubtable.
promising prospects to see “quantum speedup” in
larger systems? −→ doubtable.

quantum speedup will require quantum error
correction (D. Lidar)

16



Summary

D-Wave One device successfully used to solve NP
hard optimization problems?
−→ hardness of problem unknown.
quantum annealing with 108 qubits performed?
−→ probably. local quantum tunneling involved
large-scale entanglement of annealed state?
−→ unknown but doubtable.
promising prospects to see “quantum speedup” in
larger systems? −→ doubtable.
quantum speedup will require quantum error
correction (D. Lidar)

16


