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Central Claims of Paper

m D-Wave One device successfully used to solve NP
hard optimization problems

m quantum annealing with 108 qubits on D-Wave One
device performed (adiabatic quantum computation)

m large-scale entanglement of annealed state after
times much longer than coherence time of device

m promising prospects to see “quantum speedup” in
larger systems (D-Wave Two with 512 qubits)
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Kl encode computational problem into

Hamiltonian Hp (spin glass, ground
state is solution) -
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m perfect scheme for vanishing
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Classical VS Quantum Annealing

general principle
slowly increase ratio of:
size of energy barrier between system states
thermal (classical) and quantum fluctuations

Classical
thermal
annealing

Quantum
annealing
= X, &

classical:
keep Hamiltonian constant and
adiabatically cool the system

quantum:
keep temperature constant (at
zero) and adiabatically switch
Hamiltonian
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D-Wave’s Quantum Annealing Device

a “special purpose optimization engine”

- “Spin-up’

design parameters:
m quadratic lattice of 8 flux qubits
per unit cell (temp. ~ 20mK)
m flux qubit pairs inductively coupled
m interaction tunable in size and sign _ SPIN glass Hamiltonian
m coherence time: tens of nano- Hp = Zh"@(l) + ZJU&Z(I)@O)
seconds : '~

flux qubit
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The D-Wave Optimization Problem

the promise

solve (NP hard?) optimization problem
encoded into “Chimera” graph

m flux qubits — vertices of graph

m programmable qubit couplers — edges
with interaction strength J;

m ground state of spin glass Hamiltonian
— solution of optimization problem

m implementable problems include: pattern
matching, seating arrangements, Sudoku

the ultimate goal

solve NP hard problems faster than class-
ical computers (not in polynomial time)
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What was Measured/Computed?

the “D-Wave One” device
128 flux qubits in a lattice of 4 x 4 unit cells

J

m 108 of 128 green qubits activated and
calibrated to zero on-site energy 7; = 0

m random sign +1 of interactions, equal
magnitude: J;; = £ |/|

m 1000 random instances of spin glass

for each instance:

m 1000 D-Wave annealing runs (5 — 20us
total annealing time)

m 10000 sweeps of simulated classical
annealing (32, 4, 0.8us)

&) —a)
= 7

;%:

m 7000 sweeps of simulated quantum annealing



Comparing Success Probability Histograms

classical simulated annealing: monomodal distribution
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classical simulated annealing: monomodal distribution

- ~
2507 ey : : : 250( 5 T
200} 1 200
o
8 150F 1 150
]
;g’ 100 1 100

8.0 02 04 06 08 1.0 8.0 02 04 06 08 1.0

250 T 250 T T T T
B) SQA D) QA, gauge averaged
200 200
@
8 150 150
g
E 100 100
50 50

8.0 02 04 06 08 1.0 8.0 02 04 06 08 1.0
Success probability Success probability

\ J

guantum annealing: bimodal distribution
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Correlations Between QA and SQA

B gauge averaging to compensate calibration errors
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Scaling of Computation Time
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Scaling of Computation Time

m for D-Wave device (QA) only upper
limit — scaling curves too flat

m exact numerical methods scale
exponentially with /N

10°
B) d
[ oA gauge dverage! Quentiles
— 099
— 095
0.90
— 075
0.50
0.10
— 005
— o001
Vs Va2 Va2
1ot
0 D) SA
10"
o
10 1 ms, GPU
21l
E“’ '« 1ms, CPU ——
£ 8 cores =
[T 1ms, cpU
10° 1 core Z
~
10° —
10*
V8 VR Vi Vs Va0 V288 Vier Va2
1
_ 10 fEsok
T 10
2 1s, CPU —
g 10" f—8cores ~
E— =
]
& ,[TT1sceu -
g 10 1 core =
£ 18 7%
5 10 7
g 10° /
10* v
Ve Va2 V72 Vi Ve Vass V3 Va2

Linear problem size v N

11



Scaling of Computation Time

m for D-Wave device (QA) only upper
limit — scaling curves too flat

m exact numerical methods scale
exponentially with /N

m better scaling than exp[O(v/N)] for
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Scaling of Computation Time

for D-Wave device (QA) only upper
limit — scaling curves too flat
exact numerical methods scale
exponentially with /N

better scaling than exp[O(v/N)] for
annealing curves

no indication for speedup of QA

compared to simulated classical
annealing (SA)
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polynomial speedup of QA compared
to simulated quantum annealing (QSA)
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for D-Wave device (QA) only upper
limit — scaling curves too flat
exact numerical methods scale
exponentially with /N

Scaling of Computation Time

better scaling than exp[O(v/N)] for

annealing curves

no indication for speedup of QA

compared to simulated classical

annealing (SA)

polynomial speedup of QA compared
to simulated quantum annealing (QSA)

future work: quantum speedup of QA

for larger systems?
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Criticism
concise summary: http://www.scottaaronson.com/blog/
Mathias Troyer:
m simulated classical annealing on standard PC
faster than D-Wave device

Daniel Lidar:

m error correction necessary for scalable quantum
annealing with D-Wave device
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Criticism
concise summary: http://www.scottaaronson.com/blog/
Mathias Troyer:
simulated classical annealing on standard PC
faster than D-Wave device

hardness of D-Wave problem unknown (could be
less than NP)

classical implementation of quantum Monte Carlo
simulation of D-Wave device already efficient

exponential decrease of spectral gap between
ground and excited state with system size

larger systems (more) volatile against: noise,
thermal fluctuations, single-qubit decoherence
Daniel Lidar:

error correction necessary for scalable quantum
annealing with D-Wave device
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Questioning the Evidence for Quantum Behavior
John A. Smolin, Graeme Smith, arXiv:1305.4904

classical (thermal) annealing NOT
classical analog of quantum annealing

thermal annealing

quantum annealing

classical analog to QA:
adiabatic ground state dragging
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Classical Adiabatic Ground State Dragging
John A. Smolin, Graeme Smith, arXiv:1305.4904

classical SO(2) spins (compass needles)
potential energy
Virans = — Zi Sin(ei)Bx
Vising = »_;cos(6;)h; + ZK]- cos(6;) cos(0;)J;;

120

adiabatic switching
V(T') = (1 — I') Virans + I'Vising
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Comment from Wang et al.
37

Wang et al., arXiv:1305.58
' ¥

m consider SO(3) model of semi-classical spins
described by LLG equation

m SO(3) more realistic and similar to D-Wave
problem

m bimodal distribution in ground state dragging
of both classical models
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Wang et al., arXiv:1305.58
' ¥

m consider SO(3) model of semi-classical spins
described by LLG equation

m SO(3) more realistic and similar to D-Wave
problem

m bimodal distribution in ground state dragging
of both classical models

m weak correlations between classical models
and quantum system
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Summary

m D-Wave One device successfully used to solve NP
hard optimization problems?
— hardness of problem unknown.

m quantum annealing with 108 qubits performed?
— probably. local quantum tunneling involved

m large-scale entanglement of annealed state?
— unknown but doubtable.

®m promising prospects to see “quantum speedup” in
larger systems? — doubtable.

m quantum speedup will require quantum error
correction (D. Lidar)




