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We study the fidelity of the surface code in the presence of correlated errors induced by the coupling of
physical qubits to a bosonic environment. By mapping the time evolution of the system after one quantum
error correction cycle onto a statistical spin model, we show that the existence of an error threshold is
related to the appearance of an order-disorder phase transition in the statistical model in the thermody-
namic limit. This allows us to relate the error threshold to bath parameters and to the spatial range of the
correlated errors.
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We study the resilience of the surface code to decoherence caused by the presence of a bosonic bath,
This approach allows us to go beyond the standard stochastic error model commonly used to guantify
decoherence and errar theshold probabilities in this system. The full quantum mechanical system-
bath dynamics is computed exactly over one guantum error correction cycle. Since all physical
qubits interact with the bath, space-time correlations between errors are taken into account. We
compute the fidelity of the surface ecode as a function of the quantum error correction time. The
calculation allows us to map the problem onto an Ising-like statistical spin model with two-body
interactions and a fictitious temperature which is related to the inverse bath coupling constant. The
maodel departs from the usual Ising model in the sense that interactions can be long ranged and can
involve complex exchange couplings; in addition, the number of allowed configurations is restricted
by the syndrome extraction. Using analytical estimates and nmumerical calculations, we argue that,
in the limit of an infinite number of physical qubits, the spin model sustain a phase transition which
can he associated to the existence of an error threshold in the surface code. An estimate of the
transition point is given for the case of nearest-neighbor interactions.



Motivation

The surface code is the most promising quantum error
correction (QEC) code:

— Requires ‘only’ nearest-neighbor two-qubit entangling gates and
single-qubit control

— High error threshold
Often studied with simplistic, stochastic error models
E.g. assuming an i.i.d. error model of the form
P P PP t+ PxOxPOx + Py0yPOy + P,0,00,
allows to derive error thresholds and to benchmark error
correction algorithms.



Goal

Test the resilience of the surface code against an error model
which arises from a microscopic description of the
environment.

Caldeira-Leggett type of environment, freely propagating
bosonic modes (-> physical motivation: photons, phonons)

Study the fidelity of the surface code after one QEC cycle as a
function of the duration of each QEC cycle.

Simplifying assumptions: The bath is at zero temperature and
is reset to its groundstate after each QEC cycle.



Surface code reminder
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A and B: stabilizer operators: required to yield +1
eigenvalues; measured after each QEC cycle

Ap = H oy Bo = H o;
1eQ iel]
e X and Z: examples of logical operators



Model

H=Hy+V H():Zwka;r{ak
k0
V- A Z f(r;) 0" Coupling between bosonic modes
2 & v and code qubits
(v/wo) P2+ s (iker —iker
f(r) = e Z\k\ ( k- T—|—e k- k)
k#0

* D: bath spatial dimension, L: linear size of the code
* Wk — ’U|k‘

1 . . :
*s=—3 coupling to the bosonic displacement field

1 . :
* s=+ p coupling to the bosonic current operator
* s = 0:local creation and destruction of bosons



Dynamics

e A:duration of one QEC period
* Evolution operator in the interaction picture:

A
U(A) =T; exp {z%/ﬂ dtzi:f (r;, 1) J?:;E:|

* In order to get rid of the time-ordering operator, perform a
Magnus expansion, where due to the bosonic nature of the
f-operators only the first and second term are non-vanishing.



Dynamics, ctd.

Result for the evolution operator in the
Interaction picture:

)‘2 A i x
U(A) = x exp {7 Z Prir; (A) 0] U’,}-:| : exp [7 Z Fr (A)o? | -
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bath correlation functions
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Correlation functions for D=2
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* With the bosons initially at finite temperature, all correlation

functions decay over a length-scale v/T.



Syndrome extraction

» After atime A, all stabilizer operators are measured (‘the
syndrome is extracted’) flawlessly

* (Strong) simplifying assumption: all stabilizer operators yield a
non-error syndrome -> Either the memory is still in its initial
state or a logical operator X has been applied.

* Syndrome extraction is equivalent to the application of the
operator

P' = [Wo)(Vo| + X|Wo)(Wo|X



Fidelity

* The fidelity of the surface after one QEC cycle
is F=|[(VYqrc|Vo)]

Warc) = PU(A) [Vo)

[ A A= (Vg |U(A)] ¥y)
VAP +IBP B (wo | XU(A)| W)




Protected code space

1) =GIF)  |I)=GX|F)

‘codewords’, basis states of the code subspace
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Mapping onto a statistical model
A=x(F.|eP"G?| F.) B=x(F.|Xe ""G? F.)

|Fz>_ﬂ(|f>mj§ ¢>@,m>

1=1

Example: Ohmic bath (s = 0):

2
b= (—) ‘fictitious’ inverse temperature

v A i |t‘1'—rj|
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— Need to evaluate expectation values of a statistical spin
model with complex two-body interactions and a restricted
(due to G?) configuration space



Phase transition

* Itis expected that in the termodynamic limit there is a critical
f. such that
. {1, B < B
1/V2,  B>p
* Inorderto find (3., study a simplified model
J - {J, r, s nearest neighbors,
IS

0O otherwise,

where | is real.
* This is approriate if vA = a and imaginary parts are irrelevant.



Phase transition - Results
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FIG. 3. (Color online) Surface code fidelity of code spaces of
25 and 41 physical qubits in contact with a bosonic bath when
star operators are restricted to positive values (Ay = 1).

The vertical red line corresponds to a mean field solution
(Coherent Anomaly Method)



Influence of imaginary part
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FIG. 4. (Color online) Fidelity of a code space of 25 physical
qubits in contact with a bosonic bath when star operators are
restricted to positive values (A¢ = 1) and an imaginary part
is added to the coupling constant: J = Jgr + ¢J;. The data
sets correspond to different values of J;.

Conclusion: Adding a constant
imaginary part to J,.cleads to
oscillations close to the critial
region that become smaller with
Increasing system size.



Conclusion

Under the assumptions of

— resetting the bath to its groundstate after each QEC cycle, and
— a trivial error syndrome being measured

there is a non-trivial mapping from the fidelity of the
surface code to the evaluation of expectation values for a
statistical spin model with complex two-body interactions
and a restricted configuration space.



Conclusion

This spin model is argued to undergo a disorder (fidelity 1) to
order (fidelity 1/\/2) transition, depending on
— A (duration of one QEC cycle) }

number of qubits within

effective light cone |

effective qubit interaction J;;

— v (mode velocity)

— a (code lattice constant)

— A (coupling strength)

— wq (characteristic bath frequency)

Fictitious inverse temperature
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For J;; =] (nearest neighbors) the transition is found to
happenat 5./ = 0.2




