Spin Backflow and ac Voltage Generation by Spin Pumping and the Inverse Spin Hall Effect

HuJun Jiao¹ and Gerrit E. W. Bauer^{2,1}

¹Kavli Institute of NanoScience, Delft University of Technology, 2628 CJ Delft, The Netherlands ²Institute for Materials Research and WPI-AIMR, Tohoku University, Sendai 980-8577, Japan (Received 28 September 2012; published 23 May 2013)

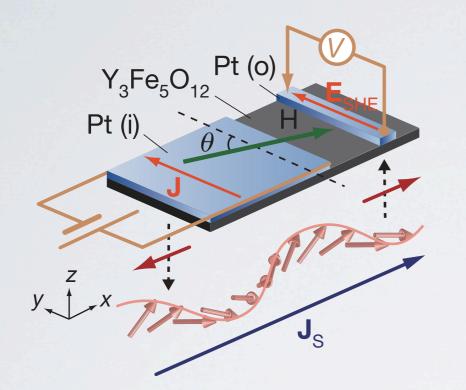
The spin current pumped by a precessing ferromagnet into an adjacent normal metal has a constant polarization component parallel to the precession axis and a rotating one normal to the magnetization. The former is now routinely detected as a dc voltage induced by the inverse spin Hall effect (ISHE). Here we compute ac ISHE voltages much larger than the dc signals for various material combinations and discuss optimal conditions to observe the effect. The backflow of spin is shown to be essential to distill parameters from measured ISHE voltages for both dc and ac configurations.

DOI: 10.1103/PhysRevLett.110.217602

PACS numbers: 76.50.+g, 72.25.Mk, 73.40.-c

Journal club Kevin van Hoogdalem I I June 2013 Department of Physics, University of Basel

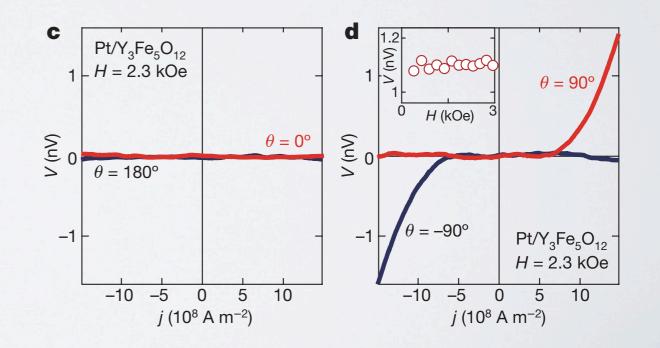
MOTIVATION: GENERATION & READ-OUT SPIN CURRENTS



I. J induces a spin current $J_{\mbox{\scriptsize s}}$ in the Pt layer, gets transferred into insulator by STT

2. Spin current propagates over ~mm distance

3. Transferred into conductor by spin pumping, measured by ISHE



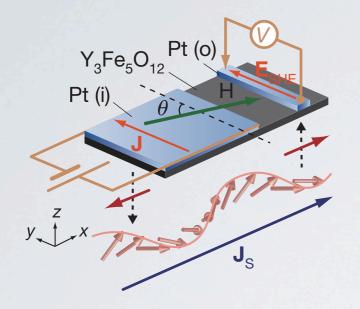
Depending on the angle between J_s and H, the electric signal is transmitted through the insulator, carried by spin waves

Basel, 11 June 2013

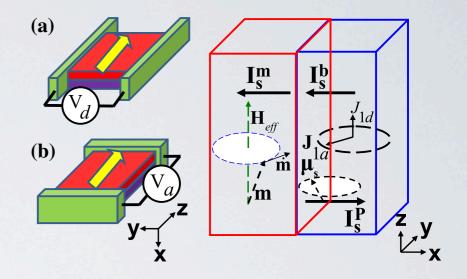
Y. Kajiwara et al., Nature 464, 262 (2010)

Kevin van Hoogdalem

SETUP: MEASURING SPIN CURRENTS



Focus on measuring part of the setup



Important ingredients:

I. Spin pumping (transfer spin precession into spin accumulation/ current in metal)

2. Backflow of spins into magnet due to spin accumulation

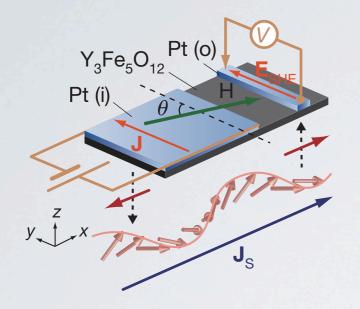
3. Conversion spin current into voltage by inverse spin Hall effect

4. Focus on AC component of voltage

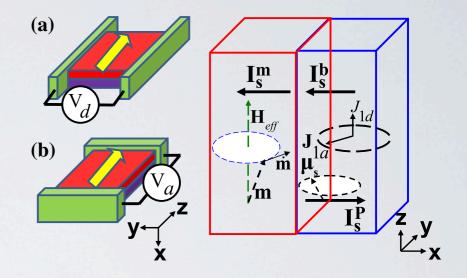
Basel, 11 June 2013

Kevin van Hoogdalem

SETUP: MEASURING SPIN CURRENTS



Focus on measuring part of the setup



Important ingredients:

I. Spin pumping (transfer spin precession into spin accumulation/ current in metal)

2. Backflow of spins into magnet due to spin accumulation

- 3. Conversion spin current into voltage by inverse spin Hall effect
- 4. Focus on AC component of voltage

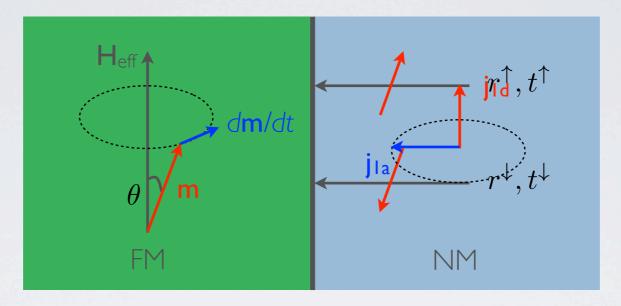
Basel, 11 June 2013

H. Jiao and G. Bauer, PRL **110**, 217602 (2013)

Kevin van Hoogdalem

SPIN PUMPING

Spin pumping: transfer magnetization from FM to (paramagnetic) NM



Magnetization dynamics:

$$\frac{d\mathbf{m}}{dt} = -\gamma \mathbf{m} \times \mathbf{H}_{\rm eff} + \alpha \mathbf{m} \times \frac{d\mathbf{m}}{dt}$$

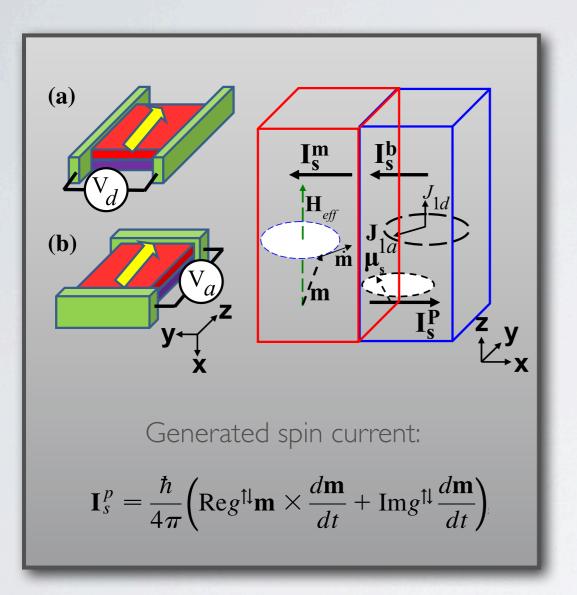
Generated spin current:

$$\mathbf{I}_{s}^{p} = \frac{\hbar}{4\pi} \left(\operatorname{Re}g^{\uparrow\downarrow} \mathbf{m} \times \frac{d\mathbf{m}}{dt} + \operatorname{Im}g^{\uparrow\downarrow} \frac{d\mathbf{m}}{dt} \right)$$

Basel, 11 June 2013

Kevin van Hoogdalem

SPIN BACKFLOW



Spin pumping leads to spin accumulation μ_s^N in NM

$$\frac{\partial \boldsymbol{\mu}_{s}^{N}(\mathbf{r},t)}{\partial t} = \gamma_{N} \mathbf{H}_{ex} \times \boldsymbol{\mu}_{s}^{N} + D_{N} \frac{\partial^{2} \boldsymbol{\mu}_{s}^{N}}{\partial x^{2}} - \frac{\boldsymbol{\mu}_{s}^{N}}{\tau_{sf}^{N}}$$

This accumulation can lead to backflow of spins

$$\mathbf{I}_{s}^{b} = \frac{g}{8\pi} [2p(\boldsymbol{\mu}_{0}^{F} - \boldsymbol{\mu}_{0}^{N}) + \boldsymbol{\mu}_{s}^{F} - \mathbf{m} \cdot \boldsymbol{\mu}_{s}^{N}]\mathbf{m} - \frac{\operatorname{Re}g^{\dagger l}}{4\pi} \mathbf{m} \times (\boldsymbol{\mu}_{s}^{N} \times \mathbf{m}) + \frac{\operatorname{Im}g^{\dagger l}}{4\pi} \mathbf{m} \times \boldsymbol{\mu}_{s}^{N}]\mathbf{m}$$

 $\boldsymbol{\mu}_{s}^{F}$ is the spin accumulation in the FM

$$\frac{\partial^2 \mu_s^F(x)}{\partial x^2} = \frac{\mu_s^F(x)}{(\lambda_{\rm sd}^F)^2}$$

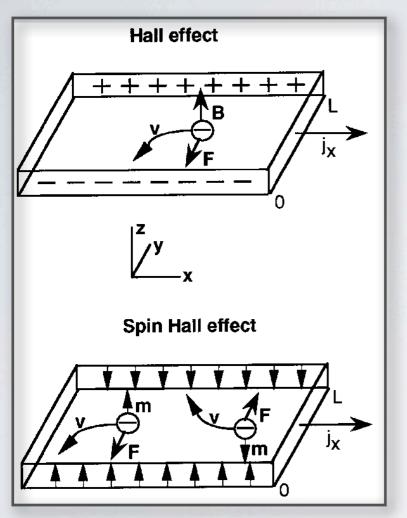
Can solve these equations self-consistently, using boundary conditions: I. Spin current is continuous at interface 2. Spin current I_s^b + I_s^p vanishes at boundary of material

Basel, 11 June 2013

H. Jiao and G. Bauer, PRL **IIO**, 217602 (2013)

Kevin van Hoogdalem

SPIN HALL EFFECT



Pic: J. E. Hirsch, PRL 83, 1834 (1999)

Hall effect of spinless particle in constant magnetic field $\mathbf{B} = (0, 0, B)$:

 $H_{\rm EM} = -\mu_B \mathbf{B} \cdot \mathbf{L}$

Gives rise to charge accumulation (voltage/current) in a finite-sized sample

spin Hall effect of spinfull particle with spin-orbit interaction:

 $H_{\rm SO} = V_{\rm SO}(r)\sigma\cdot\mathbf{L}$

Gives rise to spin accumulation (spin voltage/spin current) in a finite-sized sample

Resulting electric field inverse spin hall effect:

 $\mathbf{E} \parallel \mathbf{n} imes \mathbf{j}_S$

spin Hall effect: Creation of spin current by applying voltage difference

inverse spin Hall effect: Creation of voltage difference due to spin current

Basel, 11 June 2013

M. I. D'yakonov and V. I. Perel, JETP Lett. 13, 467 (1971) and Y. K. Kato et al., Science 306, 1910 (2004)

Kevin van Hoogdalem

THE EXPRESSIONS (I)

Have seen the equations that determine spin accumulation and currents. Resulting expressions:

In the metal

$$\begin{aligned} & \mu_s^N(x,\omega) = \int_{i=1}^3 v_i \frac{\cosh[\kappa_i(x-d_N)]}{\sinh[\kappa_i d_N]} \frac{2j_{is}(x=0,\omega)}{\hbar \nu D_N \kappa_i} \quad (4) \\ & \kappa_i^2(\omega) = (1+i\omega \tau_s^N)/(\lambda_s^N)^2, \kappa_{2,3}^2(\omega) = \kappa_i^2(\omega) \pm iC, C = (-\gamma_N H_{ex}/D_N, \text{and } \lambda_{sd}^N = \sqrt{D_N \tau_s^N}, j_{1s} = I_s^2/A \text{ and } j_{(2,3)s} = (I_s^2 + I_s^2)/(\sqrt{2}A) \text{ are spin current densities, where ν is the one-spin density of state and A is the interface area. The eigenvectors associated with $\kappa_i^2(\omega)$ $(i = 1, 2, 3)$ are, respectively, $\vec{v}_1 = (0 \ 0 \ 1), \vec{v}_2 = (1 - i \ 0)/\sqrt{2}, \vec{v}_3 = (1 \ i \ 0)/\sqrt{2}. the position-time domain \end{aligned}$

$$\begin{aligned} & \int_{1s} (x,t) = -\frac{\hbar \nu D_N}{2} \frac{\partial \mu_s^N(x,t)}{\partial x} = j_{1s}^2(x)\mathbf{e}_z + \mathbf{j}_{1s}^2(x,t), \quad (5) \\ \text{with} \end{aligned}$$

$$\begin{aligned} & \int_{1s} (x) = 2\operatorname{Re}\left[\frac{\sinh[\kappa_1(0)(d_N - x)]}{\sinh[\kappa_1(0)d_N]}\mathbf{j}_{1s}^2(0)\mathbf{e}_{2s}\right] \quad (7) \\ \text{The analytic expressions for } j_{1s}^2(0) \text{ and } j_{1s}^2(0), \text{ the de and ac components of the spin current at the N side of the interface, respectively, are given in the Supplemental Max-trial [29]. \end{aligned}$$$$

In the ferromagnet $\mu_s^F(x) = \frac{\cosh[(d_F + x)/\lambda_{sd}^F]\tilde{g}}{[g_F \tanh[d_F/\lambda_{sd}^F] + \tilde{g}]\cosh(d_F/\lambda_{sd}^F)} \mathbf{m} \cdot \boldsymbol{\mu}_s^N,$ (9) where $g_F = 4hA\sigma_{\uparrow}\sigma_{\downarrow}/[e^2\lambda_{sd}^F(\sigma_{\uparrow}+\sigma_{\downarrow})]$ and $\tilde{g} = (1-p^2)g$. Here, $\sigma_{\uparrow(1)}$ is the conductivity of spin-up (spin-down) electrons in F. The spin current density in F reads $\mathbf{j}_{2s}(x) = \frac{\sinh[(d_F + x)/\lambda_{sd}^F]}{\sinh(d_F/\lambda_{sd}^F)} \mathbf{j}_{2s}(0),$ (10)with $\mathbf{j}_{2s}(0) = -\frac{1}{8\pi} \frac{\tilde{g}g_F \tanh[d_F/\lambda_{sd}^F]}{\tilde{g} + g_F \tanh[d_F/\lambda_{sd}^F]} (\mathbf{m} \cdot \boldsymbol{\mu}_s^N) \mathbf{m} \quad (11)$

Basel, 11 June 2013

THE EXPRESSIONS (2)

Electric fields due to ISHE

The ISHE generates a charge current \mathbf{j}_c transverse to an applied spin current due to the spin-orbit interaction. With the spin current direction along \mathbf{e}_x [8,16,18–21],

 $\mathbf{j}_{c}(x) = \alpha_{N/F}(2e/\hbar)\mathbf{e}_{x} \times \mathbf{j}_{s}(x), \qquad (12)$

where α_N is the spin Hall angle in *N* and $\alpha_F = (\alpha_{F\uparrow} + \alpha_{F\downarrow})/2$ is that in *F*, where $\alpha_{F\xi} = \sigma_{AH\xi}/\sigma_{\xi}$ $(\xi = \uparrow, \downarrow)$ and $\sigma_{(AH)\xi}$ is the spin-polarized (anomalous Hall) conductivity. As shown in Fig. 1(a), a dc electric field $E_y \mathbf{e}_y$ is generated along the *y* direction; similarly, an ac field $E_z(t)\mathbf{e}_z$ along the *z* direction is shown in Fig. 1(b). Disregarding parasitic impedances and in the steady state, we obtain for the ac contribution along *z*

$$E_{z}(t) = \frac{4e/\hbar}{\sigma_{N}d_{N} + \sigma_{F}d_{F}} \operatorname{Re}\left(\frac{\alpha_{N}j_{1s}^{y}(0)}{\kappa_{2}(\omega)} \tanh\frac{d_{N}\kappa_{2}(\omega)}{2} + \alpha_{F}j_{2s}^{y}(0)\lambda_{\mathrm{sd}}^{F}\tanh\frac{d_{N}}{2\lambda_{\mathrm{sd}}^{N}}\right),$$
(13)

while the dc electric field along y reads

$$E_{y} = \frac{2e/\hbar}{\sigma_{N}d_{N} + \sigma_{F}d_{F}} \bigg[j_{1s}^{z}(0)\alpha_{N}\lambda_{sd}^{N} \tanh\frac{d_{N}}{2\lambda_{sd}^{N}} + j_{2s}^{z}(0)\alpha_{F}\lambda_{sd}^{F} \tanh\frac{d_{F}}{2\lambda_{sd}^{F}} \bigg].$$
(14)

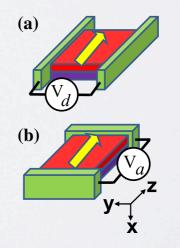
Simplified expressions when ignoring backflow

$$E_{y}^{NB} = \frac{e\alpha_{N}f\sin^{2}\theta}{\sigma_{N}d_{N} + \sigma_{F}d_{F}} \frac{\operatorname{Re}g^{\uparrow\downarrow}}{A}\lambda_{\mathrm{sd}}^{N} \tanh\frac{d_{N}}{2\lambda_{\mathrm{sd}}^{N}}.$$

 $\frac{E_z^{NB}(t)}{\cos(\omega t + \delta)} = \frac{e\alpha_N f \sin\theta \cos\theta}{\sigma_N d_N + \sigma_F d_F} \frac{\operatorname{Re}g^{\uparrow\downarrow}}{A} \left| \frac{\tanh[\kappa_2(\omega) d_N/2]}{\kappa_2(\omega)} \right|$

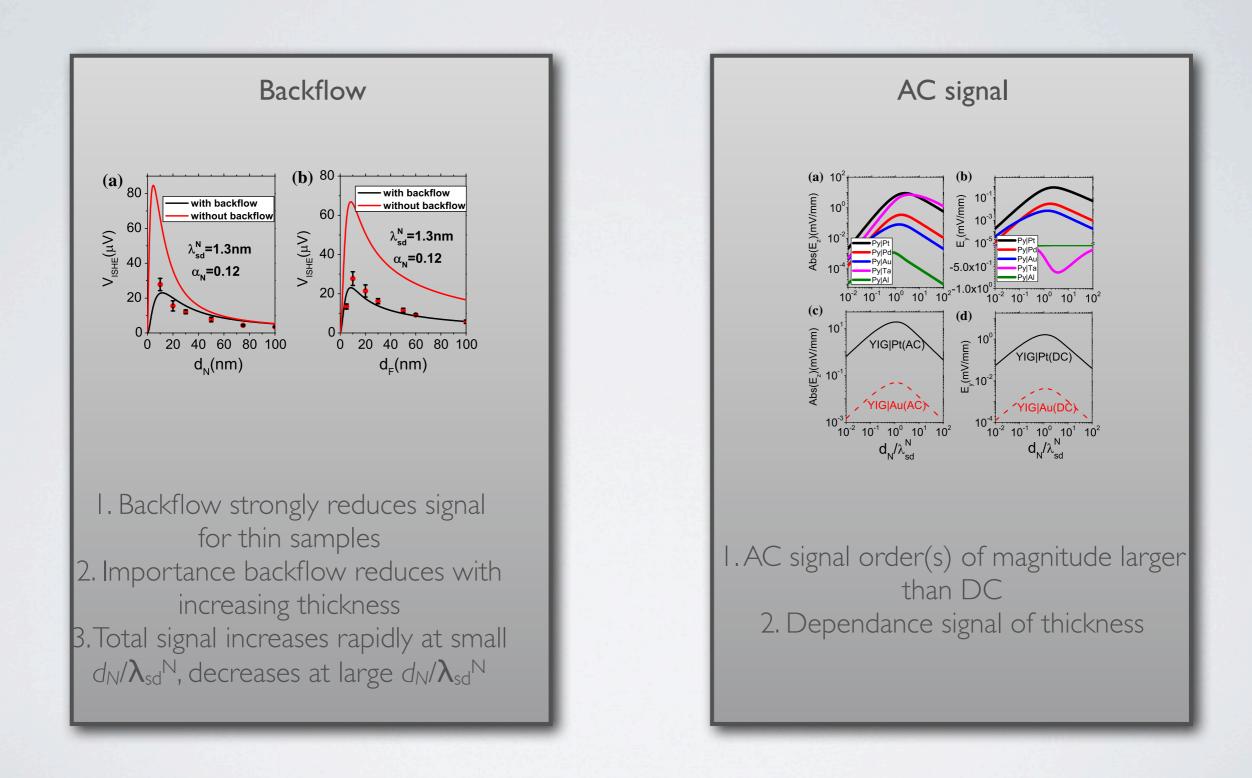
Main differences

I. AC signal linear in θ , DC quadratic 2. AC signal depends on spin dephasing length $\lambda_c^2 = D_N/\omega$, DC signal on spin-flip relaxation length $(\lambda_{sd}^N)^2 = D_N \tau_{sf}^N$



Basel, 11 June 2013

CONCLUSIONS



Basel, 11 June 2013

Kevin van Hoogdalem