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We study transport properties of the helical edge states of two-dimensional integer and fractional
topological insulators via double constrictions. Such constrictions couple the upper and lower edges
of the sample, and can be made and tuned by adding side gates to the system. Using renormalization
group and duality mapping, we analyze phase diagrams and transport properties in each of these
cases. Most interesting is the case of two constrictions tuned to resonance, where we obtain Kondo
behavior, with a tunable Kondo temperature. Moving away from resonance gives the possibility of a
metal-insulator transition at some finite detuning. For integer topological insulators, this physics is
predicted to occur for realistic interaction strengths and gives a conductance G with two temperature
T scales where the sign of dG/dT changes; one being related to the Kondo temperature while the
other is related to the detuning.



Reminder: helical edge states in 2D Top. Insulators
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* Helical edge states:

e Time-reversal invariance -> backscattering suppressed

Backscattering possible by tunneling to the other edge!



Outline of the paper

Review of a single contact:
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G=G, G=0

e Luttinger Liquid + bosonization to treat Coulomb interaction
* RG analysis for small and large tunnel coupling
» |dentification of the possible conducting/insulating phases

The same for two contacts:
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Bosonization for the single contact

* Tunneling couples the two edges
* Bosonize the Hamiltonian with help of charge and spin fields:
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Tunneling happens by 3 mechanisms:
* Single tunneling events
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RG analysis of single contact

Almost open
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For moderate interaction, all processes irrelevant. Both phases are stable



RG Flow, single contact

IC

CI

* Two stable fixed points, insulating and conducting
* In between one unstable fixed point, separating both phases



Two constrictions
(a)
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 “Quantum dot” formed by double constriction

e Coulomb blockade
* Kondo physics
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Strong constriction limit
(b)
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V largest energy scale

Minimization of V:
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either both even or odd integers

With the resonance condition: two degenerate spin states of the dot -> Kondo
problem



The Kondo limit

Tunneling Hamiltonian:
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Can be obtained also from the last Hamiltonian via an instanton expansion
{ single electron through both constrictions without changing spin of the dot
e
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Phase diagram

* Without quadratic terms
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* CC phase corresponds to single channel Kondo fixed point
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Temperature dependence
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Off resonance
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* New parameter V describes v B R
how far off resonance the dot is l i
* Large Vs equal to single

constriction IC CI
* Small V; equal to resonant case
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Conclusion

Considered a QSHI with double constriction

3 important parameters: Luttinger parameter g, constriction strength v, of
resonance condition V¢

Non-monotonic dependence of conductance on T

Metal insulator transition at V=V,



