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In	  1960	  Richard	  Feynamm	  announced	  a	  contest	  and	  promised	  a	  $1000	  prize	  to	  the	  
developer	  of	  an	  engine	  that	  fits	  a	  cube	  of	  side	  1/64’’	  (~0.4	  mm)	  



Introduc&on	  
Motor:	  device	  capable	  of	  conver&ng	  energy	  into	  movement	  	  

“As	  the	  dimensions	  of	  motors	  are	  reduced,	  it	  is	  natural	  to	  expect	  that	  
quantum	  mechanics	  could	  be	  used	  to	  operate	  and	  to	  op&mize	  

nanomotors”	  

kine&c	  energy	  -‐>	  rota&onal	  
	   	   	   	  	  	  	  	  mo&on	  

electric	  energy-‐>	  rota&onal	  
	   	   	   	  	  	  	  	  mo&on	  



Quantum	  motors	  and	  quantum	  pumps	  
The	  main	  idea	  is	  to	  use	  the	  same	  opera&ng	  principle	  as	  an	  
electron	  pump,	  but	  in	  reverse	  

Chao&c	  QD	  pump	   Thouless	  pump	  
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When parameters are varied periodically, charge can be pumped through a mesoscopic conductor

without applied bias. Here, we consider the inverse effect in which a transport current drives a periodic

variation of an adiabatic degree of freedom. This provides a general operating principle for adiabatic

quantum motors which we discuss here in general terms. We relate the work performed per cycle on the

motor degree of freedom to characteristics of the underlying quantum pump and discuss the motors’

efficiency. Quantum motors based on chaotic quantum dots operate solely due to quantum interference,

and motors based on Thouless pumps have ideal efficiency.
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Introduction.—Popular culture has long been fascinated
with microscopic and nanoscopic motors. Perhaps best
known is the contest announced by Richard Feynman,
who promised a $1000 prize to the developer of an engine
that fits a cube of sides 1=64’’ [1]. While this feat was
carried out shortly thereafter, in 1960, and did not produce
an intellectual breakthrough, Feynman’s contest has con-
tinued to provide tremendous inspiration to the field of
nanotechnology. A prototypical nanomotor was unveiled
in 2003, using tiny gold leaves mounted on multiwalled
carbon nanotubes, with the carbon layers themselves car-
rying out the motion [2]. The motor was driven through ac
actuation and basically relied on classical physics for its
operation. As the dimensions of motors are reduced, how-
ever, it is natural to expect that quantum mechanics could
be used to operate and to optimize nanomotors. In fact,
cold-atom-based ac-driven quantum motors have been
explored in Refs. [3,4].

Nanomotors can also be actuated by dc driving [5–7].
A general strategy toward realizing a dc nanoscale motor is
based on operating an electron pump in reverse. Consider
an electron pump in which the periodic variation of
parameters (such as shape, gate voltage, or tunneling
strength) originates from the adiabatic motion of, say, a
mechanical rotor degree of freedom. To operate this pump
as a motor, an applied bias voltage produces a charge
current through the pump which, in turn, exerts a force
on the mechanical rotor. The existence of quantum pumps
[8,9] suggests that by this operating principle, quantum
mechanics can be put to work in dc-driven nanomotors.
Here, we develop a theory of such adiabatic quantum
motors, expressing the work performed per cycle in terms
of characteristics of the pump on which the motor relies
and discussing the efficiency of quantum motors in general
terms.

Our theory relies on progress in the understanding of
adiabatic reaction (or current-induced) forces [6,10–13]

which applies when the mechanical motor degree of free-
dom is slow compared to electronic time scales and can
be treated as classical. Conventionally, adiabatic reaction
forces acting on the slow degree of freedom are considered
for closed quantum systems [14]. This has recently been
extended to situations where the fast degrees of freedom
constitute a quantum mechanical scattering problem and
thus to mesoscopic conductors [11–13]. The resulting
expressions for the reaction forces in terms of the scatter-
ing matrix of the mesoscopic conductor allow one to
explore the relations to quantum pumping in general terms.
Before embarking on a general discussion, we sketch

two conceptual examples of adiabatic quantum motors
in Fig. 1. One motor is based on a chaotic quantum dot
operated as a pump [8,9], as illustrated in Fig. 1(a). In
this motor, the time-dependent gate voltages varying the
shape of the quantum dot are provided by a periodic set
of charges situated around the rim of a wheel which
approach and modify the quantum dot in two locations.
A current flowing through the quantum dot will then
produce a rotation of the wheel. Alternatively, we could
base a quantum motor on a Thouless pump. A schematic of
such a motor is shown in Fig. 1(b). A single-channel
quantum wire is located next to a conveyor belt with

(a) (b)

FIG. 1. Generic adiabatic quantum motors building on (a) a
quantum pump based on a chaotic quantum dot and (b) a
Thouless pump. When a voltage is applied to the pump, the
current ‘‘turns the wheel’’ and makes the phase angle ! wind.
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The	  motor	  (wheel)	  
changes	  the	  shape	  of	  
the	  QD	  

QD	  

Electrons	  are	  pumped	  through	  the	  device	  

The	  conveyor	  belt	  generates	  a	  
&me-‐periodic	  poten&al	  felt	  by	  
the	  electrons	  
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Quantum	  motors	  and	  quantum	  pumps	  
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L	   R	  

V	  

The	  voltage	  V	  induced	  a	  mo&on	  of	  the	  electrons	  that	  induce	  a	  force	  on	  the	  
(classical)	  mechanical	  degree	  of	  freedom	  θ	  	  

The	  problem	  is	  treated	  within	  sca\ering	  theory	  formalism	  

L	   R	  S(θ)	  
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Fig. 2. Example of a two-terminal scattering problem for the case of one transverse channel.
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!"#

; the distribution functions
of electrons in the reservoirs, de"ned via these parameters, are then Fermi distribution
functions
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conductor.

Far from the sample, we can, without loss of generality, assume that transverse (across the leads)
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to right) direction the system is open, and is characterized by the continuous wave vector kl . It is
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operators describe electrons in the outgoing states. They obey anticommutation relations
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The operators a( and bK are related via the scattering matrix s,
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The creation operators a( ! and bK ! obey the same relation with the Hermitian conjugated matrix s!.
The matrix s has dimensions (N
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The #ux conservation in the scattering process implies that the matrix s is quite generally unitary.
In the presence of time-reversal symmetry the scattering matrix is also symmetric.

The current operator in the left lead (far from the sample) is expressed in a standard way,
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left to right); #!

!
are the transverse wave functions, and we have introduced the wave vector,
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Here r
"

is the transverse coordinate(s) and z is the coordinate along the leads (measured from
left to right); #!

!
are the transverse wave functions, and we have introduced the wave vector,
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Here	  assume	  that	  the	  sca\ering	  matrix	  depends	  on	  several	  (classical)	  mechanical	  
motor	  degrees	  of	  freedom	  	  

periodic attached charges (alternatively, a cogwheel with
periodically spaced and electrically charged teeth). The
charges induce a periodic potential in the quantum wire
which slides as the conveyor belt or cogwheel turns.
It is well known from the seminal works of Thouless
[15] that when the Fermi energy lies in an energy gap,
such pumps transport integer amounts of charge per cycle
(i.e., when the periodic potential slides by one period).
An alternative physical realization of a Thouless motor is
based on a helical wire in an electric field [7].

Output power of adiabatic quantum motors.—We start
by deriving a general expression for the output power of
an adiabatic quantum motor. The motor consists of a
mesoscopic conductor with left (L) and right (R) leads,
described within the independent-electron approximation
by an electronic scattering matrix. In the adiabatic quan-
tum motors of Fig. 1, the mesoscopic conductor is coupled
to a single (classical) angle degree of freedom !, as
described through the dependence Sð!Þ of the S matrix
on the motor coordinate !. More generally, the mesoscopic
conductor could be coupled to several mechanical motor
degrees of freedom X" (" ¼ 1; 2; . . . ; N) so that S ¼ SðXÞ.

Retaining the dependence on several mode coordinates
X for generality, the adiabatic reaction force FðXÞ on the
motor degrees of freedom can be expressed in terms of the
S matrix of the mesoscopic conductor [11–13],

F"ðXÞ ¼
X

#

Z d$

2%i
f# Tr

!
!#S

y @S

@X"

"
: (1)

Here, f#ð$Þ denotes the Fermi distribution function in lead
# ¼ L, Rwith chemical potential&# and!# is a projector
onto the scattering channels in lead #. It has been shown
[6,10–13] that this adiabatic reaction force need not be
conservative when the electronic conductor is out of equi-
librium. Thus, the work per cycle performed by this force is
nonzero and given by

Wout ¼
I

dX $ FðXÞ: (2)

Note that in the absence of an applied bias, Wout ¼ 0
(i.e., the force is conservative). In this case, f#ð$Þ ¼ fð$Þ
and

P
#!# ¼ 1, and inserting Eq. (1) into Eq. (2) yields

Wout ¼
I

dX $ rX

Z d$

2%i
fð$ÞTr lnSð$Þ ¼ 0: (3)

The work performed by the adiabatic quantum motor per
cycle is nonzero when a finite bias V is applied. In linear
response, Eq. (1) yields

Wout ¼
ieV
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I
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where we used that Wout ¼ 0 in equilibrium and expanded
Eq. (1) to linear order in the applied bias V.

Using an expression [8,16] which relates the charge Qp

pumped during one cycle of X to the electronic S matrix
SðXÞ, the right-hand side of Eq. (4) can be identified as

Wout ¼ QpV: (5)

Thus, the output of the nonequilibrium device is described
by Qp, which characterizes the underlying quantum pump
in equilibrium. Equation (5) shows that the mechanical
output of the motor per cycle originates from the fact
that a charge Qp is pumped through the system with every
revolution of the motor, and that this pumped charge gains
an electrical energy QpV due to the applied bias. Thus, the
average output power of the motor is

Pout ¼ QpV='; (6)

where ' denotes the motor’s cycle period. We also empha-
size that Eq. (5) identifies quantum pumping as the physi-
cal origin of the nonconservative nature of the adiabatic
reaction force in Eq. (1).
Efficiency of adiabatic quantum motors.—The applied

bias V induces a slowly varying dc charge current I in the
adiabatic quantum motor. Thus, on average, operation of
the motor requires an input power of Pin ¼ "IV. (The over-
line denotes an average over a single cycle.) The efficiency
( of the adiabatic quantum motor is then naturally defined
as the ratio of output to input power

( ¼ Pout=Pin ¼ Qp= "I': (7)

Here, we have used Eq. (6) in the second equality.
For adiabatic motor degrees of freedom, the current I is

made up of two contributions: the pumped charge and the
transport current induced by the applied bias V. If GðXÞ
denotes the conductance of the device for fixed X, the
linear-response current averaged over one cycle is

"I ¼ GðXÞV þQp

'
: (8)

Note that the pumping current also depends on voltage
through the motor’s operating frequency (as characterized
by '). We note in passing that this expression can be
obtained more formally; see Ref. [11].
With Eq. (8), the quantum motor’s efficiency becomes

( ¼ 1

1þ "GV'=Qp

: (9)

Interesting conclusions can be drawn directly from this
expression. (i) Quantum motors can operate entirely on
the basis of quantum interference and become ineffective
due to phase-breaking processes, justifying the term quan-
tummotor. A conceptually interesting example is the motor
in Fig. 1(a) which is based on a chaotic quantum dot. It is
well known that the charge pumped through chaotic quan-
tum dots (and hence the output power of the corresponding
quantum motor) vanishes with increasing phase breaking.
(ii) Quantum motors can have ideal efficiency ( ¼ 1,
implying perfect conversion of electrical into mechanical
energy. Indeed, this can be realized by motors based on
Thouless pumps; when the Fermi energy lies in the gap, the
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periodic attached charges (alternatively, a cogwheel with
periodically spaced and electrically charged teeth). The
charges induce a periodic potential in the quantum wire
which slides as the conveyor belt or cogwheel turns.
It is well known from the seminal works of Thouless
[15] that when the Fermi energy lies in an energy gap,
such pumps transport integer amounts of charge per cycle
(i.e., when the periodic potential slides by one period).
An alternative physical realization of a Thouless motor is
based on a helical wire in an electric field [7].

Output power of adiabatic quantum motors.—We start
by deriving a general expression for the output power of
an adiabatic quantum motor. The motor consists of a
mesoscopic conductor with left (L) and right (R) leads,
described within the independent-electron approximation
by an electronic scattering matrix. In the adiabatic quan-
tum motors of Fig. 1, the mesoscopic conductor is coupled
to a single (classical) angle degree of freedom !, as
described through the dependence Sð!Þ of the S matrix
on the motor coordinate !. More generally, the mesoscopic
conductor could be coupled to several mechanical motor
degrees of freedom X" (" ¼ 1; 2; . . . ; N) so that S ¼ SðXÞ.

Retaining the dependence on several mode coordinates
X for generality, the adiabatic reaction force FðXÞ on the
motor degrees of freedom can be expressed in terms of the
S matrix of the mesoscopic conductor [11–13],

F"ðXÞ ¼
X

#
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2%i
f# Tr

!
!#S

y @S

@X"

"
: (1)

Here, f#ð$Þ denotes the Fermi distribution function in lead
# ¼ L, Rwith chemical potential&# and!# is a projector
onto the scattering channels in lead #. It has been shown
[6,10–13] that this adiabatic reaction force need not be
conservative when the electronic conductor is out of equi-
librium. Thus, the work per cycle performed by this force is
nonzero and given by

Wout ¼
I

dX $ FðXÞ: (2)

Note that in the absence of an applied bias, Wout ¼ 0
(i.e., the force is conservative). In this case, f#ð$Þ ¼ fð$Þ
and

P
#!# ¼ 1, and inserting Eq. (1) into Eq. (2) yields

Wout ¼
I

dX $ rX

Z d$

2%i
fð$ÞTr lnSð$Þ ¼ 0: (3)

The work performed by the adiabatic quantum motor per
cycle is nonzero when a finite bias V is applied. In linear
response, Eq. (1) yields

Wout ¼
ieV
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where we used that Wout ¼ 0 in equilibrium and expanded
Eq. (1) to linear order in the applied bias V.

Using an expression [8,16] which relates the charge Qp

pumped during one cycle of X to the electronic S matrix
SðXÞ, the right-hand side of Eq. (4) can be identified as

Wout ¼ QpV: (5)

Thus, the output of the nonequilibrium device is described
by Qp, which characterizes the underlying quantum pump
in equilibrium. Equation (5) shows that the mechanical
output of the motor per cycle originates from the fact
that a charge Qp is pumped through the system with every
revolution of the motor, and that this pumped charge gains
an electrical energy QpV due to the applied bias. Thus, the
average output power of the motor is

Pout ¼ QpV='; (6)

where ' denotes the motor’s cycle period. We also empha-
size that Eq. (5) identifies quantum pumping as the physi-
cal origin of the nonconservative nature of the adiabatic
reaction force in Eq. (1).
Efficiency of adiabatic quantum motors.—The applied

bias V induces a slowly varying dc charge current I in the
adiabatic quantum motor. Thus, on average, operation of
the motor requires an input power of Pin ¼ "IV. (The over-
line denotes an average over a single cycle.) The efficiency
( of the adiabatic quantum motor is then naturally defined
as the ratio of output to input power

( ¼ Pout=Pin ¼ Qp= "I': (7)

Here, we have used Eq. (6) in the second equality.
For adiabatic motor degrees of freedom, the current I is

made up of two contributions: the pumped charge and the
transport current induced by the applied bias V. If GðXÞ
denotes the conductance of the device for fixed X, the
linear-response current averaged over one cycle is

"I ¼ GðXÞV þQp

'
: (8)

Note that the pumping current also depends on voltage
through the motor’s operating frequency (as characterized
by '). We note in passing that this expression can be
obtained more formally; see Ref. [11].
With Eq. (8), the quantum motor’s efficiency becomes

( ¼ 1

1þ "GV'=Qp

: (9)

Interesting conclusions can be drawn directly from this
expression. (i) Quantum motors can operate entirely on
the basis of quantum interference and become ineffective
due to phase-breaking processes, justifying the term quan-
tummotor. A conceptually interesting example is the motor
in Fig. 1(a) which is based on a chaotic quantum dot. It is
well known that the charge pumped through chaotic quan-
tum dots (and hence the output power of the corresponding
quantum motor) vanishes with increasing phase breaking.
(ii) Quantum motors can have ideal efficiency ( ¼ 1,
implying perfect conversion of electrical into mechanical
energy. Indeed, this can be realized by motors based on
Thouless pumps; when the Fermi energy lies in the gap, the
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periodic attached charges (alternatively, a cogwheel with
periodically spaced and electrically charged teeth). The
charges induce a periodic potential in the quantum wire
which slides as the conveyor belt or cogwheel turns.
It is well known from the seminal works of Thouless
[15] that when the Fermi energy lies in an energy gap,
such pumps transport integer amounts of charge per cycle
(i.e., when the periodic potential slides by one period).
An alternative physical realization of a Thouless motor is
based on a helical wire in an electric field [7].

Output power of adiabatic quantum motors.—We start
by deriving a general expression for the output power of
an adiabatic quantum motor. The motor consists of a
mesoscopic conductor with left (L) and right (R) leads,
described within the independent-electron approximation
by an electronic scattering matrix. In the adiabatic quan-
tum motors of Fig. 1, the mesoscopic conductor is coupled
to a single (classical) angle degree of freedom !, as
described through the dependence Sð!Þ of the S matrix
on the motor coordinate !. More generally, the mesoscopic
conductor could be coupled to several mechanical motor
degrees of freedom X" (" ¼ 1; 2; . . . ; N) so that S ¼ SðXÞ.

Retaining the dependence on several mode coordinates
X for generality, the adiabatic reaction force FðXÞ on the
motor degrees of freedom can be expressed in terms of the
S matrix of the mesoscopic conductor [11–13],

F"ðXÞ ¼
X

#

Z d$

2%i
f# Tr

!
!#S

y @S

@X"

"
: (1)

Here, f#ð$Þ denotes the Fermi distribution function in lead
# ¼ L, Rwith chemical potential&# and!# is a projector
onto the scattering channels in lead #. It has been shown
[6,10–13] that this adiabatic reaction force need not be
conservative when the electronic conductor is out of equi-
librium. Thus, the work per cycle performed by this force is
nonzero and given by

Wout ¼
I

dX $ FðXÞ: (2)

Note that in the absence of an applied bias, Wout ¼ 0
(i.e., the force is conservative). In this case, f#ð$Þ ¼ fð$Þ
and

P
#!# ¼ 1, and inserting Eq. (1) into Eq. (2) yields

Wout ¼
I

dX $ rX

Z d$

2%i
fð$ÞTr lnSð$Þ ¼ 0: (3)

The work performed by the adiabatic quantum motor per
cycle is nonzero when a finite bias V is applied. In linear
response, Eq. (1) yields

Wout ¼
ieV

4%

I
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Z
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where we used that Wout ¼ 0 in equilibrium and expanded
Eq. (1) to linear order in the applied bias V.

Using an expression [8,16] which relates the charge Qp

pumped during one cycle of X to the electronic S matrix
SðXÞ, the right-hand side of Eq. (4) can be identified as

Wout ¼ QpV: (5)

Thus, the output of the nonequilibrium device is described
by Qp, which characterizes the underlying quantum pump
in equilibrium. Equation (5) shows that the mechanical
output of the motor per cycle originates from the fact
that a charge Qp is pumped through the system with every
revolution of the motor, and that this pumped charge gains
an electrical energy QpV due to the applied bias. Thus, the
average output power of the motor is

Pout ¼ QpV='; (6)

where ' denotes the motor’s cycle period. We also empha-
size that Eq. (5) identifies quantum pumping as the physi-
cal origin of the nonconservative nature of the adiabatic
reaction force in Eq. (1).
Efficiency of adiabatic quantum motors.—The applied

bias V induces a slowly varying dc charge current I in the
adiabatic quantum motor. Thus, on average, operation of
the motor requires an input power of Pin ¼ "IV. (The over-
line denotes an average over a single cycle.) The efficiency
( of the adiabatic quantum motor is then naturally defined
as the ratio of output to input power

( ¼ Pout=Pin ¼ Qp= "I': (7)

Here, we have used Eq. (6) in the second equality.
For adiabatic motor degrees of freedom, the current I is

made up of two contributions: the pumped charge and the
transport current induced by the applied bias V. If GðXÞ
denotes the conductance of the device for fixed X, the
linear-response current averaged over one cycle is

"I ¼ GðXÞV þQp

'
: (8)

Note that the pumping current also depends on voltage
through the motor’s operating frequency (as characterized
by '). We note in passing that this expression can be
obtained more formally; see Ref. [11].
With Eq. (8), the quantum motor’s efficiency becomes

( ¼ 1

1þ "GV'=Qp

: (9)

Interesting conclusions can be drawn directly from this
expression. (i) Quantum motors can operate entirely on
the basis of quantum interference and become ineffective
due to phase-breaking processes, justifying the term quan-
tummotor. A conceptually interesting example is the motor
in Fig. 1(a) which is based on a chaotic quantum dot. It is
well known that the charge pumped through chaotic quan-
tum dots (and hence the output power of the corresponding
quantum motor) vanishes with increasing phase breaking.
(ii) Quantum motors can have ideal efficiency ( ¼ 1,
implying perfect conversion of electrical into mechanical
energy. Indeed, this can be realized by motors based on
Thouless pumps; when the Fermi energy lies in the gap, the
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periodic attached charges (alternatively, a cogwheel with
periodically spaced and electrically charged teeth). The
charges induce a periodic potential in the quantum wire
which slides as the conveyor belt or cogwheel turns.
It is well known from the seminal works of Thouless
[15] that when the Fermi energy lies in an energy gap,
such pumps transport integer amounts of charge per cycle
(i.e., when the periodic potential slides by one period).
An alternative physical realization of a Thouless motor is
based on a helical wire in an electric field [7].

Output power of adiabatic quantum motors.—We start
by deriving a general expression for the output power of
an adiabatic quantum motor. The motor consists of a
mesoscopic conductor with left (L) and right (R) leads,
described within the independent-electron approximation
by an electronic scattering matrix. In the adiabatic quan-
tum motors of Fig. 1, the mesoscopic conductor is coupled
to a single (classical) angle degree of freedom !, as
described through the dependence Sð!Þ of the S matrix
on the motor coordinate !. More generally, the mesoscopic
conductor could be coupled to several mechanical motor
degrees of freedom X" (" ¼ 1; 2; . . . ; N) so that S ¼ SðXÞ.

Retaining the dependence on several mode coordinates
X for generality, the adiabatic reaction force FðXÞ on the
motor degrees of freedom can be expressed in terms of the
S matrix of the mesoscopic conductor [11–13],

F"ðXÞ ¼
X

#

Z d$

2%i
f# Tr

!
!#S

y @S

@X"

"
: (1)

Here, f#ð$Þ denotes the Fermi distribution function in lead
# ¼ L, Rwith chemical potential&# and!# is a projector
onto the scattering channels in lead #. It has been shown
[6,10–13] that this adiabatic reaction force need not be
conservative when the electronic conductor is out of equi-
librium. Thus, the work per cycle performed by this force is
nonzero and given by

Wout ¼
I

dX $ FðXÞ: (2)

Note that in the absence of an applied bias, Wout ¼ 0
(i.e., the force is conservative). In this case, f#ð$Þ ¼ fð$Þ
and

P
#!# ¼ 1, and inserting Eq. (1) into Eq. (2) yields

Wout ¼
I

dX $ rX

Z d$

2%i
fð$ÞTr lnSð$Þ ¼ 0: (3)

The work performed by the adiabatic quantum motor per
cycle is nonzero when a finite bias V is applied. In linear
response, Eq. (1) yields

Wout ¼
ieV
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I
dX $

Z
d$f0ð$ÞTr

#
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@S
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where we used that Wout ¼ 0 in equilibrium and expanded
Eq. (1) to linear order in the applied bias V.

Using an expression [8,16] which relates the charge Qp

pumped during one cycle of X to the electronic S matrix
SðXÞ, the right-hand side of Eq. (4) can be identified as

Wout ¼ QpV: (5)

Thus, the output of the nonequilibrium device is described
by Qp, which characterizes the underlying quantum pump
in equilibrium. Equation (5) shows that the mechanical
output of the motor per cycle originates from the fact
that a charge Qp is pumped through the system with every
revolution of the motor, and that this pumped charge gains
an electrical energy QpV due to the applied bias. Thus, the
average output power of the motor is

Pout ¼ QpV='; (6)

where ' denotes the motor’s cycle period. We also empha-
size that Eq. (5) identifies quantum pumping as the physi-
cal origin of the nonconservative nature of the adiabatic
reaction force in Eq. (1).
Efficiency of adiabatic quantum motors.—The applied

bias V induces a slowly varying dc charge current I in the
adiabatic quantum motor. Thus, on average, operation of
the motor requires an input power of Pin ¼ "IV. (The over-
line denotes an average over a single cycle.) The efficiency
( of the adiabatic quantum motor is then naturally defined
as the ratio of output to input power

( ¼ Pout=Pin ¼ Qp= "I': (7)

Here, we have used Eq. (6) in the second equality.
For adiabatic motor degrees of freedom, the current I is

made up of two contributions: the pumped charge and the
transport current induced by the applied bias V. If GðXÞ
denotes the conductance of the device for fixed X, the
linear-response current averaged over one cycle is

"I ¼ GðXÞV þQp

'
: (8)

Note that the pumping current also depends on voltage
through the motor’s operating frequency (as characterized
by '). We note in passing that this expression can be
obtained more formally; see Ref. [11].
With Eq. (8), the quantum motor’s efficiency becomes

( ¼ 1

1þ "GV'=Qp

: (9)

Interesting conclusions can be drawn directly from this
expression. (i) Quantum motors can operate entirely on
the basis of quantum interference and become ineffective
due to phase-breaking processes, justifying the term quan-
tummotor. A conceptually interesting example is the motor
in Fig. 1(a) which is based on a chaotic quantum dot. It is
well known that the charge pumped through chaotic quan-
tum dots (and hence the output power of the corresponding
quantum motor) vanishes with increasing phase breaking.
(ii) Quantum motors can have ideal efficiency ( ¼ 1,
implying perfect conversion of electrical into mechanical
energy. Indeed, this can be realized by motors based on
Thouless pumps; when the Fermi energy lies in the gap, the
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periodic attached charges (alternatively, a cogwheel with
periodically spaced and electrically charged teeth). The
charges induce a periodic potential in the quantum wire
which slides as the conveyor belt or cogwheel turns.
It is well known from the seminal works of Thouless
[15] that when the Fermi energy lies in an energy gap,
such pumps transport integer amounts of charge per cycle
(i.e., when the periodic potential slides by one period).
An alternative physical realization of a Thouless motor is
based on a helical wire in an electric field [7].

Output power of adiabatic quantum motors.—We start
by deriving a general expression for the output power of
an adiabatic quantum motor. The motor consists of a
mesoscopic conductor with left (L) and right (R) leads,
described within the independent-electron approximation
by an electronic scattering matrix. In the adiabatic quan-
tum motors of Fig. 1, the mesoscopic conductor is coupled
to a single (classical) angle degree of freedom !, as
described through the dependence Sð!Þ of the S matrix
on the motor coordinate !. More generally, the mesoscopic
conductor could be coupled to several mechanical motor
degrees of freedom X" (" ¼ 1; 2; . . . ; N) so that S ¼ SðXÞ.

Retaining the dependence on several mode coordinates
X for generality, the adiabatic reaction force FðXÞ on the
motor degrees of freedom can be expressed in terms of the
S matrix of the mesoscopic conductor [11–13],

F"ðXÞ ¼
X
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Z d$

2%i
f# Tr
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: (1)

Here, f#ð$Þ denotes the Fermi distribution function in lead
# ¼ L, Rwith chemical potential&# and!# is a projector
onto the scattering channels in lead #. It has been shown
[6,10–13] that this adiabatic reaction force need not be
conservative when the electronic conductor is out of equi-
librium. Thus, the work per cycle performed by this force is
nonzero and given by

Wout ¼
I

dX $ FðXÞ: (2)

Note that in the absence of an applied bias, Wout ¼ 0
(i.e., the force is conservative). In this case, f#ð$Þ ¼ fð$Þ
and

P
#!# ¼ 1, and inserting Eq. (1) into Eq. (2) yields

Wout ¼
I

dX $ rX

Z d$

2%i
fð$ÞTr lnSð$Þ ¼ 0: (3)

The work performed by the adiabatic quantum motor per
cycle is nonzero when a finite bias V is applied. In linear
response, Eq. (1) yields

Wout ¼
ieV
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where we used that Wout ¼ 0 in equilibrium and expanded
Eq. (1) to linear order in the applied bias V.

Using an expression [8,16] which relates the charge Qp

pumped during one cycle of X to the electronic S matrix
SðXÞ, the right-hand side of Eq. (4) can be identified as

Wout ¼ QpV: (5)

Thus, the output of the nonequilibrium device is described
by Qp, which characterizes the underlying quantum pump
in equilibrium. Equation (5) shows that the mechanical
output of the motor per cycle originates from the fact
that a charge Qp is pumped through the system with every
revolution of the motor, and that this pumped charge gains
an electrical energy QpV due to the applied bias. Thus, the
average output power of the motor is

Pout ¼ QpV='; (6)

where ' denotes the motor’s cycle period. We also empha-
size that Eq. (5) identifies quantum pumping as the physi-
cal origin of the nonconservative nature of the adiabatic
reaction force in Eq. (1).
Efficiency of adiabatic quantum motors.—The applied

bias V induces a slowly varying dc charge current I in the
adiabatic quantum motor. Thus, on average, operation of
the motor requires an input power of Pin ¼ "IV. (The over-
line denotes an average over a single cycle.) The efficiency
( of the adiabatic quantum motor is then naturally defined
as the ratio of output to input power

( ¼ Pout=Pin ¼ Qp= "I': (7)

Here, we have used Eq. (6) in the second equality.
For adiabatic motor degrees of freedom, the current I is

made up of two contributions: the pumped charge and the
transport current induced by the applied bias V. If GðXÞ
denotes the conductance of the device for fixed X, the
linear-response current averaged over one cycle is

"I ¼ GðXÞV þQp

'
: (8)

Note that the pumping current also depends on voltage
through the motor’s operating frequency (as characterized
by '). We note in passing that this expression can be
obtained more formally; see Ref. [11].
With Eq. (8), the quantum motor’s efficiency becomes

( ¼ 1

1þ "GV'=Qp

: (9)

Interesting conclusions can be drawn directly from this
expression. (i) Quantum motors can operate entirely on
the basis of quantum interference and become ineffective
due to phase-breaking processes, justifying the term quan-
tummotor. A conceptually interesting example is the motor
in Fig. 1(a) which is based on a chaotic quantum dot. It is
well known that the charge pumped through chaotic quan-
tum dots (and hence the output power of the corresponding
quantum motor) vanishes with increasing phase breaking.
(ii) Quantum motors can have ideal efficiency ( ¼ 1,
implying perfect conversion of electrical into mechanical
energy. Indeed, this can be realized by motors based on
Thouless pumps; when the Fermi energy lies in the gap, the
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periodic attached charges (alternatively, a cogwheel with
periodically spaced and electrically charged teeth). The
charges induce a periodic potential in the quantum wire
which slides as the conveyor belt or cogwheel turns.
It is well known from the seminal works of Thouless
[15] that when the Fermi energy lies in an energy gap,
such pumps transport integer amounts of charge per cycle
(i.e., when the periodic potential slides by one period).
An alternative physical realization of a Thouless motor is
based on a helical wire in an electric field [7].

Output power of adiabatic quantum motors.—We start
by deriving a general expression for the output power of
an adiabatic quantum motor. The motor consists of a
mesoscopic conductor with left (L) and right (R) leads,
described within the independent-electron approximation
by an electronic scattering matrix. In the adiabatic quan-
tum motors of Fig. 1, the mesoscopic conductor is coupled
to a single (classical) angle degree of freedom !, as
described through the dependence Sð!Þ of the S matrix
on the motor coordinate !. More generally, the mesoscopic
conductor could be coupled to several mechanical motor
degrees of freedom X" (" ¼ 1; 2; . . . ; N) so that S ¼ SðXÞ.

Retaining the dependence on several mode coordinates
X for generality, the adiabatic reaction force FðXÞ on the
motor degrees of freedom can be expressed in terms of the
S matrix of the mesoscopic conductor [11–13],

F"ðXÞ ¼
X

#

Z d$

2%i
f# Tr

!
!#S

y @S

@X"

"
: (1)

Here, f#ð$Þ denotes the Fermi distribution function in lead
# ¼ L, Rwith chemical potential&# and!# is a projector
onto the scattering channels in lead #. It has been shown
[6,10–13] that this adiabatic reaction force need not be
conservative when the electronic conductor is out of equi-
librium. Thus, the work per cycle performed by this force is
nonzero and given by

Wout ¼
I

dX $ FðXÞ: (2)

Note that in the absence of an applied bias, Wout ¼ 0
(i.e., the force is conservative). In this case, f#ð$Þ ¼ fð$Þ
and

P
#!# ¼ 1, and inserting Eq. (1) into Eq. (2) yields

Wout ¼
I

dX $ rX

Z d$

2%i
fð$ÞTr lnSð$Þ ¼ 0: (3)

The work performed by the adiabatic quantum motor per
cycle is nonzero when a finite bias V is applied. In linear
response, Eq. (1) yields

Wout ¼
ieV

4%

I
dX $

Z
d$f0ð$ÞTr

#
ð!L%!RÞSy

@S

@X

$
; (4)

where we used that Wout ¼ 0 in equilibrium and expanded
Eq. (1) to linear order in the applied bias V.

Using an expression [8,16] which relates the charge Qp

pumped during one cycle of X to the electronic S matrix
SðXÞ, the right-hand side of Eq. (4) can be identified as

Wout ¼ QpV: (5)

Thus, the output of the nonequilibrium device is described
by Qp, which characterizes the underlying quantum pump
in equilibrium. Equation (5) shows that the mechanical
output of the motor per cycle originates from the fact
that a charge Qp is pumped through the system with every
revolution of the motor, and that this pumped charge gains
an electrical energy QpV due to the applied bias. Thus, the
average output power of the motor is

Pout ¼ QpV='; (6)

where ' denotes the motor’s cycle period. We also empha-
size that Eq. (5) identifies quantum pumping as the physi-
cal origin of the nonconservative nature of the adiabatic
reaction force in Eq. (1).
Efficiency of adiabatic quantum motors.—The applied

bias V induces a slowly varying dc charge current I in the
adiabatic quantum motor. Thus, on average, operation of
the motor requires an input power of Pin ¼ "IV. (The over-
line denotes an average over a single cycle.) The efficiency
( of the adiabatic quantum motor is then naturally defined
as the ratio of output to input power

( ¼ Pout=Pin ¼ Qp= "I': (7)

Here, we have used Eq. (6) in the second equality.
For adiabatic motor degrees of freedom, the current I is

made up of two contributions: the pumped charge and the
transport current induced by the applied bias V. If GðXÞ
denotes the conductance of the device for fixed X, the
linear-response current averaged over one cycle is

"I ¼ GðXÞV þQp

'
: (8)

Note that the pumping current also depends on voltage
through the motor’s operating frequency (as characterized
by '). We note in passing that this expression can be
obtained more formally; see Ref. [11].
With Eq. (8), the quantum motor’s efficiency becomes

( ¼ 1

1þ "GV'=Qp

: (9)

Interesting conclusions can be drawn directly from this
expression. (i) Quantum motors can operate entirely on
the basis of quantum interference and become ineffective
due to phase-breaking processes, justifying the term quan-
tummotor. A conceptually interesting example is the motor
in Fig. 1(a) which is based on a chaotic quantum dot. It is
well known that the charge pumped through chaotic quan-
tum dots (and hence the output power of the corresponding
quantum motor) vanishes with increasing phase breaking.
(ii) Quantum motors can have ideal efficiency ( ¼ 1,
implying perfect conversion of electrical into mechanical
energy. Indeed, this can be realized by motors based on
Thouless pumps; when the Fermi energy lies in the gap, the
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periodic attached charges (alternatively, a cogwheel with
periodically spaced and electrically charged teeth). The
charges induce a periodic potential in the quantum wire
which slides as the conveyor belt or cogwheel turns.
It is well known from the seminal works of Thouless
[15] that when the Fermi energy lies in an energy gap,
such pumps transport integer amounts of charge per cycle
(i.e., when the periodic potential slides by one period).
An alternative physical realization of a Thouless motor is
based on a helical wire in an electric field [7].

Output power of adiabatic quantum motors.—We start
by deriving a general expression for the output power of
an adiabatic quantum motor. The motor consists of a
mesoscopic conductor with left (L) and right (R) leads,
described within the independent-electron approximation
by an electronic scattering matrix. In the adiabatic quan-
tum motors of Fig. 1, the mesoscopic conductor is coupled
to a single (classical) angle degree of freedom !, as
described through the dependence Sð!Þ of the S matrix
on the motor coordinate !. More generally, the mesoscopic
conductor could be coupled to several mechanical motor
degrees of freedom X" (" ¼ 1; 2; . . . ; N) so that S ¼ SðXÞ.

Retaining the dependence on several mode coordinates
X for generality, the adiabatic reaction force FðXÞ on the
motor degrees of freedom can be expressed in terms of the
S matrix of the mesoscopic conductor [11–13],

F"ðXÞ ¼
X

#

Z d$

2%i
f# Tr

!
!#S

y @S

@X"

"
: (1)

Here, f#ð$Þ denotes the Fermi distribution function in lead
# ¼ L, Rwith chemical potential&# and!# is a projector
onto the scattering channels in lead #. It has been shown
[6,10–13] that this adiabatic reaction force need not be
conservative when the electronic conductor is out of equi-
librium. Thus, the work per cycle performed by this force is
nonzero and given by

Wout ¼
I

dX $ FðXÞ: (2)

Note that in the absence of an applied bias, Wout ¼ 0
(i.e., the force is conservative). In this case, f#ð$Þ ¼ fð$Þ
and

P
#!# ¼ 1, and inserting Eq. (1) into Eq. (2) yields

Wout ¼
I

dX $ rX

Z d$

2%i
fð$ÞTr lnSð$Þ ¼ 0: (3)

The work performed by the adiabatic quantum motor per
cycle is nonzero when a finite bias V is applied. In linear
response, Eq. (1) yields

Wout ¼
ieV

4%

I
dX $

Z
d$f0ð$ÞTr

#
ð!L%!RÞSy

@S

@X

$
; (4)

where we used that Wout ¼ 0 in equilibrium and expanded
Eq. (1) to linear order in the applied bias V.

Using an expression [8,16] which relates the charge Qp

pumped during one cycle of X to the electronic S matrix
SðXÞ, the right-hand side of Eq. (4) can be identified as

Wout ¼ QpV: (5)

Thus, the output of the nonequilibrium device is described
by Qp, which characterizes the underlying quantum pump
in equilibrium. Equation (5) shows that the mechanical
output of the motor per cycle originates from the fact
that a charge Qp is pumped through the system with every
revolution of the motor, and that this pumped charge gains
an electrical energy QpV due to the applied bias. Thus, the
average output power of the motor is

Pout ¼ QpV='; (6)

where ' denotes the motor’s cycle period. We also empha-
size that Eq. (5) identifies quantum pumping as the physi-
cal origin of the nonconservative nature of the adiabatic
reaction force in Eq. (1).
Efficiency of adiabatic quantum motors.—The applied

bias V induces a slowly varying dc charge current I in the
adiabatic quantum motor. Thus, on average, operation of
the motor requires an input power of Pin ¼ "IV. (The over-
line denotes an average over a single cycle.) The efficiency
( of the adiabatic quantum motor is then naturally defined
as the ratio of output to input power

( ¼ Pout=Pin ¼ Qp= "I': (7)

Here, we have used Eq. (6) in the second equality.
For adiabatic motor degrees of freedom, the current I is

made up of two contributions: the pumped charge and the
transport current induced by the applied bias V. If GðXÞ
denotes the conductance of the device for fixed X, the
linear-response current averaged over one cycle is

"I ¼ GðXÞV þQp

'
: (8)

Note that the pumping current also depends on voltage
through the motor’s operating frequency (as characterized
by '). We note in passing that this expression can be
obtained more formally; see Ref. [11].
With Eq. (8), the quantum motor’s efficiency becomes

( ¼ 1

1þ "GV'=Qp

: (9)

Interesting conclusions can be drawn directly from this
expression. (i) Quantum motors can operate entirely on
the basis of quantum interference and become ineffective
due to phase-breaking processes, justifying the term quan-
tummotor. A conceptually interesting example is the motor
in Fig. 1(a) which is based on a chaotic quantum dot. It is
well known that the charge pumped through chaotic quan-
tum dots (and hence the output power of the corresponding
quantum motor) vanishes with increasing phase breaking.
(ii) Quantum motors can have ideal efficiency ( ¼ 1,
implying perfect conversion of electrical into mechanical
energy. Indeed, this can be realized by motors based on
Thouless pumps; when the Fermi energy lies in the gap, the
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periodic attached charges (alternatively, a cogwheel with
periodically spaced and electrically charged teeth). The
charges induce a periodic potential in the quantum wire
which slides as the conveyor belt or cogwheel turns.
It is well known from the seminal works of Thouless
[15] that when the Fermi energy lies in an energy gap,
such pumps transport integer amounts of charge per cycle
(i.e., when the periodic potential slides by one period).
An alternative physical realization of a Thouless motor is
based on a helical wire in an electric field [7].

Output power of adiabatic quantum motors.—We start
by deriving a general expression for the output power of
an adiabatic quantum motor. The motor consists of a
mesoscopic conductor with left (L) and right (R) leads,
described within the independent-electron approximation
by an electronic scattering matrix. In the adiabatic quan-
tum motors of Fig. 1, the mesoscopic conductor is coupled
to a single (classical) angle degree of freedom !, as
described through the dependence Sð!Þ of the S matrix
on the motor coordinate !. More generally, the mesoscopic
conductor could be coupled to several mechanical motor
degrees of freedom X" (" ¼ 1; 2; . . . ; N) so that S ¼ SðXÞ.

Retaining the dependence on several mode coordinates
X for generality, the adiabatic reaction force FðXÞ on the
motor degrees of freedom can be expressed in terms of the
S matrix of the mesoscopic conductor [11–13],

F"ðXÞ ¼
X

#

Z d$

2%i
f# Tr

!
!#S

y @S

@X"

"
: (1)

Here, f#ð$Þ denotes the Fermi distribution function in lead
# ¼ L, Rwith chemical potential&# and!# is a projector
onto the scattering channels in lead #. It has been shown
[6,10–13] that this adiabatic reaction force need not be
conservative when the electronic conductor is out of equi-
librium. Thus, the work per cycle performed by this force is
nonzero and given by

Wout ¼
I

dX $ FðXÞ: (2)

Note that in the absence of an applied bias, Wout ¼ 0
(i.e., the force is conservative). In this case, f#ð$Þ ¼ fð$Þ
and

P
#!# ¼ 1, and inserting Eq. (1) into Eq. (2) yields

Wout ¼
I

dX $ rX

Z d$

2%i
fð$ÞTr lnSð$Þ ¼ 0: (3)

The work performed by the adiabatic quantum motor per
cycle is nonzero when a finite bias V is applied. In linear
response, Eq. (1) yields

Wout ¼
ieV

4%

I
dX $

Z
d$f0ð$ÞTr

#
ð!L%!RÞSy

@S

@X

$
; (4)

where we used that Wout ¼ 0 in equilibrium and expanded
Eq. (1) to linear order in the applied bias V.

Using an expression [8,16] which relates the charge Qp

pumped during one cycle of X to the electronic S matrix
SðXÞ, the right-hand side of Eq. (4) can be identified as

Wout ¼ QpV: (5)

Thus, the output of the nonequilibrium device is described
by Qp, which characterizes the underlying quantum pump
in equilibrium. Equation (5) shows that the mechanical
output of the motor per cycle originates from the fact
that a charge Qp is pumped through the system with every
revolution of the motor, and that this pumped charge gains
an electrical energy QpV due to the applied bias. Thus, the
average output power of the motor is

Pout ¼ QpV='; (6)

where ' denotes the motor’s cycle period. We also empha-
size that Eq. (5) identifies quantum pumping as the physi-
cal origin of the nonconservative nature of the adiabatic
reaction force in Eq. (1).
Efficiency of adiabatic quantum motors.—The applied

bias V induces a slowly varying dc charge current I in the
adiabatic quantum motor. Thus, on average, operation of
the motor requires an input power of Pin ¼ "IV. (The over-
line denotes an average over a single cycle.) The efficiency
( of the adiabatic quantum motor is then naturally defined
as the ratio of output to input power

( ¼ Pout=Pin ¼ Qp= "I': (7)

Here, we have used Eq. (6) in the second equality.
For adiabatic motor degrees of freedom, the current I is

made up of two contributions: the pumped charge and the
transport current induced by the applied bias V. If GðXÞ
denotes the conductance of the device for fixed X, the
linear-response current averaged over one cycle is

"I ¼ GðXÞV þQp

'
: (8)

Note that the pumping current also depends on voltage
through the motor’s operating frequency (as characterized
by '). We note in passing that this expression can be
obtained more formally; see Ref. [11].
With Eq. (8), the quantum motor’s efficiency becomes

( ¼ 1

1þ "GV'=Qp

: (9)

Interesting conclusions can be drawn directly from this
expression. (i) Quantum motors can operate entirely on
the basis of quantum interference and become ineffective
due to phase-breaking processes, justifying the term quan-
tummotor. A conceptually interesting example is the motor
in Fig. 1(a) which is based on a chaotic quantum dot. It is
well known that the charge pumped through chaotic quan-
tum dots (and hence the output power of the corresponding
quantum motor) vanishes with increasing phase breaking.
(ii) Quantum motors can have ideal efficiency ( ¼ 1,
implying perfect conversion of electrical into mechanical
energy. Indeed, this can be realized by motors based on
Thouless pumps; when the Fermi energy lies in the gap, the
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Efficiency	  
The	  input	  power	  is	  given	  by	  the	  standard	  expression	  

periodic attached charges (alternatively, a cogwheel with
periodically spaced and electrically charged teeth). The
charges induce a periodic potential in the quantum wire
which slides as the conveyor belt or cogwheel turns.
It is well known from the seminal works of Thouless
[15] that when the Fermi energy lies in an energy gap,
such pumps transport integer amounts of charge per cycle
(i.e., when the periodic potential slides by one period).
An alternative physical realization of a Thouless motor is
based on a helical wire in an electric field [7].

Output power of adiabatic quantum motors.—We start
by deriving a general expression for the output power of
an adiabatic quantum motor. The motor consists of a
mesoscopic conductor with left (L) and right (R) leads,
described within the independent-electron approximation
by an electronic scattering matrix. In the adiabatic quan-
tum motors of Fig. 1, the mesoscopic conductor is coupled
to a single (classical) angle degree of freedom !, as
described through the dependence Sð!Þ of the S matrix
on the motor coordinate !. More generally, the mesoscopic
conductor could be coupled to several mechanical motor
degrees of freedom X" (" ¼ 1; 2; . . . ; N) so that S ¼ SðXÞ.

Retaining the dependence on several mode coordinates
X for generality, the adiabatic reaction force FðXÞ on the
motor degrees of freedom can be expressed in terms of the
S matrix of the mesoscopic conductor [11–13],

F"ðXÞ ¼
X

#

Z d$

2%i
f# Tr

!
!#S

y @S

@X"

"
: (1)

Here, f#ð$Þ denotes the Fermi distribution function in lead
# ¼ L, Rwith chemical potential&# and!# is a projector
onto the scattering channels in lead #. It has been shown
[6,10–13] that this adiabatic reaction force need not be
conservative when the electronic conductor is out of equi-
librium. Thus, the work per cycle performed by this force is
nonzero and given by

Wout ¼
I

dX $ FðXÞ: (2)

Note that in the absence of an applied bias, Wout ¼ 0
(i.e., the force is conservative). In this case, f#ð$Þ ¼ fð$Þ
and

P
#!# ¼ 1, and inserting Eq. (1) into Eq. (2) yields

Wout ¼
I

dX $ rX

Z d$

2%i
fð$ÞTr lnSð$Þ ¼ 0: (3)

The work performed by the adiabatic quantum motor per
cycle is nonzero when a finite bias V is applied. In linear
response, Eq. (1) yields

Wout ¼
ieV

4%

I
dX $

Z
d$f0ð$ÞTr

#
ð!L%!RÞSy

@S

@X

$
; (4)

where we used that Wout ¼ 0 in equilibrium and expanded
Eq. (1) to linear order in the applied bias V.

Using an expression [8,16] which relates the charge Qp

pumped during one cycle of X to the electronic S matrix
SðXÞ, the right-hand side of Eq. (4) can be identified as

Wout ¼ QpV: (5)

Thus, the output of the nonequilibrium device is described
by Qp, which characterizes the underlying quantum pump
in equilibrium. Equation (5) shows that the mechanical
output of the motor per cycle originates from the fact
that a charge Qp is pumped through the system with every
revolution of the motor, and that this pumped charge gains
an electrical energy QpV due to the applied bias. Thus, the
average output power of the motor is

Pout ¼ QpV='; (6)

where ' denotes the motor’s cycle period. We also empha-
size that Eq. (5) identifies quantum pumping as the physi-
cal origin of the nonconservative nature of the adiabatic
reaction force in Eq. (1).
Efficiency of adiabatic quantum motors.—The applied

bias V induces a slowly varying dc charge current I in the
adiabatic quantum motor. Thus, on average, operation of
the motor requires an input power of Pin ¼ "IV. (The over-
line denotes an average over a single cycle.) The efficiency
( of the adiabatic quantum motor is then naturally defined
as the ratio of output to input power

( ¼ Pout=Pin ¼ Qp= "I': (7)

Here, we have used Eq. (6) in the second equality.
For adiabatic motor degrees of freedom, the current I is

made up of two contributions: the pumped charge and the
transport current induced by the applied bias V. If GðXÞ
denotes the conductance of the device for fixed X, the
linear-response current averaged over one cycle is

"I ¼ GðXÞV þQp

'
: (8)

Note that the pumping current also depends on voltage
through the motor’s operating frequency (as characterized
by '). We note in passing that this expression can be
obtained more formally; see Ref. [11].
With Eq. (8), the quantum motor’s efficiency becomes

( ¼ 1

1þ "GV'=Qp

: (9)

Interesting conclusions can be drawn directly from this
expression. (i) Quantum motors can operate entirely on
the basis of quantum interference and become ineffective
due to phase-breaking processes, justifying the term quan-
tummotor. A conceptually interesting example is the motor
in Fig. 1(a) which is based on a chaotic quantum dot. It is
well known that the charge pumped through chaotic quan-
tum dots (and hence the output power of the corresponding
quantum motor) vanishes with increasing phase breaking.
(ii) Quantum motors can have ideal efficiency ( ¼ 1,
implying perfect conversion of electrical into mechanical
energy. Indeed, this can be realized by motors based on
Thouless pumps; when the Fermi energy lies in the gap, the
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current	  induced	  by	  the	  voltage	  V	  

The	  efficiency	  of	  the	  motor	  is	  naturally	  defined	  as	  	  

periodic attached charges (alternatively, a cogwheel with
periodically spaced and electrically charged teeth). The
charges induce a periodic potential in the quantum wire
which slides as the conveyor belt or cogwheel turns.
It is well known from the seminal works of Thouless
[15] that when the Fermi energy lies in an energy gap,
such pumps transport integer amounts of charge per cycle
(i.e., when the periodic potential slides by one period).
An alternative physical realization of a Thouless motor is
based on a helical wire in an electric field [7].

Output power of adiabatic quantum motors.—We start
by deriving a general expression for the output power of
an adiabatic quantum motor. The motor consists of a
mesoscopic conductor with left (L) and right (R) leads,
described within the independent-electron approximation
by an electronic scattering matrix. In the adiabatic quan-
tum motors of Fig. 1, the mesoscopic conductor is coupled
to a single (classical) angle degree of freedom !, as
described through the dependence Sð!Þ of the S matrix
on the motor coordinate !. More generally, the mesoscopic
conductor could be coupled to several mechanical motor
degrees of freedom X" (" ¼ 1; 2; . . . ; N) so that S ¼ SðXÞ.

Retaining the dependence on several mode coordinates
X for generality, the adiabatic reaction force FðXÞ on the
motor degrees of freedom can be expressed in terms of the
S matrix of the mesoscopic conductor [11–13],

F"ðXÞ ¼
X

#

Z d$

2%i
f# Tr

!
!#S

y @S

@X"

"
: (1)

Here, f#ð$Þ denotes the Fermi distribution function in lead
# ¼ L, Rwith chemical potential&# and!# is a projector
onto the scattering channels in lead #. It has been shown
[6,10–13] that this adiabatic reaction force need not be
conservative when the electronic conductor is out of equi-
librium. Thus, the work per cycle performed by this force is
nonzero and given by

Wout ¼
I

dX $ FðXÞ: (2)

Note that in the absence of an applied bias, Wout ¼ 0
(i.e., the force is conservative). In this case, f#ð$Þ ¼ fð$Þ
and

P
#!# ¼ 1, and inserting Eq. (1) into Eq. (2) yields

Wout ¼
I

dX $ rX

Z d$

2%i
fð$ÞTr lnSð$Þ ¼ 0: (3)

The work performed by the adiabatic quantum motor per
cycle is nonzero when a finite bias V is applied. In linear
response, Eq. (1) yields

Wout ¼
ieV

4%

I
dX $

Z
d$f0ð$ÞTr

#
ð!L%!RÞSy

@S

@X

$
; (4)

where we used that Wout ¼ 0 in equilibrium and expanded
Eq. (1) to linear order in the applied bias V.

Using an expression [8,16] which relates the charge Qp

pumped during one cycle of X to the electronic S matrix
SðXÞ, the right-hand side of Eq. (4) can be identified as

Wout ¼ QpV: (5)

Thus, the output of the nonequilibrium device is described
by Qp, which characterizes the underlying quantum pump
in equilibrium. Equation (5) shows that the mechanical
output of the motor per cycle originates from the fact
that a charge Qp is pumped through the system with every
revolution of the motor, and that this pumped charge gains
an electrical energy QpV due to the applied bias. Thus, the
average output power of the motor is

Pout ¼ QpV='; (6)

where ' denotes the motor’s cycle period. We also empha-
size that Eq. (5) identifies quantum pumping as the physi-
cal origin of the nonconservative nature of the adiabatic
reaction force in Eq. (1).
Efficiency of adiabatic quantum motors.—The applied

bias V induces a slowly varying dc charge current I in the
adiabatic quantum motor. Thus, on average, operation of
the motor requires an input power of Pin ¼ "IV. (The over-
line denotes an average over a single cycle.) The efficiency
( of the adiabatic quantum motor is then naturally defined
as the ratio of output to input power

( ¼ Pout=Pin ¼ Qp= "I': (7)

Here, we have used Eq. (6) in the second equality.
For adiabatic motor degrees of freedom, the current I is

made up of two contributions: the pumped charge and the
transport current induced by the applied bias V. If GðXÞ
denotes the conductance of the device for fixed X, the
linear-response current averaged over one cycle is

"I ¼ GðXÞV þQp

'
: (8)

Note that the pumping current also depends on voltage
through the motor’s operating frequency (as characterized
by '). We note in passing that this expression can be
obtained more formally; see Ref. [11].
With Eq. (8), the quantum motor’s efficiency becomes

( ¼ 1

1þ "GV'=Qp

: (9)

Interesting conclusions can be drawn directly from this
expression. (i) Quantum motors can operate entirely on
the basis of quantum interference and become ineffective
due to phase-breaking processes, justifying the term quan-
tummotor. A conceptually interesting example is the motor
in Fig. 1(a) which is based on a chaotic quantum dot. It is
well known that the charge pumped through chaotic quan-
tum dots (and hence the output power of the corresponding
quantum motor) vanishes with increasing phase breaking.
(ii) Quantum motors can have ideal efficiency ( ¼ 1,
implying perfect conversion of electrical into mechanical
energy. Indeed, this can be realized by motors based on
Thouless pumps; when the Fermi energy lies in the gap, the
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Define	  G(x)	  as	  the	  conductance	  of	  the	  device	  

periodic attached charges (alternatively, a cogwheel with
periodically spaced and electrically charged teeth). The
charges induce a periodic potential in the quantum wire
which slides as the conveyor belt or cogwheel turns.
It is well known from the seminal works of Thouless
[15] that when the Fermi energy lies in an energy gap,
such pumps transport integer amounts of charge per cycle
(i.e., when the periodic potential slides by one period).
An alternative physical realization of a Thouless motor is
based on a helical wire in an electric field [7].

Output power of adiabatic quantum motors.—We start
by deriving a general expression for the output power of
an adiabatic quantum motor. The motor consists of a
mesoscopic conductor with left (L) and right (R) leads,
described within the independent-electron approximation
by an electronic scattering matrix. In the adiabatic quan-
tum motors of Fig. 1, the mesoscopic conductor is coupled
to a single (classical) angle degree of freedom !, as
described through the dependence Sð!Þ of the S matrix
on the motor coordinate !. More generally, the mesoscopic
conductor could be coupled to several mechanical motor
degrees of freedom X" (" ¼ 1; 2; . . . ; N) so that S ¼ SðXÞ.

Retaining the dependence on several mode coordinates
X for generality, the adiabatic reaction force FðXÞ on the
motor degrees of freedom can be expressed in terms of the
S matrix of the mesoscopic conductor [11–13],

F"ðXÞ ¼
X

#

Z d$

2%i
f# Tr

!
!#S

y @S

@X"

"
: (1)

Here, f#ð$Þ denotes the Fermi distribution function in lead
# ¼ L, Rwith chemical potential&# and!# is a projector
onto the scattering channels in lead #. It has been shown
[6,10–13] that this adiabatic reaction force need not be
conservative when the electronic conductor is out of equi-
librium. Thus, the work per cycle performed by this force is
nonzero and given by

Wout ¼
I

dX $ FðXÞ: (2)

Note that in the absence of an applied bias, Wout ¼ 0
(i.e., the force is conservative). In this case, f#ð$Þ ¼ fð$Þ
and

P
#!# ¼ 1, and inserting Eq. (1) into Eq. (2) yields

Wout ¼
I

dX $ rX

Z d$

2%i
fð$ÞTr lnSð$Þ ¼ 0: (3)

The work performed by the adiabatic quantum motor per
cycle is nonzero when a finite bias V is applied. In linear
response, Eq. (1) yields

Wout ¼
ieV

4%

I
dX $

Z
d$f0ð$ÞTr

#
ð!L%!RÞSy

@S

@X

$
; (4)

where we used that Wout ¼ 0 in equilibrium and expanded
Eq. (1) to linear order in the applied bias V.

Using an expression [8,16] which relates the charge Qp

pumped during one cycle of X to the electronic S matrix
SðXÞ, the right-hand side of Eq. (4) can be identified as

Wout ¼ QpV: (5)

Thus, the output of the nonequilibrium device is described
by Qp, which characterizes the underlying quantum pump
in equilibrium. Equation (5) shows that the mechanical
output of the motor per cycle originates from the fact
that a charge Qp is pumped through the system with every
revolution of the motor, and that this pumped charge gains
an electrical energy QpV due to the applied bias. Thus, the
average output power of the motor is

Pout ¼ QpV='; (6)

where ' denotes the motor’s cycle period. We also empha-
size that Eq. (5) identifies quantum pumping as the physi-
cal origin of the nonconservative nature of the adiabatic
reaction force in Eq. (1).
Efficiency of adiabatic quantum motors.—The applied

bias V induces a slowly varying dc charge current I in the
adiabatic quantum motor. Thus, on average, operation of
the motor requires an input power of Pin ¼ "IV. (The over-
line denotes an average over a single cycle.) The efficiency
( of the adiabatic quantum motor is then naturally defined
as the ratio of output to input power

( ¼ Pout=Pin ¼ Qp= "I': (7)

Here, we have used Eq. (6) in the second equality.
For adiabatic motor degrees of freedom, the current I is

made up of two contributions: the pumped charge and the
transport current induced by the applied bias V. If GðXÞ
denotes the conductance of the device for fixed X, the
linear-response current averaged over one cycle is

"I ¼ GðXÞV þQp

'
: (8)

Note that the pumping current also depends on voltage
through the motor’s operating frequency (as characterized
by '). We note in passing that this expression can be
obtained more formally; see Ref. [11].
With Eq. (8), the quantum motor’s efficiency becomes

( ¼ 1

1þ "GV'=Qp

: (9)

Interesting conclusions can be drawn directly from this
expression. (i) Quantum motors can operate entirely on
the basis of quantum interference and become ineffective
due to phase-breaking processes, justifying the term quan-
tummotor. A conceptually interesting example is the motor
in Fig. 1(a) which is based on a chaotic quantum dot. It is
well known that the charge pumped through chaotic quan-
tum dots (and hence the output power of the corresponding
quantum motor) vanishes with increasing phase breaking.
(ii) Quantum motors can have ideal efficiency ( ¼ 1,
implying perfect conversion of electrical into mechanical
energy. Indeed, this can be realized by motors based on
Thouless pumps; when the Fermi energy lies in the gap, the
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periodic attached charges (alternatively, a cogwheel with
periodically spaced and electrically charged teeth). The
charges induce a periodic potential in the quantum wire
which slides as the conveyor belt or cogwheel turns.
It is well known from the seminal works of Thouless
[15] that when the Fermi energy lies in an energy gap,
such pumps transport integer amounts of charge per cycle
(i.e., when the periodic potential slides by one period).
An alternative physical realization of a Thouless motor is
based on a helical wire in an electric field [7].

Output power of adiabatic quantum motors.—We start
by deriving a general expression for the output power of
an adiabatic quantum motor. The motor consists of a
mesoscopic conductor with left (L) and right (R) leads,
described within the independent-electron approximation
by an electronic scattering matrix. In the adiabatic quan-
tum motors of Fig. 1, the mesoscopic conductor is coupled
to a single (classical) angle degree of freedom !, as
described through the dependence Sð!Þ of the S matrix
on the motor coordinate !. More generally, the mesoscopic
conductor could be coupled to several mechanical motor
degrees of freedom X" (" ¼ 1; 2; . . . ; N) so that S ¼ SðXÞ.

Retaining the dependence on several mode coordinates
X for generality, the adiabatic reaction force FðXÞ on the
motor degrees of freedom can be expressed in terms of the
S matrix of the mesoscopic conductor [11–13],

F"ðXÞ ¼
X

#

Z d$

2%i
f# Tr

!
!#S

y @S

@X"

"
: (1)

Here, f#ð$Þ denotes the Fermi distribution function in lead
# ¼ L, Rwith chemical potential&# and!# is a projector
onto the scattering channels in lead #. It has been shown
[6,10–13] that this adiabatic reaction force need not be
conservative when the electronic conductor is out of equi-
librium. Thus, the work per cycle performed by this force is
nonzero and given by

Wout ¼
I

dX $ FðXÞ: (2)

Note that in the absence of an applied bias, Wout ¼ 0
(i.e., the force is conservative). In this case, f#ð$Þ ¼ fð$Þ
and

P
#!# ¼ 1, and inserting Eq. (1) into Eq. (2) yields

Wout ¼
I

dX $ rX

Z d$

2%i
fð$ÞTr lnSð$Þ ¼ 0: (3)

The work performed by the adiabatic quantum motor per
cycle is nonzero when a finite bias V is applied. In linear
response, Eq. (1) yields

Wout ¼
ieV

4%

I
dX $

Z
d$f0ð$ÞTr

#
ð!L%!RÞSy

@S

@X

$
; (4)

where we used that Wout ¼ 0 in equilibrium and expanded
Eq. (1) to linear order in the applied bias V.

Using an expression [8,16] which relates the charge Qp

pumped during one cycle of X to the electronic S matrix
SðXÞ, the right-hand side of Eq. (4) can be identified as

Wout ¼ QpV: (5)

Thus, the output of the nonequilibrium device is described
by Qp, which characterizes the underlying quantum pump
in equilibrium. Equation (5) shows that the mechanical
output of the motor per cycle originates from the fact
that a charge Qp is pumped through the system with every
revolution of the motor, and that this pumped charge gains
an electrical energy QpV due to the applied bias. Thus, the
average output power of the motor is

Pout ¼ QpV='; (6)

where ' denotes the motor’s cycle period. We also empha-
size that Eq. (5) identifies quantum pumping as the physi-
cal origin of the nonconservative nature of the adiabatic
reaction force in Eq. (1).
Efficiency of adiabatic quantum motors.—The applied

bias V induces a slowly varying dc charge current I in the
adiabatic quantum motor. Thus, on average, operation of
the motor requires an input power of Pin ¼ "IV. (The over-
line denotes an average over a single cycle.) The efficiency
( of the adiabatic quantum motor is then naturally defined
as the ratio of output to input power

( ¼ Pout=Pin ¼ Qp= "I': (7)

Here, we have used Eq. (6) in the second equality.
For adiabatic motor degrees of freedom, the current I is

made up of two contributions: the pumped charge and the
transport current induced by the applied bias V. If GðXÞ
denotes the conductance of the device for fixed X, the
linear-response current averaged over one cycle is

"I ¼ GðXÞV þQp

'
: (8)

Note that the pumping current also depends on voltage
through the motor’s operating frequency (as characterized
by '). We note in passing that this expression can be
obtained more formally; see Ref. [11].
With Eq. (8), the quantum motor’s efficiency becomes

( ¼ 1

1þ "GV'=Qp

: (9)

Interesting conclusions can be drawn directly from this
expression. (i) Quantum motors can operate entirely on
the basis of quantum interference and become ineffective
due to phase-breaking processes, justifying the term quan-
tummotor. A conceptually interesting example is the motor
in Fig. 1(a) which is based on a chaotic quantum dot. It is
well known that the charge pumped through chaotic quan-
tum dots (and hence the output power of the corresponding
quantum motor) vanishes with increasing phase breaking.
(ii) Quantum motors can have ideal efficiency ( ¼ 1,
implying perfect conversion of electrical into mechanical
energy. Indeed, this can be realized by motors based on
Thouless pumps; when the Fermi energy lies in the gap, the

PRL 111, 060802 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

9 AUGUST 2013

060802-2

Rela&on	  between	  the	  efficiency	  and	  
the	  pumped	  charge!	  

QD	  pump	  is	  purely	  quantum	  mechanical	  effect	  

Quantum	  motor	  

Thouless	  pump	  

Efficieny	  1	  for	  Fermi	  energy	  
below	  the	  gap	  



Motor	  Dynamics	  

Assume	  the	  (classical)	  mechanical	  degree	  of	  freedom	  is	  subject	  to	  damping	  γ	  

conductance vanishes while the pumped charge is quan-
tized to integer multiples of e. Thus, Eq. (9) yields ! ¼ 1,
making Thouless pumps ideal adiabatic quantum motors.

Motor dynamics.—The output power of a quantum
motor depends on its dynamics through the cycle period ".
Here, we discuss this for the simplest case, in which both
the driving force and the load Fload acting on the angular
motor degree of freedom # are independent of the state
of the motor. (This is realized for Thouless motors but
typically not for motors based on chaotic quantum dots.)
If the motor degree of freedom is subject to damping with
damping coefficient $, the steady-state velocity of the
motor follows from the (classical) condition

$ _# ¼ QpV

2%
" Fload: (10)

Thus, we obtain for the cycle period of the motor " ¼
2%=j _#j ¼ ð2%Þ2$=ðQpV " 2%FloadÞ. We can use Eq. (8)
to eliminate V in favor of the current !I. This yields

1

"
¼ Qp

!I" 2%Fload
!G

Q2
p þ ð2%Þ2$ !G

: (11)

For an ideal Thouless motor with !G ¼ 0 [7], this yields the
relation 1=" ¼ !I=Qp. This is a direct consequence of the
fact that in this case, the entire current passing the device
must be due to pumping. More generally, this remains a
good approximation as long as !G & Q2

p=ð2%Þ2$. This
result also implies that the maximum load on the motor
is given by Fmax

load ¼ Qp
!I=2% !G.

Thouless motor.—Thouless motors provide an instruc-
tive example not only because they realize ideal quantum
motors but also because they allow for a thorough analyti-
cal discussion. Consider a single-channel quantum wire
subject to a periodic potential of period a, as described by
the Hamiltonian

H ¼ p2=2mþ 2" cosð2%x=aþ #Þ#ðL=2" jxjÞ: (12)

The periodic potential of strength 2" acting for "L=2<
x < L=2 arises, e.g., from a periodic set of charges situated
along a conveyor belt or cogwheel so that the nearby
electrons in the wire experience an electrostatic potential
[cf. Fig. 1(b)]. This potential slides as the cogwheel turns,
and the mechanical variable # varies by 2% as the teeth of
the cogwheel advance by one spacing a.

When the chemical potential & is chosen such that the
Fermi wave vector kF¼ð2m&=@2Þ1=2 is close to k0 ¼ %=a,
one can linearize the Hamiltonian for momenta close to
'k0. This results in an effective Hamiltonian H with
counterpropagating linear channels and backscattering
due to the periodic potential. Measuring momenta from
'k0 and energies from @2k20=2m, one has

H ¼ vFp'
z þ"ð'x cos#þ 'y sin#Þ#ðL=2" jxjÞ:

(13)

Here, the 'i denote the Pauli matrices in the space of the
counterpropagating channels. We do not include the real
electron spin for simplicity.
Within the linearized model, the adiabatic S matrix Sð#Þ

can be readily obtained analytically. We start with the
transfer matrix M from x ¼ L=2 to x ¼ "L=2. Since the
model is linear in momentum p, this can be done by
analogy with the time-evolution operator in quantum
mechanics, which yields

M ¼ exp
!
" iL@vF

'z½E" "ð'x cos#þ 'y sin#Þ)
"
: (14)

This can be rewritten as M ¼ cos(L " i'eff sin(L, where
'eff ¼ ½E'z " i"cos#'y þ i" sin#'x)=½E2 ""2)1=2 and
(L ¼ ðL=@vFÞ½E2 ""2)1=2. Note that '2

eff ¼ 1.
To obtain the S matrix from the transfer matrix M, we

first assume that there is only an outgoing wave on the
right. Then, the wave function on the left is ðiL; oLÞT ¼
MðoR; iRÞT ¼ ðM11oR;M21oRÞT , where i and o refer to the
in- and outgoing waves, respectively. This immediately
implies that the transmission S21 is 1=M11, and the reflec-
tion S11 is M21=M11. Repeating the same arguments with
only an outgoing wave on the left, we also find S22 ¼
ðM"1Þ12=ðM"1Þ22 and S12 ¼ 1=ðM"1Þ22. With M11 ¼
ðM"1Þ22 ¼ cos(L " iðE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 " "2

p
Þ sin(L, this yields

S ¼ 1

M11

"iei# "ffiffiffiffiffiffiffiffiffiffiffi
E2""2

p sin(L 1

1 "ie"i# "ffiffiffiffiffiffiffiffiffiffiffi
E2""2

p sin(L

0
@

1
A:

(15)

We can now use this Smatrix to obtain explicit expressions
for the efficiency of the Thouless motor.
Using the Landauer formula, the conductance for a

Fermi energy EF takes the form

G ¼ !G ¼ e2

h

j"2 " E2
Fj

j"2 " E2
Fjcos2(L þ E2

Fj sin(Lj2
: (16)

In accord with the fact that the periodic potential opens
a gap, the conductance is exponentially small in L for
jEFj< " and becomes oscillatory and finite in L for
jEFj> ". Similarly, we can obtain the pumped charge in
the standard way from Brouwer’s formula [8] (evaluated at
zero temperature and for an angular degree of freedom)

Qp ¼ e"2j sin(Lj2
j"2 " E2

Fjcos2(L þ E2
Fj sin(Lj2

: (17)

For Fermi energies in the gap, the charge pumped is
quantized to e with exponential precision. When the
Fermi energy is outside the gap jEFj> ", the charge is
no longer quantized and smaller than e.
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Cycle	  period	  of	  the	  motor	  

conductance vanishes while the pumped charge is quan-
tized to integer multiples of e. Thus, Eq. (9) yields ! ¼ 1,
making Thouless pumps ideal adiabatic quantum motors.

Motor dynamics.—The output power of a quantum
motor depends on its dynamics through the cycle period ".
Here, we discuss this for the simplest case, in which both
the driving force and the load Fload acting on the angular
motor degree of freedom # are independent of the state
of the motor. (This is realized for Thouless motors but
typically not for motors based on chaotic quantum dots.)
If the motor degree of freedom is subject to damping with
damping coefficient $, the steady-state velocity of the
motor follows from the (classical) condition

$ _# ¼ QpV

2%
" Fload: (10)

Thus, we obtain for the cycle period of the motor " ¼
2%=j _#j ¼ ð2%Þ2$=ðQpV " 2%FloadÞ. We can use Eq. (8)
to eliminate V in favor of the current !I. This yields

1

"
¼ Qp

!I" 2%Fload
!G

Q2
p þ ð2%Þ2$ !G

: (11)

For an ideal Thouless motor with !G ¼ 0 [7], this yields the
relation 1=" ¼ !I=Qp. This is a direct consequence of the
fact that in this case, the entire current passing the device
must be due to pumping. More generally, this remains a
good approximation as long as !G & Q2

p=ð2%Þ2$. This
result also implies that the maximum load on the motor
is given by Fmax

load ¼ Qp
!I=2% !G.

Thouless motor.—Thouless motors provide an instruc-
tive example not only because they realize ideal quantum
motors but also because they allow for a thorough analyti-
cal discussion. Consider a single-channel quantum wire
subject to a periodic potential of period a, as described by
the Hamiltonian

H ¼ p2=2mþ 2" cosð2%x=aþ #Þ#ðL=2" jxjÞ: (12)

The periodic potential of strength 2" acting for "L=2<
x < L=2 arises, e.g., from a periodic set of charges situated
along a conveyor belt or cogwheel so that the nearby
electrons in the wire experience an electrostatic potential
[cf. Fig. 1(b)]. This potential slides as the cogwheel turns,
and the mechanical variable # varies by 2% as the teeth of
the cogwheel advance by one spacing a.

When the chemical potential & is chosen such that the
Fermi wave vector kF¼ð2m&=@2Þ1=2 is close to k0 ¼ %=a,
one can linearize the Hamiltonian for momenta close to
'k0. This results in an effective Hamiltonian H with
counterpropagating linear channels and backscattering
due to the periodic potential. Measuring momenta from
'k0 and energies from @2k20=2m, one has

H ¼ vFp'
z þ"ð'x cos#þ 'y sin#Þ#ðL=2" jxjÞ:

(13)

Here, the 'i denote the Pauli matrices in the space of the
counterpropagating channels. We do not include the real
electron spin for simplicity.
Within the linearized model, the adiabatic S matrix Sð#Þ

can be readily obtained analytically. We start with the
transfer matrix M from x ¼ L=2 to x ¼ "L=2. Since the
model is linear in momentum p, this can be done by
analogy with the time-evolution operator in quantum
mechanics, which yields

M ¼ exp
!
" iL@vF

'z½E" "ð'x cos#þ 'y sin#Þ)
"
: (14)

This can be rewritten as M ¼ cos(L " i'eff sin(L, where
'eff ¼ ½E'z " i"cos#'y þ i" sin#'x)=½E2 ""2)1=2 and
(L ¼ ðL=@vFÞ½E2 ""2)1=2. Note that '2

eff ¼ 1.
To obtain the S matrix from the transfer matrix M, we

first assume that there is only an outgoing wave on the
right. Then, the wave function on the left is ðiL; oLÞT ¼
MðoR; iRÞT ¼ ðM11oR;M21oRÞT , where i and o refer to the
in- and outgoing waves, respectively. This immediately
implies that the transmission S21 is 1=M11, and the reflec-
tion S11 is M21=M11. Repeating the same arguments with
only an outgoing wave on the left, we also find S22 ¼
ðM"1Þ12=ðM"1Þ22 and S12 ¼ 1=ðM"1Þ22. With M11 ¼
ðM"1Þ22 ¼ cos(L " iðE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 " "2

p
Þ sin(L, this yields

S ¼ 1

M11

"iei# "ffiffiffiffiffiffiffiffiffiffiffi
E2""2

p sin(L 1

1 "ie"i# "ffiffiffiffiffiffiffiffiffiffiffi
E2""2

p sin(L

0
@

1
A:

(15)

We can now use this Smatrix to obtain explicit expressions
for the efficiency of the Thouless motor.
Using the Landauer formula, the conductance for a

Fermi energy EF takes the form

G ¼ !G ¼ e2

h

j"2 " E2
Fj

j"2 " E2
Fjcos2(L þ E2

Fj sin(Lj2
: (16)

In accord with the fact that the periodic potential opens
a gap, the conductance is exponentially small in L for
jEFj< " and becomes oscillatory and finite in L for
jEFj> ". Similarly, we can obtain the pumped charge in
the standard way from Brouwer’s formula [8] (evaluated at
zero temperature and for an angular degree of freedom)

Qp ¼ e"2j sin(Lj2
j"2 " E2

Fjcos2(L þ E2
Fj sin(Lj2

: (17)

For Fermi energies in the gap, the charge pumped is
quantized to e with exponential precision. When the
Fermi energy is outside the gap jEFj> ", the charge is
no longer quantized and smaller than e.
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conductance vanishes while the pumped charge is quan-
tized to integer multiples of e. Thus, Eq. (9) yields ! ¼ 1,
making Thouless pumps ideal adiabatic quantum motors.

Motor dynamics.—The output power of a quantum
motor depends on its dynamics through the cycle period ".
Here, we discuss this for the simplest case, in which both
the driving force and the load Fload acting on the angular
motor degree of freedom # are independent of the state
of the motor. (This is realized for Thouless motors but
typically not for motors based on chaotic quantum dots.)
If the motor degree of freedom is subject to damping with
damping coefficient $, the steady-state velocity of the
motor follows from the (classical) condition

$ _# ¼ QpV

2%
" Fload: (10)

Thus, we obtain for the cycle period of the motor " ¼
2%=j _#j ¼ ð2%Þ2$=ðQpV " 2%FloadÞ. We can use Eq. (8)
to eliminate V in favor of the current !I. This yields

1

"
¼ Qp

!I" 2%Fload
!G

Q2
p þ ð2%Þ2$ !G

: (11)

For an ideal Thouless motor with !G ¼ 0 [7], this yields the
relation 1=" ¼ !I=Qp. This is a direct consequence of the
fact that in this case, the entire current passing the device
must be due to pumping. More generally, this remains a
good approximation as long as !G & Q2

p=ð2%Þ2$. This
result also implies that the maximum load on the motor
is given by Fmax

load ¼ Qp
!I=2% !G.

Thouless motor.—Thouless motors provide an instruc-
tive example not only because they realize ideal quantum
motors but also because they allow for a thorough analyti-
cal discussion. Consider a single-channel quantum wire
subject to a periodic potential of period a, as described by
the Hamiltonian

H ¼ p2=2mþ 2" cosð2%x=aþ #Þ#ðL=2" jxjÞ: (12)

The periodic potential of strength 2" acting for "L=2<
x < L=2 arises, e.g., from a periodic set of charges situated
along a conveyor belt or cogwheel so that the nearby
electrons in the wire experience an electrostatic potential
[cf. Fig. 1(b)]. This potential slides as the cogwheel turns,
and the mechanical variable # varies by 2% as the teeth of
the cogwheel advance by one spacing a.

When the chemical potential & is chosen such that the
Fermi wave vector kF¼ð2m&=@2Þ1=2 is close to k0 ¼ %=a,
one can linearize the Hamiltonian for momenta close to
'k0. This results in an effective Hamiltonian H with
counterpropagating linear channels and backscattering
due to the periodic potential. Measuring momenta from
'k0 and energies from @2k20=2m, one has

H ¼ vFp'
z þ"ð'x cos#þ 'y sin#Þ#ðL=2" jxjÞ:

(13)

Here, the 'i denote the Pauli matrices in the space of the
counterpropagating channels. We do not include the real
electron spin for simplicity.
Within the linearized model, the adiabatic S matrix Sð#Þ

can be readily obtained analytically. We start with the
transfer matrix M from x ¼ L=2 to x ¼ "L=2. Since the
model is linear in momentum p, this can be done by
analogy with the time-evolution operator in quantum
mechanics, which yields

M ¼ exp
!
" iL@vF

'z½E" "ð'x cos#þ 'y sin#Þ)
"
: (14)

This can be rewritten as M ¼ cos(L " i'eff sin(L, where
'eff ¼ ½E'z " i"cos#'y þ i" sin#'x)=½E2 ""2)1=2 and
(L ¼ ðL=@vFÞ½E2 ""2)1=2. Note that '2

eff ¼ 1.
To obtain the S matrix from the transfer matrix M, we

first assume that there is only an outgoing wave on the
right. Then, the wave function on the left is ðiL; oLÞT ¼
MðoR; iRÞT ¼ ðM11oR;M21oRÞT , where i and o refer to the
in- and outgoing waves, respectively. This immediately
implies that the transmission S21 is 1=M11, and the reflec-
tion S11 is M21=M11. Repeating the same arguments with
only an outgoing wave on the left, we also find S22 ¼
ðM"1Þ12=ðM"1Þ22 and S12 ¼ 1=ðM"1Þ22. With M11 ¼
ðM"1Þ22 ¼ cos(L " iðE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 " "2

p
Þ sin(L, this yields

S ¼ 1

M11

"iei# "ffiffiffiffiffiffiffiffiffiffiffi
E2""2

p sin(L 1

1 "ie"i# "ffiffiffiffiffiffiffiffiffiffiffi
E2""2

p sin(L

0
@

1
A:

(15)

We can now use this Smatrix to obtain explicit expressions
for the efficiency of the Thouless motor.
Using the Landauer formula, the conductance for a

Fermi energy EF takes the form

G ¼ !G ¼ e2

h

j"2 " E2
Fj

j"2 " E2
Fjcos2(L þ E2

Fj sin(Lj2
: (16)

In accord with the fact that the periodic potential opens
a gap, the conductance is exponentially small in L for
jEFj< " and becomes oscillatory and finite in L for
jEFj> ". Similarly, we can obtain the pumped charge in
the standard way from Brouwer’s formula [8] (evaluated at
zero temperature and for an angular degree of freedom)

Qp ¼ e"2j sin(Lj2
j"2 " E2

Fjcos2(L þ E2
Fj sin(Lj2

: (17)

For Fermi energies in the gap, the charge pumped is
quantized to e with exponential precision. When the
Fermi energy is outside the gap jEFj> ", the charge is
no longer quantized and smaller than e.

PRL 111, 060802 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

9 AUGUST 2013

060802-3

periodic attached charges (alternatively, a cogwheel with
periodically spaced and electrically charged teeth). The
charges induce a periodic potential in the quantum wire
which slides as the conveyor belt or cogwheel turns.
It is well known from the seminal works of Thouless
[15] that when the Fermi energy lies in an energy gap,
such pumps transport integer amounts of charge per cycle
(i.e., when the periodic potential slides by one period).
An alternative physical realization of a Thouless motor is
based on a helical wire in an electric field [7].

Output power of adiabatic quantum motors.—We start
by deriving a general expression for the output power of
an adiabatic quantum motor. The motor consists of a
mesoscopic conductor with left (L) and right (R) leads,
described within the independent-electron approximation
by an electronic scattering matrix. In the adiabatic quan-
tum motors of Fig. 1, the mesoscopic conductor is coupled
to a single (classical) angle degree of freedom !, as
described through the dependence Sð!Þ of the S matrix
on the motor coordinate !. More generally, the mesoscopic
conductor could be coupled to several mechanical motor
degrees of freedom X" (" ¼ 1; 2; . . . ; N) so that S ¼ SðXÞ.

Retaining the dependence on several mode coordinates
X for generality, the adiabatic reaction force FðXÞ on the
motor degrees of freedom can be expressed in terms of the
S matrix of the mesoscopic conductor [11–13],

F"ðXÞ ¼
X

#

Z d$

2%i
f# Tr

!
!#S

y @S

@X"

"
: (1)

Here, f#ð$Þ denotes the Fermi distribution function in lead
# ¼ L, Rwith chemical potential&# and!# is a projector
onto the scattering channels in lead #. It has been shown
[6,10–13] that this adiabatic reaction force need not be
conservative when the electronic conductor is out of equi-
librium. Thus, the work per cycle performed by this force is
nonzero and given by

Wout ¼
I

dX $ FðXÞ: (2)

Note that in the absence of an applied bias, Wout ¼ 0
(i.e., the force is conservative). In this case, f#ð$Þ ¼ fð$Þ
and

P
#!# ¼ 1, and inserting Eq. (1) into Eq. (2) yields

Wout ¼
I

dX $ rX

Z d$

2%i
fð$ÞTr lnSð$Þ ¼ 0: (3)

The work performed by the adiabatic quantum motor per
cycle is nonzero when a finite bias V is applied. In linear
response, Eq. (1) yields

Wout ¼
ieV

4%
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dX $
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@S
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$
; (4)

where we used that Wout ¼ 0 in equilibrium and expanded
Eq. (1) to linear order in the applied bias V.

Using an expression [8,16] which relates the charge Qp

pumped during one cycle of X to the electronic S matrix
SðXÞ, the right-hand side of Eq. (4) can be identified as

Wout ¼ QpV: (5)

Thus, the output of the nonequilibrium device is described
by Qp, which characterizes the underlying quantum pump
in equilibrium. Equation (5) shows that the mechanical
output of the motor per cycle originates from the fact
that a charge Qp is pumped through the system with every
revolution of the motor, and that this pumped charge gains
an electrical energy QpV due to the applied bias. Thus, the
average output power of the motor is

Pout ¼ QpV='; (6)

where ' denotes the motor’s cycle period. We also empha-
size that Eq. (5) identifies quantum pumping as the physi-
cal origin of the nonconservative nature of the adiabatic
reaction force in Eq. (1).
Efficiency of adiabatic quantum motors.—The applied

bias V induces a slowly varying dc charge current I in the
adiabatic quantum motor. Thus, on average, operation of
the motor requires an input power of Pin ¼ "IV. (The over-
line denotes an average over a single cycle.) The efficiency
( of the adiabatic quantum motor is then naturally defined
as the ratio of output to input power

( ¼ Pout=Pin ¼ Qp= "I': (7)

Here, we have used Eq. (6) in the second equality.
For adiabatic motor degrees of freedom, the current I is

made up of two contributions: the pumped charge and the
transport current induced by the applied bias V. If GðXÞ
denotes the conductance of the device for fixed X, the
linear-response current averaged over one cycle is

"I ¼ GðXÞV þQp

'
: (8)

Note that the pumping current also depends on voltage
through the motor’s operating frequency (as characterized
by '). We note in passing that this expression can be
obtained more formally; see Ref. [11].
With Eq. (8), the quantum motor’s efficiency becomes

( ¼ 1

1þ "GV'=Qp

: (9)

Interesting conclusions can be drawn directly from this
expression. (i) Quantum motors can operate entirely on
the basis of quantum interference and become ineffective
due to phase-breaking processes, justifying the term quan-
tummotor. A conceptually interesting example is the motor
in Fig. 1(a) which is based on a chaotic quantum dot. It is
well known that the charge pumped through chaotic quan-
tum dots (and hence the output power of the corresponding
quantum motor) vanishes with increasing phase breaking.
(ii) Quantum motors can have ideal efficiency ( ¼ 1,
implying perfect conversion of electrical into mechanical
energy. Indeed, this can be realized by motors based on
Thouless pumps; when the Fermi energy lies in the gap, the
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conductance vanishes while the pumped charge is quan-
tized to integer multiples of e. Thus, Eq. (9) yields ! ¼ 1,
making Thouless pumps ideal adiabatic quantum motors.

Motor dynamics.—The output power of a quantum
motor depends on its dynamics through the cycle period ".
Here, we discuss this for the simplest case, in which both
the driving force and the load Fload acting on the angular
motor degree of freedom # are independent of the state
of the motor. (This is realized for Thouless motors but
typically not for motors based on chaotic quantum dots.)
If the motor degree of freedom is subject to damping with
damping coefficient $, the steady-state velocity of the
motor follows from the (classical) condition

$ _# ¼ QpV

2%
" Fload: (10)

Thus, we obtain for the cycle period of the motor " ¼
2%=j _#j ¼ ð2%Þ2$=ðQpV " 2%FloadÞ. We can use Eq. (8)
to eliminate V in favor of the current !I. This yields

1

"
¼ Qp

!I" 2%Fload
!G

Q2
p þ ð2%Þ2$ !G

: (11)

For an ideal Thouless motor with !G ¼ 0 [7], this yields the
relation 1=" ¼ !I=Qp. This is a direct consequence of the
fact that in this case, the entire current passing the device
must be due to pumping. More generally, this remains a
good approximation as long as !G & Q2

p=ð2%Þ2$. This
result also implies that the maximum load on the motor
is given by Fmax

load ¼ Qp
!I=2% !G.

Thouless motor.—Thouless motors provide an instruc-
tive example not only because they realize ideal quantum
motors but also because they allow for a thorough analyti-
cal discussion. Consider a single-channel quantum wire
subject to a periodic potential of period a, as described by
the Hamiltonian

H ¼ p2=2mþ 2" cosð2%x=aþ #Þ#ðL=2" jxjÞ: (12)

The periodic potential of strength 2" acting for "L=2<
x < L=2 arises, e.g., from a periodic set of charges situated
along a conveyor belt or cogwheel so that the nearby
electrons in the wire experience an electrostatic potential
[cf. Fig. 1(b)]. This potential slides as the cogwheel turns,
and the mechanical variable # varies by 2% as the teeth of
the cogwheel advance by one spacing a.

When the chemical potential & is chosen such that the
Fermi wave vector kF¼ð2m&=@2Þ1=2 is close to k0 ¼ %=a,
one can linearize the Hamiltonian for momenta close to
'k0. This results in an effective Hamiltonian H with
counterpropagating linear channels and backscattering
due to the periodic potential. Measuring momenta from
'k0 and energies from @2k20=2m, one has

H ¼ vFp'
z þ"ð'x cos#þ 'y sin#Þ#ðL=2" jxjÞ:

(13)

Here, the 'i denote the Pauli matrices in the space of the
counterpropagating channels. We do not include the real
electron spin for simplicity.
Within the linearized model, the adiabatic S matrix Sð#Þ

can be readily obtained analytically. We start with the
transfer matrix M from x ¼ L=2 to x ¼ "L=2. Since the
model is linear in momentum p, this can be done by
analogy with the time-evolution operator in quantum
mechanics, which yields

M ¼ exp
!
" iL@vF

'z½E" "ð'x cos#þ 'y sin#Þ)
"
: (14)

This can be rewritten as M ¼ cos(L " i'eff sin(L, where
'eff ¼ ½E'z " i"cos#'y þ i" sin#'x)=½E2 ""2)1=2 and
(L ¼ ðL=@vFÞ½E2 ""2)1=2. Note that '2

eff ¼ 1.
To obtain the S matrix from the transfer matrix M, we

first assume that there is only an outgoing wave on the
right. Then, the wave function on the left is ðiL; oLÞT ¼
MðoR; iRÞT ¼ ðM11oR;M21oRÞT , where i and o refer to the
in- and outgoing waves, respectively. This immediately
implies that the transmission S21 is 1=M11, and the reflec-
tion S11 is M21=M11. Repeating the same arguments with
only an outgoing wave on the left, we also find S22 ¼
ðM"1Þ12=ðM"1Þ22 and S12 ¼ 1=ðM"1Þ22. With M11 ¼
ðM"1Þ22 ¼ cos(L " iðE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 " "2

p
Þ sin(L, this yields

S ¼ 1

M11

"iei# "ffiffiffiffiffiffiffiffiffiffiffi
E2""2

p sin(L 1

1 "ie"i# "ffiffiffiffiffiffiffiffiffiffiffi
E2""2

p sin(L

0
@

1
A:

(15)

We can now use this Smatrix to obtain explicit expressions
for the efficiency of the Thouless motor.
Using the Landauer formula, the conductance for a

Fermi energy EF takes the form

G ¼ !G ¼ e2

h

j"2 " E2
Fj

j"2 " E2
Fjcos2(L þ E2

Fj sin(Lj2
: (16)

In accord with the fact that the periodic potential opens
a gap, the conductance is exponentially small in L for
jEFj< " and becomes oscillatory and finite in L for
jEFj> ". Similarly, we can obtain the pumped charge in
the standard way from Brouwer’s formula [8] (evaluated at
zero temperature and for an angular degree of freedom)

Qp ¼ e"2j sin(Lj2
j"2 " E2

Fjcos2(L þ E2
Fj sin(Lj2

: (17)

For Fermi energies in the gap, the charge pumped is
quantized to e with exponential precision. When the
Fermi energy is outside the gap jEFj> ", the charge is
no longer quantized and smaller than e.
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conductance vanishes while the pumped charge is quan-
tized to integer multiples of e. Thus, Eq. (9) yields ! ¼ 1,
making Thouless pumps ideal adiabatic quantum motors.

Motor dynamics.—The output power of a quantum
motor depends on its dynamics through the cycle period ".
Here, we discuss this for the simplest case, in which both
the driving force and the load Fload acting on the angular
motor degree of freedom # are independent of the state
of the motor. (This is realized for Thouless motors but
typically not for motors based on chaotic quantum dots.)
If the motor degree of freedom is subject to damping with
damping coefficient $, the steady-state velocity of the
motor follows from the (classical) condition

$ _# ¼ QpV

2%
" Fload: (10)

Thus, we obtain for the cycle period of the motor " ¼
2%=j _#j ¼ ð2%Þ2$=ðQpV " 2%FloadÞ. We can use Eq. (8)
to eliminate V in favor of the current !I. This yields

1

"
¼ Qp

!I" 2%Fload
!G

Q2
p þ ð2%Þ2$ !G

: (11)

For an ideal Thouless motor with !G ¼ 0 [7], this yields the
relation 1=" ¼ !I=Qp. This is a direct consequence of the
fact that in this case, the entire current passing the device
must be due to pumping. More generally, this remains a
good approximation as long as !G & Q2

p=ð2%Þ2$. This
result also implies that the maximum load on the motor
is given by Fmax

load ¼ Qp
!I=2% !G.

Thouless motor.—Thouless motors provide an instruc-
tive example not only because they realize ideal quantum
motors but also because they allow for a thorough analyti-
cal discussion. Consider a single-channel quantum wire
subject to a periodic potential of period a, as described by
the Hamiltonian

H ¼ p2=2mþ 2" cosð2%x=aþ #Þ#ðL=2" jxjÞ: (12)

The periodic potential of strength 2" acting for "L=2<
x < L=2 arises, e.g., from a periodic set of charges situated
along a conveyor belt or cogwheel so that the nearby
electrons in the wire experience an electrostatic potential
[cf. Fig. 1(b)]. This potential slides as the cogwheel turns,
and the mechanical variable # varies by 2% as the teeth of
the cogwheel advance by one spacing a.

When the chemical potential & is chosen such that the
Fermi wave vector kF¼ð2m&=@2Þ1=2 is close to k0 ¼ %=a,
one can linearize the Hamiltonian for momenta close to
'k0. This results in an effective Hamiltonian H with
counterpropagating linear channels and backscattering
due to the periodic potential. Measuring momenta from
'k0 and energies from @2k20=2m, one has

H ¼ vFp'
z þ"ð'x cos#þ 'y sin#Þ#ðL=2" jxjÞ:

(13)

Here, the 'i denote the Pauli matrices in the space of the
counterpropagating channels. We do not include the real
electron spin for simplicity.
Within the linearized model, the adiabatic S matrix Sð#Þ

can be readily obtained analytically. We start with the
transfer matrix M from x ¼ L=2 to x ¼ "L=2. Since the
model is linear in momentum p, this can be done by
analogy with the time-evolution operator in quantum
mechanics, which yields

M ¼ exp
!
" iL@vF

'z½E" "ð'x cos#þ 'y sin#Þ)
"
: (14)

This can be rewritten as M ¼ cos(L " i'eff sin(L, where
'eff ¼ ½E'z " i"cos#'y þ i" sin#'x)=½E2 ""2)1=2 and
(L ¼ ðL=@vFÞ½E2 ""2)1=2. Note that '2

eff ¼ 1.
To obtain the S matrix from the transfer matrix M, we

first assume that there is only an outgoing wave on the
right. Then, the wave function on the left is ðiL; oLÞT ¼
MðoR; iRÞT ¼ ðM11oR;M21oRÞT , where i and o refer to the
in- and outgoing waves, respectively. This immediately
implies that the transmission S21 is 1=M11, and the reflec-
tion S11 is M21=M11. Repeating the same arguments with
only an outgoing wave on the left, we also find S22 ¼
ðM"1Þ12=ðM"1Þ22 and S12 ¼ 1=ðM"1Þ22. With M11 ¼
ðM"1Þ22 ¼ cos(L " iðE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 " "2

p
Þ sin(L, this yields

S ¼ 1

M11

"iei# "ffiffiffiffiffiffiffiffiffiffiffi
E2""2

p sin(L 1

1 "ie"i# "ffiffiffiffiffiffiffiffiffiffiffi
E2""2

p sin(L

0
@

1
A:

(15)

We can now use this Smatrix to obtain explicit expressions
for the efficiency of the Thouless motor.
Using the Landauer formula, the conductance for a

Fermi energy EF takes the form

G ¼ !G ¼ e2

h

j"2 " E2
Fj

j"2 " E2
Fjcos2(L þ E2

Fj sin(Lj2
: (16)

In accord with the fact that the periodic potential opens
a gap, the conductance is exponentially small in L for
jEFj< " and becomes oscillatory and finite in L for
jEFj> ". Similarly, we can obtain the pumped charge in
the standard way from Brouwer’s formula [8] (evaluated at
zero temperature and for an angular degree of freedom)

Qp ¼ e"2j sin(Lj2
j"2 " E2

Fjcos2(L þ E2
Fj sin(Lj2

: (17)

For Fermi energies in the gap, the charge pumped is
quantized to e with exponential precision. When the
Fermi energy is outside the gap jEFj> ", the charge is
no longer quantized and smaller than e.
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conductance vanishes while the pumped charge is quan-
tized to integer multiples of e. Thus, Eq. (9) yields ! ¼ 1,
making Thouless pumps ideal adiabatic quantum motors.

Motor dynamics.—The output power of a quantum
motor depends on its dynamics through the cycle period ".
Here, we discuss this for the simplest case, in which both
the driving force and the load Fload acting on the angular
motor degree of freedom # are independent of the state
of the motor. (This is realized for Thouless motors but
typically not for motors based on chaotic quantum dots.)
If the motor degree of freedom is subject to damping with
damping coefficient $, the steady-state velocity of the
motor follows from the (classical) condition

$ _# ¼ QpV

2%
" Fload: (10)

Thus, we obtain for the cycle period of the motor " ¼
2%=j _#j ¼ ð2%Þ2$=ðQpV " 2%FloadÞ. We can use Eq. (8)
to eliminate V in favor of the current !I. This yields

1

"
¼ Qp

!I" 2%Fload
!G

Q2
p þ ð2%Þ2$ !G

: (11)

For an ideal Thouless motor with !G ¼ 0 [7], this yields the
relation 1=" ¼ !I=Qp. This is a direct consequence of the
fact that in this case, the entire current passing the device
must be due to pumping. More generally, this remains a
good approximation as long as !G & Q2

p=ð2%Þ2$. This
result also implies that the maximum load on the motor
is given by Fmax

load ¼ Qp
!I=2% !G.

Thouless motor.—Thouless motors provide an instruc-
tive example not only because they realize ideal quantum
motors but also because they allow for a thorough analyti-
cal discussion. Consider a single-channel quantum wire
subject to a periodic potential of period a, as described by
the Hamiltonian

H ¼ p2=2mþ 2" cosð2%x=aþ #Þ#ðL=2" jxjÞ: (12)

The periodic potential of strength 2" acting for "L=2<
x < L=2 arises, e.g., from a periodic set of charges situated
along a conveyor belt or cogwheel so that the nearby
electrons in the wire experience an electrostatic potential
[cf. Fig. 1(b)]. This potential slides as the cogwheel turns,
and the mechanical variable # varies by 2% as the teeth of
the cogwheel advance by one spacing a.

When the chemical potential & is chosen such that the
Fermi wave vector kF¼ð2m&=@2Þ1=2 is close to k0 ¼ %=a,
one can linearize the Hamiltonian for momenta close to
'k0. This results in an effective Hamiltonian H with
counterpropagating linear channels and backscattering
due to the periodic potential. Measuring momenta from
'k0 and energies from @2k20=2m, one has

H ¼ vFp'
z þ"ð'x cos#þ 'y sin#Þ#ðL=2" jxjÞ:

(13)

Here, the 'i denote the Pauli matrices in the space of the
counterpropagating channels. We do not include the real
electron spin for simplicity.
Within the linearized model, the adiabatic S matrix Sð#Þ

can be readily obtained analytically. We start with the
transfer matrix M from x ¼ L=2 to x ¼ "L=2. Since the
model is linear in momentum p, this can be done by
analogy with the time-evolution operator in quantum
mechanics, which yields

M ¼ exp
!
" iL@vF

'z½E" "ð'x cos#þ 'y sin#Þ)
"
: (14)

This can be rewritten as M ¼ cos(L " i'eff sin(L, where
'eff ¼ ½E'z " i"cos#'y þ i" sin#'x)=½E2 ""2)1=2 and
(L ¼ ðL=@vFÞ½E2 ""2)1=2. Note that '2

eff ¼ 1.
To obtain the S matrix from the transfer matrix M, we

first assume that there is only an outgoing wave on the
right. Then, the wave function on the left is ðiL; oLÞT ¼
MðoR; iRÞT ¼ ðM11oR;M21oRÞT , where i and o refer to the
in- and outgoing waves, respectively. This immediately
implies that the transmission S21 is 1=M11, and the reflec-
tion S11 is M21=M11. Repeating the same arguments with
only an outgoing wave on the left, we also find S22 ¼
ðM"1Þ12=ðM"1Þ22 and S12 ¼ 1=ðM"1Þ22. With M11 ¼
ðM"1Þ22 ¼ cos(L " iðE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 " "2

p
Þ sin(L, this yields

S ¼ 1

M11

"iei# "ffiffiffiffiffiffiffiffiffiffiffi
E2""2

p sin(L 1

1 "ie"i# "ffiffiffiffiffiffiffiffiffiffiffi
E2""2

p sin(L

0
@

1
A:

(15)

We can now use this Smatrix to obtain explicit expressions
for the efficiency of the Thouless motor.
Using the Landauer formula, the conductance for a

Fermi energy EF takes the form

G ¼ !G ¼ e2

h

j"2 " E2
Fj

j"2 " E2
Fjcos2(L þ E2

Fj sin(Lj2
: (16)

In accord with the fact that the periodic potential opens
a gap, the conductance is exponentially small in L for
jEFj< " and becomes oscillatory and finite in L for
jEFj> ". Similarly, we can obtain the pumped charge in
the standard way from Brouwer’s formula [8] (evaluated at
zero temperature and for an angular degree of freedom)

Qp ¼ e"2j sin(Lj2
j"2 " E2

Fjcos2(L þ E2
Fj sin(Lj2

: (17)

For Fermi energies in the gap, the charge pumped is
quantized to e with exponential precision. When the
Fermi energy is outside the gap jEFj> ", the charge is
no longer quantized and smaller than e.

PRL 111, 060802 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

9 AUGUST 2013

060802-3

maximal	  load	  



Thouless	  motor	  
Let	  us	  inves&gate	  the	  Thouless	  motor	  in	  more	  detail	  

conductance vanishes while the pumped charge is quan-
tized to integer multiples of e. Thus, Eq. (9) yields ! ¼ 1,
making Thouless pumps ideal adiabatic quantum motors.

Motor dynamics.—The output power of a quantum
motor depends on its dynamics through the cycle period ".
Here, we discuss this for the simplest case, in which both
the driving force and the load Fload acting on the angular
motor degree of freedom # are independent of the state
of the motor. (This is realized for Thouless motors but
typically not for motors based on chaotic quantum dots.)
If the motor degree of freedom is subject to damping with
damping coefficient $, the steady-state velocity of the
motor follows from the (classical) condition

$ _# ¼ QpV

2%
" Fload: (10)

Thus, we obtain for the cycle period of the motor " ¼
2%=j _#j ¼ ð2%Þ2$=ðQpV " 2%FloadÞ. We can use Eq. (8)
to eliminate V in favor of the current !I. This yields

1

"
¼ Qp

!I" 2%Fload
!G

Q2
p þ ð2%Þ2$ !G

: (11)

For an ideal Thouless motor with !G ¼ 0 [7], this yields the
relation 1=" ¼ !I=Qp. This is a direct consequence of the
fact that in this case, the entire current passing the device
must be due to pumping. More generally, this remains a
good approximation as long as !G & Q2

p=ð2%Þ2$. This
result also implies that the maximum load on the motor
is given by Fmax

load ¼ Qp
!I=2% !G.

Thouless motor.—Thouless motors provide an instruc-
tive example not only because they realize ideal quantum
motors but also because they allow for a thorough analyti-
cal discussion. Consider a single-channel quantum wire
subject to a periodic potential of period a, as described by
the Hamiltonian

H ¼ p2=2mþ 2" cosð2%x=aþ #Þ#ðL=2" jxjÞ: (12)

The periodic potential of strength 2" acting for "L=2<
x < L=2 arises, e.g., from a periodic set of charges situated
along a conveyor belt or cogwheel so that the nearby
electrons in the wire experience an electrostatic potential
[cf. Fig. 1(b)]. This potential slides as the cogwheel turns,
and the mechanical variable # varies by 2% as the teeth of
the cogwheel advance by one spacing a.

When the chemical potential & is chosen such that the
Fermi wave vector kF¼ð2m&=@2Þ1=2 is close to k0 ¼ %=a,
one can linearize the Hamiltonian for momenta close to
'k0. This results in an effective Hamiltonian H with
counterpropagating linear channels and backscattering
due to the periodic potential. Measuring momenta from
'k0 and energies from @2k20=2m, one has

H ¼ vFp'
z þ"ð'x cos#þ 'y sin#Þ#ðL=2" jxjÞ:

(13)

Here, the 'i denote the Pauli matrices in the space of the
counterpropagating channels. We do not include the real
electron spin for simplicity.
Within the linearized model, the adiabatic S matrix Sð#Þ

can be readily obtained analytically. We start with the
transfer matrix M from x ¼ L=2 to x ¼ "L=2. Since the
model is linear in momentum p, this can be done by
analogy with the time-evolution operator in quantum
mechanics, which yields

M ¼ exp
!
" iL@vF

'z½E" "ð'x cos#þ 'y sin#Þ)
"
: (14)

This can be rewritten as M ¼ cos(L " i'eff sin(L, where
'eff ¼ ½E'z " i"cos#'y þ i" sin#'x)=½E2 ""2)1=2 and
(L ¼ ðL=@vFÞ½E2 ""2)1=2. Note that '2

eff ¼ 1.
To obtain the S matrix from the transfer matrix M, we

first assume that there is only an outgoing wave on the
right. Then, the wave function on the left is ðiL; oLÞT ¼
MðoR; iRÞT ¼ ðM11oR;M21oRÞT , where i and o refer to the
in- and outgoing waves, respectively. This immediately
implies that the transmission S21 is 1=M11, and the reflec-
tion S11 is M21=M11. Repeating the same arguments with
only an outgoing wave on the left, we also find S22 ¼
ðM"1Þ12=ðM"1Þ22 and S12 ¼ 1=ðM"1Þ22. With M11 ¼
ðM"1Þ22 ¼ cos(L " iðE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 " "2

p
Þ sin(L, this yields

S ¼ 1

M11

"iei# "ffiffiffiffiffiffiffiffiffiffiffi
E2""2

p sin(L 1

1 "ie"i# "ffiffiffiffiffiffiffiffiffiffiffi
E2""2

p sin(L

0
@

1
A:

(15)

We can now use this Smatrix to obtain explicit expressions
for the efficiency of the Thouless motor.
Using the Landauer formula, the conductance for a

Fermi energy EF takes the form

G ¼ !G ¼ e2

h

j"2 " E2
Fj

j"2 " E2
Fjcos2(L þ E2

Fj sin(Lj2
: (16)

In accord with the fact that the periodic potential opens
a gap, the conductance is exponentially small in L for
jEFj< " and becomes oscillatory and finite in L for
jEFj> ". Similarly, we can obtain the pumped charge in
the standard way from Brouwer’s formula [8] (evaluated at
zero temperature and for an angular degree of freedom)

Qp ¼ e"2j sin(Lj2
j"2 " E2

Fjcos2(L þ E2
Fj sin(Lj2

: (17)

For Fermi energies in the gap, the charge pumped is
quantized to e with exponential precision. When the
Fermi energy is outside the gap jEFj> ", the charge is
no longer quantized and smaller than e.
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When parameters are varied periodically, charge can be pumped through a mesoscopic conductor

without applied bias. Here, we consider the inverse effect in which a transport current drives a periodic

variation of an adiabatic degree of freedom. This provides a general operating principle for adiabatic

quantum motors which we discuss here in general terms. We relate the work performed per cycle on the

motor degree of freedom to characteristics of the underlying quantum pump and discuss the motors’

efficiency. Quantum motors based on chaotic quantum dots operate solely due to quantum interference,

and motors based on Thouless pumps have ideal efficiency.
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Introduction.—Popular culture has long been fascinated
with microscopic and nanoscopic motors. Perhaps best
known is the contest announced by Richard Feynman,
who promised a $1000 prize to the developer of an engine
that fits a cube of sides 1=64’’ [1]. While this feat was
carried out shortly thereafter, in 1960, and did not produce
an intellectual breakthrough, Feynman’s contest has con-
tinued to provide tremendous inspiration to the field of
nanotechnology. A prototypical nanomotor was unveiled
in 2003, using tiny gold leaves mounted on multiwalled
carbon nanotubes, with the carbon layers themselves car-
rying out the motion [2]. The motor was driven through ac
actuation and basically relied on classical physics for its
operation. As the dimensions of motors are reduced, how-
ever, it is natural to expect that quantum mechanics could
be used to operate and to optimize nanomotors. In fact,
cold-atom-based ac-driven quantum motors have been
explored in Refs. [3,4].

Nanomotors can also be actuated by dc driving [5–7].
A general strategy toward realizing a dc nanoscale motor is
based on operating an electron pump in reverse. Consider
an electron pump in which the periodic variation of
parameters (such as shape, gate voltage, or tunneling
strength) originates from the adiabatic motion of, say, a
mechanical rotor degree of freedom. To operate this pump
as a motor, an applied bias voltage produces a charge
current through the pump which, in turn, exerts a force
on the mechanical rotor. The existence of quantum pumps
[8,9] suggests that by this operating principle, quantum
mechanics can be put to work in dc-driven nanomotors.
Here, we develop a theory of such adiabatic quantum
motors, expressing the work performed per cycle in terms
of characteristics of the pump on which the motor relies
and discussing the efficiency of quantum motors in general
terms.

Our theory relies on progress in the understanding of
adiabatic reaction (or current-induced) forces [6,10–13]

which applies when the mechanical motor degree of free-
dom is slow compared to electronic time scales and can
be treated as classical. Conventionally, adiabatic reaction
forces acting on the slow degree of freedom are considered
for closed quantum systems [14]. This has recently been
extended to situations where the fast degrees of freedom
constitute a quantum mechanical scattering problem and
thus to mesoscopic conductors [11–13]. The resulting
expressions for the reaction forces in terms of the scatter-
ing matrix of the mesoscopic conductor allow one to
explore the relations to quantum pumping in general terms.
Before embarking on a general discussion, we sketch

two conceptual examples of adiabatic quantum motors
in Fig. 1. One motor is based on a chaotic quantum dot
operated as a pump [8,9], as illustrated in Fig. 1(a). In
this motor, the time-dependent gate voltages varying the
shape of the quantum dot are provided by a periodic set
of charges situated around the rim of a wheel which
approach and modify the quantum dot in two locations.
A current flowing through the quantum dot will then
produce a rotation of the wheel. Alternatively, we could
base a quantum motor on a Thouless pump. A schematic of
such a motor is shown in Fig. 1(b). A single-channel
quantum wire is located next to a conveyor belt with

(a) (b)

FIG. 1. Generic adiabatic quantum motors building on (a) a
quantum pump based on a chaotic quantum dot and (b) a
Thouless pump. When a voltage is applied to the pump, the
current ‘‘turns the wheel’’ and makes the phase angle ! wind.
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conductance vanishes while the pumped charge is quan-
tized to integer multiples of e. Thus, Eq. (9) yields ! ¼ 1,
making Thouless pumps ideal adiabatic quantum motors.

Motor dynamics.—The output power of a quantum
motor depends on its dynamics through the cycle period ".
Here, we discuss this for the simplest case, in which both
the driving force and the load Fload acting on the angular
motor degree of freedom # are independent of the state
of the motor. (This is realized for Thouless motors but
typically not for motors based on chaotic quantum dots.)
If the motor degree of freedom is subject to damping with
damping coefficient $, the steady-state velocity of the
motor follows from the (classical) condition

$ _# ¼ QpV

2%
" Fload: (10)

Thus, we obtain for the cycle period of the motor " ¼
2%=j _#j ¼ ð2%Þ2$=ðQpV " 2%FloadÞ. We can use Eq. (8)
to eliminate V in favor of the current !I. This yields

1

"
¼ Qp

!I" 2%Fload
!G

Q2
p þ ð2%Þ2$ !G

: (11)

For an ideal Thouless motor with !G ¼ 0 [7], this yields the
relation 1=" ¼ !I=Qp. This is a direct consequence of the
fact that in this case, the entire current passing the device
must be due to pumping. More generally, this remains a
good approximation as long as !G & Q2

p=ð2%Þ2$. This
result also implies that the maximum load on the motor
is given by Fmax

load ¼ Qp
!I=2% !G.

Thouless motor.—Thouless motors provide an instruc-
tive example not only because they realize ideal quantum
motors but also because they allow for a thorough analyti-
cal discussion. Consider a single-channel quantum wire
subject to a periodic potential of period a, as described by
the Hamiltonian

H ¼ p2=2mþ 2" cosð2%x=aþ #Þ#ðL=2" jxjÞ: (12)

The periodic potential of strength 2" acting for "L=2<
x < L=2 arises, e.g., from a periodic set of charges situated
along a conveyor belt or cogwheel so that the nearby
electrons in the wire experience an electrostatic potential
[cf. Fig. 1(b)]. This potential slides as the cogwheel turns,
and the mechanical variable # varies by 2% as the teeth of
the cogwheel advance by one spacing a.

When the chemical potential & is chosen such that the
Fermi wave vector kF¼ð2m&=@2Þ1=2 is close to k0 ¼ %=a,
one can linearize the Hamiltonian for momenta close to
'k0. This results in an effective Hamiltonian H with
counterpropagating linear channels and backscattering
due to the periodic potential. Measuring momenta from
'k0 and energies from @2k20=2m, one has

H ¼ vFp'
z þ"ð'x cos#þ 'y sin#Þ#ðL=2" jxjÞ:

(13)

Here, the 'i denote the Pauli matrices in the space of the
counterpropagating channels. We do not include the real
electron spin for simplicity.
Within the linearized model, the adiabatic S matrix Sð#Þ

can be readily obtained analytically. We start with the
transfer matrix M from x ¼ L=2 to x ¼ "L=2. Since the
model is linear in momentum p, this can be done by
analogy with the time-evolution operator in quantum
mechanics, which yields

M ¼ exp
!
" iL@vF

'z½E" "ð'x cos#þ 'y sin#Þ)
"
: (14)

This can be rewritten as M ¼ cos(L " i'eff sin(L, where
'eff ¼ ½E'z " i"cos#'y þ i" sin#'x)=½E2 ""2)1=2 and
(L ¼ ðL=@vFÞ½E2 ""2)1=2. Note that '2

eff ¼ 1.
To obtain the S matrix from the transfer matrix M, we

first assume that there is only an outgoing wave on the
right. Then, the wave function on the left is ðiL; oLÞT ¼
MðoR; iRÞT ¼ ðM11oR;M21oRÞT , where i and o refer to the
in- and outgoing waves, respectively. This immediately
implies that the transmission S21 is 1=M11, and the reflec-
tion S11 is M21=M11. Repeating the same arguments with
only an outgoing wave on the left, we also find S22 ¼
ðM"1Þ12=ðM"1Þ22 and S12 ¼ 1=ðM"1Þ22. With M11 ¼
ðM"1Þ22 ¼ cos(L " iðE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 " "2

p
Þ sin(L, this yields

S ¼ 1

M11

"iei# "ffiffiffiffiffiffiffiffiffiffiffi
E2""2

p sin(L 1

1 "ie"i# "ffiffiffiffiffiffiffiffiffiffiffi
E2""2

p sin(L

0
@

1
A:

(15)

We can now use this Smatrix to obtain explicit expressions
for the efficiency of the Thouless motor.
Using the Landauer formula, the conductance for a

Fermi energy EF takes the form

G ¼ !G ¼ e2

h

j"2 " E2
Fj

j"2 " E2
Fjcos2(L þ E2

Fj sin(Lj2
: (16)

In accord with the fact that the periodic potential opens
a gap, the conductance is exponentially small in L for
jEFj< " and becomes oscillatory and finite in L for
jEFj> ". Similarly, we can obtain the pumped charge in
the standard way from Brouwer’s formula [8] (evaluated at
zero temperature and for an angular degree of freedom)

Qp ¼ e"2j sin(Lj2
j"2 " E2

Fjcos2(L þ E2
Fj sin(Lj2

: (17)

For Fermi energies in the gap, the charge pumped is
quantized to e with exponential precision. When the
Fermi energy is outside the gap jEFj> ", the charge is
no longer quantized and smaller than e.
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conductance vanishes while the pumped charge is quan-
tized to integer multiples of e. Thus, Eq. (9) yields ! ¼ 1,
making Thouless pumps ideal adiabatic quantum motors.

Motor dynamics.—The output power of a quantum
motor depends on its dynamics through the cycle period ".
Here, we discuss this for the simplest case, in which both
the driving force and the load Fload acting on the angular
motor degree of freedom # are independent of the state
of the motor. (This is realized for Thouless motors but
typically not for motors based on chaotic quantum dots.)
If the motor degree of freedom is subject to damping with
damping coefficient $, the steady-state velocity of the
motor follows from the (classical) condition

$ _# ¼ QpV

2%
" Fload: (10)

Thus, we obtain for the cycle period of the motor " ¼
2%=j _#j ¼ ð2%Þ2$=ðQpV " 2%FloadÞ. We can use Eq. (8)
to eliminate V in favor of the current !I. This yields

1

"
¼ Qp

!I" 2%Fload
!G

Q2
p þ ð2%Þ2$ !G

: (11)

For an ideal Thouless motor with !G ¼ 0 [7], this yields the
relation 1=" ¼ !I=Qp. This is a direct consequence of the
fact that in this case, the entire current passing the device
must be due to pumping. More generally, this remains a
good approximation as long as !G & Q2

p=ð2%Þ2$. This
result also implies that the maximum load on the motor
is given by Fmax

load ¼ Qp
!I=2% !G.

Thouless motor.—Thouless motors provide an instruc-
tive example not only because they realize ideal quantum
motors but also because they allow for a thorough analyti-
cal discussion. Consider a single-channel quantum wire
subject to a periodic potential of period a, as described by
the Hamiltonian

H ¼ p2=2mþ 2" cosð2%x=aþ #Þ#ðL=2" jxjÞ: (12)

The periodic potential of strength 2" acting for "L=2<
x < L=2 arises, e.g., from a periodic set of charges situated
along a conveyor belt or cogwheel so that the nearby
electrons in the wire experience an electrostatic potential
[cf. Fig. 1(b)]. This potential slides as the cogwheel turns,
and the mechanical variable # varies by 2% as the teeth of
the cogwheel advance by one spacing a.

When the chemical potential & is chosen such that the
Fermi wave vector kF¼ð2m&=@2Þ1=2 is close to k0 ¼ %=a,
one can linearize the Hamiltonian for momenta close to
'k0. This results in an effective Hamiltonian H with
counterpropagating linear channels and backscattering
due to the periodic potential. Measuring momenta from
'k0 and energies from @2k20=2m, one has

H ¼ vFp'
z þ"ð'x cos#þ 'y sin#Þ#ðL=2" jxjÞ:

(13)

Here, the 'i denote the Pauli matrices in the space of the
counterpropagating channels. We do not include the real
electron spin for simplicity.
Within the linearized model, the adiabatic S matrix Sð#Þ

can be readily obtained analytically. We start with the
transfer matrix M from x ¼ L=2 to x ¼ "L=2. Since the
model is linear in momentum p, this can be done by
analogy with the time-evolution operator in quantum
mechanics, which yields

M ¼ exp
!
" iL@vF

'z½E" "ð'x cos#þ 'y sin#Þ)
"
: (14)

This can be rewritten as M ¼ cos(L " i'eff sin(L, where
'eff ¼ ½E'z " i"cos#'y þ i" sin#'x)=½E2 ""2)1=2 and
(L ¼ ðL=@vFÞ½E2 ""2)1=2. Note that '2

eff ¼ 1.
To obtain the S matrix from the transfer matrix M, we

first assume that there is only an outgoing wave on the
right. Then, the wave function on the left is ðiL; oLÞT ¼
MðoR; iRÞT ¼ ðM11oR;M21oRÞT , where i and o refer to the
in- and outgoing waves, respectively. This immediately
implies that the transmission S21 is 1=M11, and the reflec-
tion S11 is M21=M11. Repeating the same arguments with
only an outgoing wave on the left, we also find S22 ¼
ðM"1Þ12=ðM"1Þ22 and S12 ¼ 1=ðM"1Þ22. With M11 ¼
ðM"1Þ22 ¼ cos(L " iðE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 " "2

p
Þ sin(L, this yields

S ¼ 1

M11

"iei# "ffiffiffiffiffiffiffiffiffiffiffi
E2""2

p sin(L 1

1 "ie"i# "ffiffiffiffiffiffiffiffiffiffiffi
E2""2

p sin(L

0
@

1
A:

(15)

We can now use this Smatrix to obtain explicit expressions
for the efficiency of the Thouless motor.
Using the Landauer formula, the conductance for a

Fermi energy EF takes the form

G ¼ !G ¼ e2

h

j"2 " E2
Fj

j"2 " E2
Fjcos2(L þ E2

Fj sin(Lj2
: (16)

In accord with the fact that the periodic potential opens
a gap, the conductance is exponentially small in L for
jEFj< " and becomes oscillatory and finite in L for
jEFj> ". Similarly, we can obtain the pumped charge in
the standard way from Brouwer’s formula [8] (evaluated at
zero temperature and for an angular degree of freedom)

Qp ¼ e"2j sin(Lj2
j"2 " E2

Fjcos2(L þ E2
Fj sin(Lj2

: (17)

For Fermi energies in the gap, the charge pumped is
quantized to e with exponential precision. When the
Fermi energy is outside the gap jEFj> ", the charge is
no longer quantized and smaller than e.
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conductance vanishes while the pumped charge is quan-
tized to integer multiples of e. Thus, Eq. (9) yields ! ¼ 1,
making Thouless pumps ideal adiabatic quantum motors.

Motor dynamics.—The output power of a quantum
motor depends on its dynamics through the cycle period ".
Here, we discuss this for the simplest case, in which both
the driving force and the load Fload acting on the angular
motor degree of freedom # are independent of the state
of the motor. (This is realized for Thouless motors but
typically not for motors based on chaotic quantum dots.)
If the motor degree of freedom is subject to damping with
damping coefficient $, the steady-state velocity of the
motor follows from the (classical) condition

$ _# ¼ QpV

2%
" Fload: (10)

Thus, we obtain for the cycle period of the motor " ¼
2%=j _#j ¼ ð2%Þ2$=ðQpV " 2%FloadÞ. We can use Eq. (8)
to eliminate V in favor of the current !I. This yields

1

"
¼ Qp

!I" 2%Fload
!G

Q2
p þ ð2%Þ2$ !G

: (11)

For an ideal Thouless motor with !G ¼ 0 [7], this yields the
relation 1=" ¼ !I=Qp. This is a direct consequence of the
fact that in this case, the entire current passing the device
must be due to pumping. More generally, this remains a
good approximation as long as !G & Q2

p=ð2%Þ2$. This
result also implies that the maximum load on the motor
is given by Fmax

load ¼ Qp
!I=2% !G.

Thouless motor.—Thouless motors provide an instruc-
tive example not only because they realize ideal quantum
motors but also because they allow for a thorough analyti-
cal discussion. Consider a single-channel quantum wire
subject to a periodic potential of period a, as described by
the Hamiltonian

H ¼ p2=2mþ 2" cosð2%x=aþ #Þ#ðL=2" jxjÞ: (12)

The periodic potential of strength 2" acting for "L=2<
x < L=2 arises, e.g., from a periodic set of charges situated
along a conveyor belt or cogwheel so that the nearby
electrons in the wire experience an electrostatic potential
[cf. Fig. 1(b)]. This potential slides as the cogwheel turns,
and the mechanical variable # varies by 2% as the teeth of
the cogwheel advance by one spacing a.

When the chemical potential & is chosen such that the
Fermi wave vector kF¼ð2m&=@2Þ1=2 is close to k0 ¼ %=a,
one can linearize the Hamiltonian for momenta close to
'k0. This results in an effective Hamiltonian H with
counterpropagating linear channels and backscattering
due to the periodic potential. Measuring momenta from
'k0 and energies from @2k20=2m, one has

H ¼ vFp'
z þ"ð'x cos#þ 'y sin#Þ#ðL=2" jxjÞ:

(13)

Here, the 'i denote the Pauli matrices in the space of the
counterpropagating channels. We do not include the real
electron spin for simplicity.
Within the linearized model, the adiabatic S matrix Sð#Þ

can be readily obtained analytically. We start with the
transfer matrix M from x ¼ L=2 to x ¼ "L=2. Since the
model is linear in momentum p, this can be done by
analogy with the time-evolution operator in quantum
mechanics, which yields

M ¼ exp
!
" iL@vF

'z½E" "ð'x cos#þ 'y sin#Þ)
"
: (14)

This can be rewritten as M ¼ cos(L " i'eff sin(L, where
'eff ¼ ½E'z " i"cos#'y þ i" sin#'x)=½E2 ""2)1=2 and
(L ¼ ðL=@vFÞ½E2 ""2)1=2. Note that '2

eff ¼ 1.
To obtain the S matrix from the transfer matrix M, we

first assume that there is only an outgoing wave on the
right. Then, the wave function on the left is ðiL; oLÞT ¼
MðoR; iRÞT ¼ ðM11oR;M21oRÞT , where i and o refer to the
in- and outgoing waves, respectively. This immediately
implies that the transmission S21 is 1=M11, and the reflec-
tion S11 is M21=M11. Repeating the same arguments with
only an outgoing wave on the left, we also find S22 ¼
ðM"1Þ12=ðM"1Þ22 and S12 ¼ 1=ðM"1Þ22. With M11 ¼
ðM"1Þ22 ¼ cos(L " iðE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 " "2

p
Þ sin(L, this yields

S ¼ 1

M11

"iei# "ffiffiffiffiffiffiffiffiffiffiffi
E2""2

p sin(L 1

1 "ie"i# "ffiffiffiffiffiffiffiffiffiffiffi
E2""2

p sin(L

0
@

1
A:

(15)

We can now use this Smatrix to obtain explicit expressions
for the efficiency of the Thouless motor.
Using the Landauer formula, the conductance for a

Fermi energy EF takes the form

G ¼ !G ¼ e2

h

j"2 " E2
Fj

j"2 " E2
Fjcos2(L þ E2

Fj sin(Lj2
: (16)

In accord with the fact that the periodic potential opens
a gap, the conductance is exponentially small in L for
jEFj< " and becomes oscillatory and finite in L for
jEFj> ". Similarly, we can obtain the pumped charge in
the standard way from Brouwer’s formula [8] (evaluated at
zero temperature and for an angular degree of freedom)

Qp ¼ e"2j sin(Lj2
j"2 " E2

Fjcos2(L þ E2
Fj sin(Lj2

: (17)

For Fermi energies in the gap, the charge pumped is
quantized to e with exponential precision. When the
Fermi energy is outside the gap jEFj> ", the charge is
no longer quantized and smaller than e.
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conductance vanishes while the pumped charge is quan-
tized to integer multiples of e. Thus, Eq. (9) yields ! ¼ 1,
making Thouless pumps ideal adiabatic quantum motors.

Motor dynamics.—The output power of a quantum
motor depends on its dynamics through the cycle period ".
Here, we discuss this for the simplest case, in which both
the driving force and the load Fload acting on the angular
motor degree of freedom # are independent of the state
of the motor. (This is realized for Thouless motors but
typically not for motors based on chaotic quantum dots.)
If the motor degree of freedom is subject to damping with
damping coefficient $, the steady-state velocity of the
motor follows from the (classical) condition

$ _# ¼ QpV

2%
" Fload: (10)

Thus, we obtain for the cycle period of the motor " ¼
2%=j _#j ¼ ð2%Þ2$=ðQpV " 2%FloadÞ. We can use Eq. (8)
to eliminate V in favor of the current !I. This yields

1

"
¼ Qp

!I" 2%Fload
!G

Q2
p þ ð2%Þ2$ !G

: (11)

For an ideal Thouless motor with !G ¼ 0 [7], this yields the
relation 1=" ¼ !I=Qp. This is a direct consequence of the
fact that in this case, the entire current passing the device
must be due to pumping. More generally, this remains a
good approximation as long as !G & Q2

p=ð2%Þ2$. This
result also implies that the maximum load on the motor
is given by Fmax

load ¼ Qp
!I=2% !G.

Thouless motor.—Thouless motors provide an instruc-
tive example not only because they realize ideal quantum
motors but also because they allow for a thorough analyti-
cal discussion. Consider a single-channel quantum wire
subject to a periodic potential of period a, as described by
the Hamiltonian

H ¼ p2=2mþ 2" cosð2%x=aþ #Þ#ðL=2" jxjÞ: (12)

The periodic potential of strength 2" acting for "L=2<
x < L=2 arises, e.g., from a periodic set of charges situated
along a conveyor belt or cogwheel so that the nearby
electrons in the wire experience an electrostatic potential
[cf. Fig. 1(b)]. This potential slides as the cogwheel turns,
and the mechanical variable # varies by 2% as the teeth of
the cogwheel advance by one spacing a.

When the chemical potential & is chosen such that the
Fermi wave vector kF¼ð2m&=@2Þ1=2 is close to k0 ¼ %=a,
one can linearize the Hamiltonian for momenta close to
'k0. This results in an effective Hamiltonian H with
counterpropagating linear channels and backscattering
due to the periodic potential. Measuring momenta from
'k0 and energies from @2k20=2m, one has

H ¼ vFp'
z þ"ð'x cos#þ 'y sin#Þ#ðL=2" jxjÞ:

(13)

Here, the 'i denote the Pauli matrices in the space of the
counterpropagating channels. We do not include the real
electron spin for simplicity.
Within the linearized model, the adiabatic S matrix Sð#Þ

can be readily obtained analytically. We start with the
transfer matrix M from x ¼ L=2 to x ¼ "L=2. Since the
model is linear in momentum p, this can be done by
analogy with the time-evolution operator in quantum
mechanics, which yields

M ¼ exp
!
" iL@vF

'z½E" "ð'x cos#þ 'y sin#Þ)
"
: (14)

This can be rewritten as M ¼ cos(L " i'eff sin(L, where
'eff ¼ ½E'z " i"cos#'y þ i" sin#'x)=½E2 ""2)1=2 and
(L ¼ ðL=@vFÞ½E2 ""2)1=2. Note that '2

eff ¼ 1.
To obtain the S matrix from the transfer matrix M, we

first assume that there is only an outgoing wave on the
right. Then, the wave function on the left is ðiL; oLÞT ¼
MðoR; iRÞT ¼ ðM11oR;M21oRÞT , where i and o refer to the
in- and outgoing waves, respectively. This immediately
implies that the transmission S21 is 1=M11, and the reflec-
tion S11 is M21=M11. Repeating the same arguments with
only an outgoing wave on the left, we also find S22 ¼
ðM"1Þ12=ðM"1Þ22 and S12 ¼ 1=ðM"1Þ22. With M11 ¼
ðM"1Þ22 ¼ cos(L " iðE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 " "2

p
Þ sin(L, this yields

S ¼ 1

M11

"iei# "ffiffiffiffiffiffiffiffiffiffiffi
E2""2

p sin(L 1

1 "ie"i# "ffiffiffiffiffiffiffiffiffiffiffi
E2""2

p sin(L

0
@

1
A:

(15)

We can now use this Smatrix to obtain explicit expressions
for the efficiency of the Thouless motor.
Using the Landauer formula, the conductance for a

Fermi energy EF takes the form

G ¼ !G ¼ e2

h

j"2 " E2
Fj

j"2 " E2
Fjcos2(L þ E2

Fj sin(Lj2
: (16)

In accord with the fact that the periodic potential opens
a gap, the conductance is exponentially small in L for
jEFj< " and becomes oscillatory and finite in L for
jEFj> ". Similarly, we can obtain the pumped charge in
the standard way from Brouwer’s formula [8] (evaluated at
zero temperature and for an angular degree of freedom)

Qp ¼ e"2j sin(Lj2
j"2 " E2

Fjcos2(L þ E2
Fj sin(Lj2

: (17)

For Fermi energies in the gap, the charge pumped is
quantized to e with exponential precision. When the
Fermi energy is outside the gap jEFj> ", the charge is
no longer quantized and smaller than e.
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conductance vanishes while the pumped charge is quan-
tized to integer multiples of e. Thus, Eq. (9) yields ! ¼ 1,
making Thouless pumps ideal adiabatic quantum motors.

Motor dynamics.—The output power of a quantum
motor depends on its dynamics through the cycle period ".
Here, we discuss this for the simplest case, in which both
the driving force and the load Fload acting on the angular
motor degree of freedom # are independent of the state
of the motor. (This is realized for Thouless motors but
typically not for motors based on chaotic quantum dots.)
If the motor degree of freedom is subject to damping with
damping coefficient $, the steady-state velocity of the
motor follows from the (classical) condition

$ _# ¼ QpV

2%
" Fload: (10)

Thus, we obtain for the cycle period of the motor " ¼
2%=j _#j ¼ ð2%Þ2$=ðQpV " 2%FloadÞ. We can use Eq. (8)
to eliminate V in favor of the current !I. This yields

1

"
¼ Qp

!I" 2%Fload
!G

Q2
p þ ð2%Þ2$ !G

: (11)

For an ideal Thouless motor with !G ¼ 0 [7], this yields the
relation 1=" ¼ !I=Qp. This is a direct consequence of the
fact that in this case, the entire current passing the device
must be due to pumping. More generally, this remains a
good approximation as long as !G & Q2

p=ð2%Þ2$. This
result also implies that the maximum load on the motor
is given by Fmax

load ¼ Qp
!I=2% !G.

Thouless motor.—Thouless motors provide an instruc-
tive example not only because they realize ideal quantum
motors but also because they allow for a thorough analyti-
cal discussion. Consider a single-channel quantum wire
subject to a periodic potential of period a, as described by
the Hamiltonian

H ¼ p2=2mþ 2" cosð2%x=aþ #Þ#ðL=2" jxjÞ: (12)

The periodic potential of strength 2" acting for "L=2<
x < L=2 arises, e.g., from a periodic set of charges situated
along a conveyor belt or cogwheel so that the nearby
electrons in the wire experience an electrostatic potential
[cf. Fig. 1(b)]. This potential slides as the cogwheel turns,
and the mechanical variable # varies by 2% as the teeth of
the cogwheel advance by one spacing a.

When the chemical potential & is chosen such that the
Fermi wave vector kF¼ð2m&=@2Þ1=2 is close to k0 ¼ %=a,
one can linearize the Hamiltonian for momenta close to
'k0. This results in an effective Hamiltonian H with
counterpropagating linear channels and backscattering
due to the periodic potential. Measuring momenta from
'k0 and energies from @2k20=2m, one has

H ¼ vFp'
z þ"ð'x cos#þ 'y sin#Þ#ðL=2" jxjÞ:

(13)

Here, the 'i denote the Pauli matrices in the space of the
counterpropagating channels. We do not include the real
electron spin for simplicity.
Within the linearized model, the adiabatic S matrix Sð#Þ

can be readily obtained analytically. We start with the
transfer matrix M from x ¼ L=2 to x ¼ "L=2. Since the
model is linear in momentum p, this can be done by
analogy with the time-evolution operator in quantum
mechanics, which yields

M ¼ exp
!
" iL@vF

'z½E" "ð'x cos#þ 'y sin#Þ)
"
: (14)

This can be rewritten as M ¼ cos(L " i'eff sin(L, where
'eff ¼ ½E'z " i"cos#'y þ i" sin#'x)=½E2 ""2)1=2 and
(L ¼ ðL=@vFÞ½E2 ""2)1=2. Note that '2

eff ¼ 1.
To obtain the S matrix from the transfer matrix M, we

first assume that there is only an outgoing wave on the
right. Then, the wave function on the left is ðiL; oLÞT ¼
MðoR; iRÞT ¼ ðM11oR;M21oRÞT , where i and o refer to the
in- and outgoing waves, respectively. This immediately
implies that the transmission S21 is 1=M11, and the reflec-
tion S11 is M21=M11. Repeating the same arguments with
only an outgoing wave on the left, we also find S22 ¼
ðM"1Þ12=ðM"1Þ22 and S12 ¼ 1=ðM"1Þ22. With M11 ¼
ðM"1Þ22 ¼ cos(L " iðE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 " "2

p
Þ sin(L, this yields

S ¼ 1

M11

"iei# "ffiffiffiffiffiffiffiffiffiffiffi
E2""2

p sin(L 1

1 "ie"i# "ffiffiffiffiffiffiffiffiffiffiffi
E2""2

p sin(L

0
@

1
A:

(15)

We can now use this Smatrix to obtain explicit expressions
for the efficiency of the Thouless motor.
Using the Landauer formula, the conductance for a

Fermi energy EF takes the form

G ¼ !G ¼ e2

h

j"2 " E2
Fj

j"2 " E2
Fjcos2(L þ E2

Fj sin(Lj2
: (16)

In accord with the fact that the periodic potential opens
a gap, the conductance is exponentially small in L for
jEFj< " and becomes oscillatory and finite in L for
jEFj> ". Similarly, we can obtain the pumped charge in
the standard way from Brouwer’s formula [8] (evaluated at
zero temperature and for an angular degree of freedom)

Qp ¼ e"2j sin(Lj2
j"2 " E2

Fjcos2(L þ E2
Fj sin(Lj2

: (17)

For Fermi energies in the gap, the charge pumped is
quantized to e with exponential precision. When the
Fermi energy is outside the gap jEFj> ", the charge is
no longer quantized and smaller than e.
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conductance vanishes while the pumped charge is quan-
tized to integer multiples of e. Thus, Eq. (9) yields ! ¼ 1,
making Thouless pumps ideal adiabatic quantum motors.

Motor dynamics.—The output power of a quantum
motor depends on its dynamics through the cycle period ".
Here, we discuss this for the simplest case, in which both
the driving force and the load Fload acting on the angular
motor degree of freedom # are independent of the state
of the motor. (This is realized for Thouless motors but
typically not for motors based on chaotic quantum dots.)
If the motor degree of freedom is subject to damping with
damping coefficient $, the steady-state velocity of the
motor follows from the (classical) condition

$ _# ¼ QpV

2%
" Fload: (10)

Thus, we obtain for the cycle period of the motor " ¼
2%=j _#j ¼ ð2%Þ2$=ðQpV " 2%FloadÞ. We can use Eq. (8)
to eliminate V in favor of the current !I. This yields

1

"
¼ Qp

!I" 2%Fload
!G

Q2
p þ ð2%Þ2$ !G

: (11)

For an ideal Thouless motor with !G ¼ 0 [7], this yields the
relation 1=" ¼ !I=Qp. This is a direct consequence of the
fact that in this case, the entire current passing the device
must be due to pumping. More generally, this remains a
good approximation as long as !G & Q2

p=ð2%Þ2$. This
result also implies that the maximum load on the motor
is given by Fmax

load ¼ Qp
!I=2% !G.

Thouless motor.—Thouless motors provide an instruc-
tive example not only because they realize ideal quantum
motors but also because they allow for a thorough analyti-
cal discussion. Consider a single-channel quantum wire
subject to a periodic potential of period a, as described by
the Hamiltonian

H ¼ p2=2mþ 2" cosð2%x=aþ #Þ#ðL=2" jxjÞ: (12)

The periodic potential of strength 2" acting for "L=2<
x < L=2 arises, e.g., from a periodic set of charges situated
along a conveyor belt or cogwheel so that the nearby
electrons in the wire experience an electrostatic potential
[cf. Fig. 1(b)]. This potential slides as the cogwheel turns,
and the mechanical variable # varies by 2% as the teeth of
the cogwheel advance by one spacing a.

When the chemical potential & is chosen such that the
Fermi wave vector kF¼ð2m&=@2Þ1=2 is close to k0 ¼ %=a,
one can linearize the Hamiltonian for momenta close to
'k0. This results in an effective Hamiltonian H with
counterpropagating linear channels and backscattering
due to the periodic potential. Measuring momenta from
'k0 and energies from @2k20=2m, one has

H ¼ vFp'
z þ"ð'x cos#þ 'y sin#Þ#ðL=2" jxjÞ:

(13)

Here, the 'i denote the Pauli matrices in the space of the
counterpropagating channels. We do not include the real
electron spin for simplicity.
Within the linearized model, the adiabatic S matrix Sð#Þ

can be readily obtained analytically. We start with the
transfer matrix M from x ¼ L=2 to x ¼ "L=2. Since the
model is linear in momentum p, this can be done by
analogy with the time-evolution operator in quantum
mechanics, which yields

M ¼ exp
!
" iL@vF

'z½E" "ð'x cos#þ 'y sin#Þ)
"
: (14)

This can be rewritten as M ¼ cos(L " i'eff sin(L, where
'eff ¼ ½E'z " i"cos#'y þ i" sin#'x)=½E2 ""2)1=2 and
(L ¼ ðL=@vFÞ½E2 ""2)1=2. Note that '2

eff ¼ 1.
To obtain the S matrix from the transfer matrix M, we

first assume that there is only an outgoing wave on the
right. Then, the wave function on the left is ðiL; oLÞT ¼
MðoR; iRÞT ¼ ðM11oR;M21oRÞT , where i and o refer to the
in- and outgoing waves, respectively. This immediately
implies that the transmission S21 is 1=M11, and the reflec-
tion S11 is M21=M11. Repeating the same arguments with
only an outgoing wave on the left, we also find S22 ¼
ðM"1Þ12=ðM"1Þ22 and S12 ¼ 1=ðM"1Þ22. With M11 ¼
ðM"1Þ22 ¼ cos(L " iðE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 " "2

p
Þ sin(L, this yields

S ¼ 1

M11

"iei# "ffiffiffiffiffiffiffiffiffiffiffi
E2""2

p sin(L 1

1 "ie"i# "ffiffiffiffiffiffiffiffiffiffiffi
E2""2

p sin(L
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@
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(15)

We can now use this Smatrix to obtain explicit expressions
for the efficiency of the Thouless motor.
Using the Landauer formula, the conductance for a

Fermi energy EF takes the form

G ¼ !G ¼ e2

h

j"2 " E2
Fj

j"2 " E2
Fjcos2(L þ E2

Fj sin(Lj2
: (16)

In accord with the fact that the periodic potential opens
a gap, the conductance is exponentially small in L for
jEFj< " and becomes oscillatory and finite in L for
jEFj> ". Similarly, we can obtain the pumped charge in
the standard way from Brouwer’s formula [8] (evaluated at
zero temperature and for an angular degree of freedom)

Qp ¼ e"2j sin(Lj2
j"2 " E2

Fjcos2(L þ E2
Fj sin(Lj2

: (17)

For Fermi energies in the gap, the charge pumped is
quantized to e with exponential precision. When the
Fermi energy is outside the gap jEFj> ", the charge is
no longer quantized and smaller than e.
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(Landauer)	  

conductance vanishes while the pumped charge is quan-
tized to integer multiples of e. Thus, Eq. (9) yields ! ¼ 1,
making Thouless pumps ideal adiabatic quantum motors.

Motor dynamics.—The output power of a quantum
motor depends on its dynamics through the cycle period ".
Here, we discuss this for the simplest case, in which both
the driving force and the load Fload acting on the angular
motor degree of freedom # are independent of the state
of the motor. (This is realized for Thouless motors but
typically not for motors based on chaotic quantum dots.)
If the motor degree of freedom is subject to damping with
damping coefficient $, the steady-state velocity of the
motor follows from the (classical) condition

$ _# ¼ QpV

2%
" Fload: (10)

Thus, we obtain for the cycle period of the motor " ¼
2%=j _#j ¼ ð2%Þ2$=ðQpV " 2%FloadÞ. We can use Eq. (8)
to eliminate V in favor of the current !I. This yields

1

"
¼ Qp

!I" 2%Fload
!G

Q2
p þ ð2%Þ2$ !G

: (11)

For an ideal Thouless motor with !G ¼ 0 [7], this yields the
relation 1=" ¼ !I=Qp. This is a direct consequence of the
fact that in this case, the entire current passing the device
must be due to pumping. More generally, this remains a
good approximation as long as !G & Q2

p=ð2%Þ2$. This
result also implies that the maximum load on the motor
is given by Fmax

load ¼ Qp
!I=2% !G.

Thouless motor.—Thouless motors provide an instruc-
tive example not only because they realize ideal quantum
motors but also because they allow for a thorough analyti-
cal discussion. Consider a single-channel quantum wire
subject to a periodic potential of period a, as described by
the Hamiltonian

H ¼ p2=2mþ 2" cosð2%x=aþ #Þ#ðL=2" jxjÞ: (12)

The periodic potential of strength 2" acting for "L=2<
x < L=2 arises, e.g., from a periodic set of charges situated
along a conveyor belt or cogwheel so that the nearby
electrons in the wire experience an electrostatic potential
[cf. Fig. 1(b)]. This potential slides as the cogwheel turns,
and the mechanical variable # varies by 2% as the teeth of
the cogwheel advance by one spacing a.

When the chemical potential & is chosen such that the
Fermi wave vector kF¼ð2m&=@2Þ1=2 is close to k0 ¼ %=a,
one can linearize the Hamiltonian for momenta close to
'k0. This results in an effective Hamiltonian H with
counterpropagating linear channels and backscattering
due to the periodic potential. Measuring momenta from
'k0 and energies from @2k20=2m, one has

H ¼ vFp'
z þ"ð'x cos#þ 'y sin#Þ#ðL=2" jxjÞ:

(13)

Here, the 'i denote the Pauli matrices in the space of the
counterpropagating channels. We do not include the real
electron spin for simplicity.
Within the linearized model, the adiabatic S matrix Sð#Þ

can be readily obtained analytically. We start with the
transfer matrix M from x ¼ L=2 to x ¼ "L=2. Since the
model is linear in momentum p, this can be done by
analogy with the time-evolution operator in quantum
mechanics, which yields

M ¼ exp
!
" iL@vF

'z½E" "ð'x cos#þ 'y sin#Þ)
"
: (14)

This can be rewritten as M ¼ cos(L " i'eff sin(L, where
'eff ¼ ½E'z " i"cos#'y þ i" sin#'x)=½E2 ""2)1=2 and
(L ¼ ðL=@vFÞ½E2 ""2)1=2. Note that '2

eff ¼ 1.
To obtain the S matrix from the transfer matrix M, we

first assume that there is only an outgoing wave on the
right. Then, the wave function on the left is ðiL; oLÞT ¼
MðoR; iRÞT ¼ ðM11oR;M21oRÞT , where i and o refer to the
in- and outgoing waves, respectively. This immediately
implies that the transmission S21 is 1=M11, and the reflec-
tion S11 is M21=M11. Repeating the same arguments with
only an outgoing wave on the left, we also find S22 ¼
ðM"1Þ12=ðM"1Þ22 and S12 ¼ 1=ðM"1Þ22. With M11 ¼
ðM"1Þ22 ¼ cos(L " iðE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 " "2
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Þ sin(L, this yields
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We can now use this Smatrix to obtain explicit expressions
for the efficiency of the Thouless motor.
Using the Landauer formula, the conductance for a

Fermi energy EF takes the form

G ¼ !G ¼ e2

h

j"2 " E2
Fj

j"2 " E2
Fjcos2(L þ E2

Fj sin(Lj2
: (16)

In accord with the fact that the periodic potential opens
a gap, the conductance is exponentially small in L for
jEFj< " and becomes oscillatory and finite in L for
jEFj> ". Similarly, we can obtain the pumped charge in
the standard way from Brouwer’s formula [8] (evaluated at
zero temperature and for an angular degree of freedom)

Qp ¼ e"2j sin(Lj2
j"2 " E2

Fjcos2(L þ E2
Fj sin(Lj2

: (17)

For Fermi energies in the gap, the charge pumped is
quantized to e with exponential precision. When the
Fermi energy is outside the gap jEFj> ", the charge is
no longer quantized and smaller than e.
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conductance vanishes while the pumped charge is quan-
tized to integer multiples of e. Thus, Eq. (9) yields ! ¼ 1,
making Thouless pumps ideal adiabatic quantum motors.

Motor dynamics.—The output power of a quantum
motor depends on its dynamics through the cycle period ".
Here, we discuss this for the simplest case, in which both
the driving force and the load Fload acting on the angular
motor degree of freedom # are independent of the state
of the motor. (This is realized for Thouless motors but
typically not for motors based on chaotic quantum dots.)
If the motor degree of freedom is subject to damping with
damping coefficient $, the steady-state velocity of the
motor follows from the (classical) condition

$ _# ¼ QpV

2%
" Fload: (10)

Thus, we obtain for the cycle period of the motor " ¼
2%=j _#j ¼ ð2%Þ2$=ðQpV " 2%FloadÞ. We can use Eq. (8)
to eliminate V in favor of the current !I. This yields
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: (11)

For an ideal Thouless motor with !G ¼ 0 [7], this yields the
relation 1=" ¼ !I=Qp. This is a direct consequence of the
fact that in this case, the entire current passing the device
must be due to pumping. More generally, this remains a
good approximation as long as !G & Q2

p=ð2%Þ2$. This
result also implies that the maximum load on the motor
is given by Fmax

load ¼ Qp
!I=2% !G.

Thouless motor.—Thouless motors provide an instruc-
tive example not only because they realize ideal quantum
motors but also because they allow for a thorough analyti-
cal discussion. Consider a single-channel quantum wire
subject to a periodic potential of period a, as described by
the Hamiltonian

H ¼ p2=2mþ 2" cosð2%x=aþ #Þ#ðL=2" jxjÞ: (12)

The periodic potential of strength 2" acting for "L=2<
x < L=2 arises, e.g., from a periodic set of charges situated
along a conveyor belt or cogwheel so that the nearby
electrons in the wire experience an electrostatic potential
[cf. Fig. 1(b)]. This potential slides as the cogwheel turns,
and the mechanical variable # varies by 2% as the teeth of
the cogwheel advance by one spacing a.

When the chemical potential & is chosen such that the
Fermi wave vector kF¼ð2m&=@2Þ1=2 is close to k0 ¼ %=a,
one can linearize the Hamiltonian for momenta close to
'k0. This results in an effective Hamiltonian H with
counterpropagating linear channels and backscattering
due to the periodic potential. Measuring momenta from
'k0 and energies from @2k20=2m, one has

H ¼ vFp'
z þ"ð'x cos#þ 'y sin#Þ#ðL=2" jxjÞ:

(13)

Here, the 'i denote the Pauli matrices in the space of the
counterpropagating channels. We do not include the real
electron spin for simplicity.
Within the linearized model, the adiabatic S matrix Sð#Þ

can be readily obtained analytically. We start with the
transfer matrix M from x ¼ L=2 to x ¼ "L=2. Since the
model is linear in momentum p, this can be done by
analogy with the time-evolution operator in quantum
mechanics, which yields

M ¼ exp
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" iL@vF

'z½E" "ð'x cos#þ 'y sin#Þ)
"
: (14)

This can be rewritten as M ¼ cos(L " i'eff sin(L, where
'eff ¼ ½E'z " i"cos#'y þ i" sin#'x)=½E2 ""2)1=2 and
(L ¼ ðL=@vFÞ½E2 ""2)1=2. Note that '2

eff ¼ 1.
To obtain the S matrix from the transfer matrix M, we

first assume that there is only an outgoing wave on the
right. Then, the wave function on the left is ðiL; oLÞT ¼
MðoR; iRÞT ¼ ðM11oR;M21oRÞT , where i and o refer to the
in- and outgoing waves, respectively. This immediately
implies that the transmission S21 is 1=M11, and the reflec-
tion S11 is M21=M11. Repeating the same arguments with
only an outgoing wave on the left, we also find S22 ¼
ðM"1Þ12=ðM"1Þ22 and S12 ¼ 1=ðM"1Þ22. With M11 ¼
ðM"1Þ22 ¼ cos(L " iðE=
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Þ sin(L, this yields
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We can now use this Smatrix to obtain explicit expressions
for the efficiency of the Thouless motor.
Using the Landauer formula, the conductance for a

Fermi energy EF takes the form

G ¼ !G ¼ e2

h

j"2 " E2
Fj

j"2 " E2
Fjcos2(L þ E2

Fj sin(Lj2
: (16)

In accord with the fact that the periodic potential opens
a gap, the conductance is exponentially small in L for
jEFj< " and becomes oscillatory and finite in L for
jEFj> ". Similarly, we can obtain the pumped charge in
the standard way from Brouwer’s formula [8] (evaluated at
zero temperature and for an angular degree of freedom)

Qp ¼ e"2j sin(Lj2
j"2 " E2

Fjcos2(L þ E2
Fj sin(Lj2

: (17)

For Fermi energies in the gap, the charge pumped is
quantized to e with exponential precision. When the
Fermi energy is outside the gap jEFj> ", the charge is
no longer quantized and smaller than e.
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and	  thus	  the	  efficieny	  

We can combine these results to obtain an explicit
expression for the efficiency of the Thouless motor.
To do so, we note that the force acting on the motor is
independent of !. Thus, we can combine Eqs. (9), (11),
(16), and (17) to obtain (for zero load, Fload ¼ 0)

" ¼ 1

1þ 2#$@ jE2
F#!2j

!4j sin%Lj4 ½jE
2
F #!2jcos2%L þ E2

Fj sin%Lj2%
:

(18)

In Fig. 2, we plot the efficiency of the Thouless motor as a
function of the Fermi energy. As can be seen from Eq. (18),
the efficiency is exponentially close to unity when the
Fermi energy is within the gap. For this range of Fermi
energies, the Thouless motor is an ideal adiabatic quantum
motor. When the Fermi energy moves out of the energy
gap, the efficiency is oscillatory with an algebraically
dropping amplitude. In this regime, Fabry-Perot interfer-
ence alone produces peaks in the efficiency, which appear
when the reflection coefficients are maximal. The inset of
Fig. 2 also shows the cycle frequency of the Thouless
motor, for a given current and zero load, as a function of
Fermi energy; cf. Eq. (11).

Intrinsic damping.—So far, we have treated the damping
coefficient $ of the motor degree of freedom as pheno-
menological. However, in addition to extrinsic, purely
mechanical friction, there is a contribution to $ which
arises intrinsically from the coupling to the electronic
system and which is complementary to the dissipation
of the underlying quantum pump [17]. This intrinsic
damping $int can also be obtained from the electronic S
matrix, both in equilibrium [18,19] and out of equilibrium
[11–13]. Restricting attention to small bias voltages, we
can approximate $int by its equilibrium value $int ¼
ð@=4#Þ tr½ð@Sy=@!Þð@S=@!Þ%. This is readily evaluated

for the Thouless motor when the Fermi energy is in the
vicinity of the fundamental gap. We find that the intrinsic
damping can be expressed in terms of the pumped charge
$int ¼ ð@=2#eÞQp. Quite surprisingly, the electronic sys-
tem induces finite mechanical damping even when the
Fermi energy lies in the gap (and Qp ¼ e). We interpret
this damping as due to particle-hole excitations generated
in the leads when pumped charge enters or leaves. When
the Fermi energy of a current-biased Thouless motor lies
inside the fundamental gap, the motor (without load)
rotates at angular frequency ! ¼ 2#I=e, which, from
Eq. (10), gives a friction-induced voltage drop of V ¼
Ið2#Þ2$=e2. The existence of the intrinsic friction implies
that for a given current, there is a minimal voltage of
V ¼ ðh=e2ÞI at which the Thouless motor described by
Eq. (13) can operate.
At first sight, the intrinsic damping may seem to

negate the possibility of an ideal quantum motor when
the motor is subject to a load. Indeed, the electrical input
power is then split between the power consumed by the
load Pload ¼ Fload

_! and the power dissipated by damping
P$ ¼ $ _!2. Nevertheless, for a quantized Thouless pump,
_! ¼ 2#I=Qp, so that Pload / I while P$ / I2. Hence, the
power dissipated by damping becomes negligible at small
currents, and the load efficiency "load ¼ Pload=Pin can be
made arbitrarily close to unity by operating the motor at
low currents.
Conclusions.—Motion at the nanoscale tends to be

dominated by fluctuations. It is an important challenge to
develop schemes to generate directed motion in nanoscale
devices [20–23]. Here, we investigated a general strategy
to this effect which is based on operating quantum pumps
in reverse. We developed a corresponding theory which
expresses the output power and the efficiency of such
adiabatic quantum motors to characteristics of the pumps
on which they are based. The concept of adiabatic quantum
motors offers numerous possibilities for future research.
Interesting directions include motors based on electron
pumps which involve electron-electron interactions as
well as systems in which the motor degree of freedom is
itself quantum mechanical.
We acknowledge discussions with P. Brouwer as well
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FIG. 2 (color online). Efficiency of the Thouless motor vs
Fermi energy for L ¼ 0:75 &m and v ¼ 105 m=s. From top to
bottom, the curves correspond to dissipative loads $=@ ¼ 1=2#,
0.5, 1. The motor has ideal efficiency (" ¼ 1) when the Fermi
energy lies in the gap jEFj<!, and the length is taken to
infinity. The inset shows the cycle frequency for a current-biased
Thouless motor vs Fermi energy.
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Thouless	  motor	  

We can combine these results to obtain an explicit
expression for the efficiency of the Thouless motor.
To do so, we note that the force acting on the motor is
independent of !. Thus, we can combine Eqs. (9), (11),
(16), and (17) to obtain (for zero load, Fload ¼ 0)

" ¼ 1

1þ 2#$@ jE2
F#!2j

!4j sin%Lj4 ½jE
2
F #!2jcos2%L þ E2

Fj sin%Lj2%
:

(18)

In Fig. 2, we plot the efficiency of the Thouless motor as a
function of the Fermi energy. As can be seen from Eq. (18),
the efficiency is exponentially close to unity when the
Fermi energy is within the gap. For this range of Fermi
energies, the Thouless motor is an ideal adiabatic quantum
motor. When the Fermi energy moves out of the energy
gap, the efficiency is oscillatory with an algebraically
dropping amplitude. In this regime, Fabry-Perot interfer-
ence alone produces peaks in the efficiency, which appear
when the reflection coefficients are maximal. The inset of
Fig. 2 also shows the cycle frequency of the Thouless
motor, for a given current and zero load, as a function of
Fermi energy; cf. Eq. (11).

Intrinsic damping.—So far, we have treated the damping
coefficient $ of the motor degree of freedom as pheno-
menological. However, in addition to extrinsic, purely
mechanical friction, there is a contribution to $ which
arises intrinsically from the coupling to the electronic
system and which is complementary to the dissipation
of the underlying quantum pump [17]. This intrinsic
damping $int can also be obtained from the electronic S
matrix, both in equilibrium [18,19] and out of equilibrium
[11–13]. Restricting attention to small bias voltages, we
can approximate $int by its equilibrium value $int ¼
ð@=4#Þ tr½ð@Sy=@!Þð@S=@!Þ%. This is readily evaluated

for the Thouless motor when the Fermi energy is in the
vicinity of the fundamental gap. We find that the intrinsic
damping can be expressed in terms of the pumped charge
$int ¼ ð@=2#eÞQp. Quite surprisingly, the electronic sys-
tem induces finite mechanical damping even when the
Fermi energy lies in the gap (and Qp ¼ e). We interpret
this damping as due to particle-hole excitations generated
in the leads when pumped charge enters or leaves. When
the Fermi energy of a current-biased Thouless motor lies
inside the fundamental gap, the motor (without load)
rotates at angular frequency ! ¼ 2#I=e, which, from
Eq. (10), gives a friction-induced voltage drop of V ¼
Ið2#Þ2$=e2. The existence of the intrinsic friction implies
that for a given current, there is a minimal voltage of
V ¼ ðh=e2ÞI at which the Thouless motor described by
Eq. (13) can operate.
At first sight, the intrinsic damping may seem to

negate the possibility of an ideal quantum motor when
the motor is subject to a load. Indeed, the electrical input
power is then split between the power consumed by the
load Pload ¼ Fload

_! and the power dissipated by damping
P$ ¼ $ _!2. Nevertheless, for a quantized Thouless pump,
_! ¼ 2#I=Qp, so that Pload / I while P$ / I2. Hence, the
power dissipated by damping becomes negligible at small
currents, and the load efficiency "load ¼ Pload=Pin can be
made arbitrarily close to unity by operating the motor at
low currents.
Conclusions.—Motion at the nanoscale tends to be

dominated by fluctuations. It is an important challenge to
develop schemes to generate directed motion in nanoscale
devices [20–23]. Here, we investigated a general strategy
to this effect which is based on operating quantum pumps
in reverse. We developed a corresponding theory which
expresses the output power and the efficiency of such
adiabatic quantum motors to characteristics of the pumps
on which they are based. The concept of adiabatic quantum
motors offers numerous possibilities for future research.
Interesting directions include motors based on electron
pumps which involve electron-electron interactions as
well as systems in which the motor degree of freedom is
itself quantum mechanical.
We acknowledge discussions with P. Brouwer as well
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FIG. 2 (color online). Efficiency of the Thouless motor vs
Fermi energy for L ¼ 0:75 &m and v ¼ 105 m=s. From top to
bottom, the curves correspond to dissipative loads $=@ ¼ 1=2#,
0.5, 1. The motor has ideal efficiency (" ¼ 1) when the Fermi
energy lies in the gap jEFj<!, and the length is taken to
infinity. The inset shows the cycle frequency for a current-biased
Thouless motor vs Fermi energy.
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We can combine these results to obtain an explicit
expression for the efficiency of the Thouless motor.
To do so, we note that the force acting on the motor is
independent of !. Thus, we can combine Eqs. (9), (11),
(16), and (17) to obtain (for zero load, Fload ¼ 0)

" ¼ 1

1þ 2#$@ jE2
F#!2j

!4j sin%Lj4 ½jE
2
F #!2jcos2%L þ E2

Fj sin%Lj2%
:

(18)

In Fig. 2, we plot the efficiency of the Thouless motor as a
function of the Fermi energy. As can be seen from Eq. (18),
the efficiency is exponentially close to unity when the
Fermi energy is within the gap. For this range of Fermi
energies, the Thouless motor is an ideal adiabatic quantum
motor. When the Fermi energy moves out of the energy
gap, the efficiency is oscillatory with an algebraically
dropping amplitude. In this regime, Fabry-Perot interfer-
ence alone produces peaks in the efficiency, which appear
when the reflection coefficients are maximal. The inset of
Fig. 2 also shows the cycle frequency of the Thouless
motor, for a given current and zero load, as a function of
Fermi energy; cf. Eq. (11).

Intrinsic damping.—So far, we have treated the damping
coefficient $ of the motor degree of freedom as pheno-
menological. However, in addition to extrinsic, purely
mechanical friction, there is a contribution to $ which
arises intrinsically from the coupling to the electronic
system and which is complementary to the dissipation
of the underlying quantum pump [17]. This intrinsic
damping $int can also be obtained from the electronic S
matrix, both in equilibrium [18,19] and out of equilibrium
[11–13]. Restricting attention to small bias voltages, we
can approximate $int by its equilibrium value $int ¼
ð@=4#Þ tr½ð@Sy=@!Þð@S=@!Þ%. This is readily evaluated

for the Thouless motor when the Fermi energy is in the
vicinity of the fundamental gap. We find that the intrinsic
damping can be expressed in terms of the pumped charge
$int ¼ ð@=2#eÞQp. Quite surprisingly, the electronic sys-
tem induces finite mechanical damping even when the
Fermi energy lies in the gap (and Qp ¼ e). We interpret
this damping as due to particle-hole excitations generated
in the leads when pumped charge enters or leaves. When
the Fermi energy of a current-biased Thouless motor lies
inside the fundamental gap, the motor (without load)
rotates at angular frequency ! ¼ 2#I=e, which, from
Eq. (10), gives a friction-induced voltage drop of V ¼
Ið2#Þ2$=e2. The existence of the intrinsic friction implies
that for a given current, there is a minimal voltage of
V ¼ ðh=e2ÞI at which the Thouless motor described by
Eq. (13) can operate.
At first sight, the intrinsic damping may seem to

negate the possibility of an ideal quantum motor when
the motor is subject to a load. Indeed, the electrical input
power is then split between the power consumed by the
load Pload ¼ Fload

_! and the power dissipated by damping
P$ ¼ $ _!2. Nevertheless, for a quantized Thouless pump,
_! ¼ 2#I=Qp, so that Pload / I while P$ / I2. Hence, the
power dissipated by damping becomes negligible at small
currents, and the load efficiency "load ¼ Pload=Pin can be
made arbitrarily close to unity by operating the motor at
low currents.
Conclusions.—Motion at the nanoscale tends to be

dominated by fluctuations. It is an important challenge to
develop schemes to generate directed motion in nanoscale
devices [20–23]. Here, we investigated a general strategy
to this effect which is based on operating quantum pumps
in reverse. We developed a corresponding theory which
expresses the output power and the efficiency of such
adiabatic quantum motors to characteristics of the pumps
on which they are based. The concept of adiabatic quantum
motors offers numerous possibilities for future research.
Interesting directions include motors based on electron
pumps which involve electron-electron interactions as
well as systems in which the motor degree of freedom is
itself quantum mechanical.
We acknowledge discussions with P. Brouwer as well
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FIG. 2 (color online). Efficiency of the Thouless motor vs
Fermi energy for L ¼ 0:75 &m and v ¼ 105 m=s. From top to
bottom, the curves correspond to dissipative loads $=@ ¼ 1=2#,
0.5, 1. The motor has ideal efficiency (" ¼ 1) when the Fermi
energy lies in the gap jEFj<!, and the length is taken to
infinity. The inset shows the cycle frequency for a current-biased
Thouless motor vs Fermi energy.
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We can combine these results to obtain an explicit
expression for the efficiency of the Thouless motor.
To do so, we note that the force acting on the motor is
independent of !. Thus, we can combine Eqs. (9), (11),
(16), and (17) to obtain (for zero load, Fload ¼ 0)

" ¼ 1

1þ 2#$@ jE2
F#!2j

!4j sin%Lj4 ½jE
2
F #!2jcos2%L þ E2

Fj sin%Lj2%
:

(18)

In Fig. 2, we plot the efficiency of the Thouless motor as a
function of the Fermi energy. As can be seen from Eq. (18),
the efficiency is exponentially close to unity when the
Fermi energy is within the gap. For this range of Fermi
energies, the Thouless motor is an ideal adiabatic quantum
motor. When the Fermi energy moves out of the energy
gap, the efficiency is oscillatory with an algebraically
dropping amplitude. In this regime, Fabry-Perot interfer-
ence alone produces peaks in the efficiency, which appear
when the reflection coefficients are maximal. The inset of
Fig. 2 also shows the cycle frequency of the Thouless
motor, for a given current and zero load, as a function of
Fermi energy; cf. Eq. (11).

Intrinsic damping.—So far, we have treated the damping
coefficient $ of the motor degree of freedom as pheno-
menological. However, in addition to extrinsic, purely
mechanical friction, there is a contribution to $ which
arises intrinsically from the coupling to the electronic
system and which is complementary to the dissipation
of the underlying quantum pump [17]. This intrinsic
damping $int can also be obtained from the electronic S
matrix, both in equilibrium [18,19] and out of equilibrium
[11–13]. Restricting attention to small bias voltages, we
can approximate $int by its equilibrium value $int ¼
ð@=4#Þ tr½ð@Sy=@!Þð@S=@!Þ%. This is readily evaluated

for the Thouless motor when the Fermi energy is in the
vicinity of the fundamental gap. We find that the intrinsic
damping can be expressed in terms of the pumped charge
$int ¼ ð@=2#eÞQp. Quite surprisingly, the electronic sys-
tem induces finite mechanical damping even when the
Fermi energy lies in the gap (and Qp ¼ e). We interpret
this damping as due to particle-hole excitations generated
in the leads when pumped charge enters or leaves. When
the Fermi energy of a current-biased Thouless motor lies
inside the fundamental gap, the motor (without load)
rotates at angular frequency ! ¼ 2#I=e, which, from
Eq. (10), gives a friction-induced voltage drop of V ¼
Ið2#Þ2$=e2. The existence of the intrinsic friction implies
that for a given current, there is a minimal voltage of
V ¼ ðh=e2ÞI at which the Thouless motor described by
Eq. (13) can operate.
At first sight, the intrinsic damping may seem to

negate the possibility of an ideal quantum motor when
the motor is subject to a load. Indeed, the electrical input
power is then split between the power consumed by the
load Pload ¼ Fload

_! and the power dissipated by damping
P$ ¼ $ _!2. Nevertheless, for a quantized Thouless pump,
_! ¼ 2#I=Qp, so that Pload / I while P$ / I2. Hence, the
power dissipated by damping becomes negligible at small
currents, and the load efficiency "load ¼ Pload=Pin can be
made arbitrarily close to unity by operating the motor at
low currents.
Conclusions.—Motion at the nanoscale tends to be

dominated by fluctuations. It is an important challenge to
develop schemes to generate directed motion in nanoscale
devices [20–23]. Here, we investigated a general strategy
to this effect which is based on operating quantum pumps
in reverse. We developed a corresponding theory which
expresses the output power and the efficiency of such
adiabatic quantum motors to characteristics of the pumps
on which they are based. The concept of adiabatic quantum
motors offers numerous possibilities for future research.
Interesting directions include motors based on electron
pumps which involve electron-electron interactions as
well as systems in which the motor degree of freedom is
itself quantum mechanical.
We acknowledge discussions with P. Brouwer as well
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FIG. 2 (color online). Efficiency of the Thouless motor vs
Fermi energy for L ¼ 0:75 &m and v ¼ 105 m=s. From top to
bottom, the curves correspond to dissipative loads $=@ ¼ 1=2#,
0.5, 1. The motor has ideal efficiency (" ¼ 1) when the Fermi
energy lies in the gap jEFj<!, and the length is taken to
infinity. The inset shows the cycle frequency for a current-biased
Thouless motor vs Fermi energy.
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We can combine these results to obtain an explicit
expression for the efficiency of the Thouless motor.
To do so, we note that the force acting on the motor is
independent of !. Thus, we can combine Eqs. (9), (11),
(16), and (17) to obtain (for zero load, Fload ¼ 0)

" ¼ 1

1þ 2#$@ jE2
F#!2j

!4j sin%Lj4 ½jE
2
F #!2jcos2%L þ E2

Fj sin%Lj2%
:

(18)

In Fig. 2, we plot the efficiency of the Thouless motor as a
function of the Fermi energy. As can be seen from Eq. (18),
the efficiency is exponentially close to unity when the
Fermi energy is within the gap. For this range of Fermi
energies, the Thouless motor is an ideal adiabatic quantum
motor. When the Fermi energy moves out of the energy
gap, the efficiency is oscillatory with an algebraically
dropping amplitude. In this regime, Fabry-Perot interfer-
ence alone produces peaks in the efficiency, which appear
when the reflection coefficients are maximal. The inset of
Fig. 2 also shows the cycle frequency of the Thouless
motor, for a given current and zero load, as a function of
Fermi energy; cf. Eq. (11).

Intrinsic damping.—So far, we have treated the damping
coefficient $ of the motor degree of freedom as pheno-
menological. However, in addition to extrinsic, purely
mechanical friction, there is a contribution to $ which
arises intrinsically from the coupling to the electronic
system and which is complementary to the dissipation
of the underlying quantum pump [17]. This intrinsic
damping $int can also be obtained from the electronic S
matrix, both in equilibrium [18,19] and out of equilibrium
[11–13]. Restricting attention to small bias voltages, we
can approximate $int by its equilibrium value $int ¼
ð@=4#Þ tr½ð@Sy=@!Þð@S=@!Þ%. This is readily evaluated

for the Thouless motor when the Fermi energy is in the
vicinity of the fundamental gap. We find that the intrinsic
damping can be expressed in terms of the pumped charge
$int ¼ ð@=2#eÞQp. Quite surprisingly, the electronic sys-
tem induces finite mechanical damping even when the
Fermi energy lies in the gap (and Qp ¼ e). We interpret
this damping as due to particle-hole excitations generated
in the leads when pumped charge enters or leaves. When
the Fermi energy of a current-biased Thouless motor lies
inside the fundamental gap, the motor (without load)
rotates at angular frequency ! ¼ 2#I=e, which, from
Eq. (10), gives a friction-induced voltage drop of V ¼
Ið2#Þ2$=e2. The existence of the intrinsic friction implies
that for a given current, there is a minimal voltage of
V ¼ ðh=e2ÞI at which the Thouless motor described by
Eq. (13) can operate.
At first sight, the intrinsic damping may seem to

negate the possibility of an ideal quantum motor when
the motor is subject to a load. Indeed, the electrical input
power is then split between the power consumed by the
load Pload ¼ Fload

_! and the power dissipated by damping
P$ ¼ $ _!2. Nevertheless, for a quantized Thouless pump,
_! ¼ 2#I=Qp, so that Pload / I while P$ / I2. Hence, the
power dissipated by damping becomes negligible at small
currents, and the load efficiency "load ¼ Pload=Pin can be
made arbitrarily close to unity by operating the motor at
low currents.
Conclusions.—Motion at the nanoscale tends to be

dominated by fluctuations. It is an important challenge to
develop schemes to generate directed motion in nanoscale
devices [20–23]. Here, we investigated a general strategy
to this effect which is based on operating quantum pumps
in reverse. We developed a corresponding theory which
expresses the output power and the efficiency of such
adiabatic quantum motors to characteristics of the pumps
on which they are based. The concept of adiabatic quantum
motors offers numerous possibilities for future research.
Interesting directions include motors based on electron
pumps which involve electron-electron interactions as
well as systems in which the motor degree of freedom is
itself quantum mechanical.
We acknowledge discussions with P. Brouwer as well
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FIG. 2 (color online). Efficiency of the Thouless motor vs
Fermi energy for L ¼ 0:75 &m and v ¼ 105 m=s. From top to
bottom, the curves correspond to dissipative loads $=@ ¼ 1=2#,
0.5, 1. The motor has ideal efficiency (" ¼ 1) when the Fermi
energy lies in the gap jEFj<!, and the length is taken to
infinity. The inset shows the cycle frequency for a current-biased
Thouless motor vs Fermi energy.
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We can combine these results to obtain an explicit
expression for the efficiency of the Thouless motor.
To do so, we note that the force acting on the motor is
independent of !. Thus, we can combine Eqs. (9), (11),
(16), and (17) to obtain (for zero load, Fload ¼ 0)

" ¼ 1

1þ 2#$@ jE2
F#!2j

!4j sin%Lj4 ½jE
2
F #!2jcos2%L þ E2

Fj sin%Lj2%
:

(18)

In Fig. 2, we plot the efficiency of the Thouless motor as a
function of the Fermi energy. As can be seen from Eq. (18),
the efficiency is exponentially close to unity when the
Fermi energy is within the gap. For this range of Fermi
energies, the Thouless motor is an ideal adiabatic quantum
motor. When the Fermi energy moves out of the energy
gap, the efficiency is oscillatory with an algebraically
dropping amplitude. In this regime, Fabry-Perot interfer-
ence alone produces peaks in the efficiency, which appear
when the reflection coefficients are maximal. The inset of
Fig. 2 also shows the cycle frequency of the Thouless
motor, for a given current and zero load, as a function of
Fermi energy; cf. Eq. (11).

Intrinsic damping.—So far, we have treated the damping
coefficient $ of the motor degree of freedom as pheno-
menological. However, in addition to extrinsic, purely
mechanical friction, there is a contribution to $ which
arises intrinsically from the coupling to the electronic
system and which is complementary to the dissipation
of the underlying quantum pump [17]. This intrinsic
damping $int can also be obtained from the electronic S
matrix, both in equilibrium [18,19] and out of equilibrium
[11–13]. Restricting attention to small bias voltages, we
can approximate $int by its equilibrium value $int ¼
ð@=4#Þ tr½ð@Sy=@!Þð@S=@!Þ%. This is readily evaluated

for the Thouless motor when the Fermi energy is in the
vicinity of the fundamental gap. We find that the intrinsic
damping can be expressed in terms of the pumped charge
$int ¼ ð@=2#eÞQp. Quite surprisingly, the electronic sys-
tem induces finite mechanical damping even when the
Fermi energy lies in the gap (and Qp ¼ e). We interpret
this damping as due to particle-hole excitations generated
in the leads when pumped charge enters or leaves. When
the Fermi energy of a current-biased Thouless motor lies
inside the fundamental gap, the motor (without load)
rotates at angular frequency ! ¼ 2#I=e, which, from
Eq. (10), gives a friction-induced voltage drop of V ¼
Ið2#Þ2$=e2. The existence of the intrinsic friction implies
that for a given current, there is a minimal voltage of
V ¼ ðh=e2ÞI at which the Thouless motor described by
Eq. (13) can operate.
At first sight, the intrinsic damping may seem to

negate the possibility of an ideal quantum motor when
the motor is subject to a load. Indeed, the electrical input
power is then split between the power consumed by the
load Pload ¼ Fload

_! and the power dissipated by damping
P$ ¼ $ _!2. Nevertheless, for a quantized Thouless pump,
_! ¼ 2#I=Qp, so that Pload / I while P$ / I2. Hence, the
power dissipated by damping becomes negligible at small
currents, and the load efficiency "load ¼ Pload=Pin can be
made arbitrarily close to unity by operating the motor at
low currents.
Conclusions.—Motion at the nanoscale tends to be

dominated by fluctuations. It is an important challenge to
develop schemes to generate directed motion in nanoscale
devices [20–23]. Here, we investigated a general strategy
to this effect which is based on operating quantum pumps
in reverse. We developed a corresponding theory which
expresses the output power and the efficiency of such
adiabatic quantum motors to characteristics of the pumps
on which they are based. The concept of adiabatic quantum
motors offers numerous possibilities for future research.
Interesting directions include motors based on electron
pumps which involve electron-electron interactions as
well as systems in which the motor degree of freedom is
itself quantum mechanical.
We acknowledge discussions with P. Brouwer as well
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FIG. 2 (color online). Efficiency of the Thouless motor vs
Fermi energy for L ¼ 0:75 &m and v ¼ 105 m=s. From top to
bottom, the curves correspond to dissipative loads $=@ ¼ 1=2#,
0.5, 1. The motor has ideal efficiency (" ¼ 1) when the Fermi
energy lies in the gap jEFj<!, and the length is taken to
infinity. The inset shows the cycle frequency for a current-biased
Thouless motor vs Fermi energy.
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We can combine these results to obtain an explicit
expression for the efficiency of the Thouless motor.
To do so, we note that the force acting on the motor is
independent of !. Thus, we can combine Eqs. (9), (11),
(16), and (17) to obtain (for zero load, Fload ¼ 0)

" ¼ 1

1þ 2#$@ jE2
F#!2j

!4j sin%Lj4 ½jE
2
F #!2jcos2%L þ E2

Fj sin%Lj2%
:

(18)

In Fig. 2, we plot the efficiency of the Thouless motor as a
function of the Fermi energy. As can be seen from Eq. (18),
the efficiency is exponentially close to unity when the
Fermi energy is within the gap. For this range of Fermi
energies, the Thouless motor is an ideal adiabatic quantum
motor. When the Fermi energy moves out of the energy
gap, the efficiency is oscillatory with an algebraically
dropping amplitude. In this regime, Fabry-Perot interfer-
ence alone produces peaks in the efficiency, which appear
when the reflection coefficients are maximal. The inset of
Fig. 2 also shows the cycle frequency of the Thouless
motor, for a given current and zero load, as a function of
Fermi energy; cf. Eq. (11).

Intrinsic damping.—So far, we have treated the damping
coefficient $ of the motor degree of freedom as pheno-
menological. However, in addition to extrinsic, purely
mechanical friction, there is a contribution to $ which
arises intrinsically from the coupling to the electronic
system and which is complementary to the dissipation
of the underlying quantum pump [17]. This intrinsic
damping $int can also be obtained from the electronic S
matrix, both in equilibrium [18,19] and out of equilibrium
[11–13]. Restricting attention to small bias voltages, we
can approximate $int by its equilibrium value $int ¼
ð@=4#Þ tr½ð@Sy=@!Þð@S=@!Þ%. This is readily evaluated

for the Thouless motor when the Fermi energy is in the
vicinity of the fundamental gap. We find that the intrinsic
damping can be expressed in terms of the pumped charge
$int ¼ ð@=2#eÞQp. Quite surprisingly, the electronic sys-
tem induces finite mechanical damping even when the
Fermi energy lies in the gap (and Qp ¼ e). We interpret
this damping as due to particle-hole excitations generated
in the leads when pumped charge enters or leaves. When
the Fermi energy of a current-biased Thouless motor lies
inside the fundamental gap, the motor (without load)
rotates at angular frequency ! ¼ 2#I=e, which, from
Eq. (10), gives a friction-induced voltage drop of V ¼
Ið2#Þ2$=e2. The existence of the intrinsic friction implies
that for a given current, there is a minimal voltage of
V ¼ ðh=e2ÞI at which the Thouless motor described by
Eq. (13) can operate.
At first sight, the intrinsic damping may seem to

negate the possibility of an ideal quantum motor when
the motor is subject to a load. Indeed, the electrical input
power is then split between the power consumed by the
load Pload ¼ Fload

_! and the power dissipated by damping
P$ ¼ $ _!2. Nevertheless, for a quantized Thouless pump,
_! ¼ 2#I=Qp, so that Pload / I while P$ / I2. Hence, the
power dissipated by damping becomes negligible at small
currents, and the load efficiency "load ¼ Pload=Pin can be
made arbitrarily close to unity by operating the motor at
low currents.
Conclusions.—Motion at the nanoscale tends to be

dominated by fluctuations. It is an important challenge to
develop schemes to generate directed motion in nanoscale
devices [20–23]. Here, we investigated a general strategy
to this effect which is based on operating quantum pumps
in reverse. We developed a corresponding theory which
expresses the output power and the efficiency of such
adiabatic quantum motors to characteristics of the pumps
on which they are based. The concept of adiabatic quantum
motors offers numerous possibilities for future research.
Interesting directions include motors based on electron
pumps which involve electron-electron interactions as
well as systems in which the motor degree of freedom is
itself quantum mechanical.
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Fermi energy for L ¼ 0:75 &m and v ¼ 105 m=s. From top to
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Thouless motor vs Fermi energy.

PRL 111, 060802 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

9 AUGUST 2013

060802-4

THANK	  YOU!	  



Conclusions	  


