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We propose a scheme for the deterministic generation of steady-state entanglement between the
two nuclear spin ensembles in an electrically defined double quantum dot. Due to quantum inter-
ference in the collective coupling to the electronic degrees of freedom, the nuclear system is actively
driven into a two-mode squeezed-like target state. The entanglement build-up is accompanied by
a self-polarization of the nuclear spins towards large Overhauser field gradients. Moreover, the
feedback between the electronic and nuclear dynamics leads to multi-stability and criticality in the
steady-state solutions.

arXi1v:1308.3079v1



Steady-State Entanglement in the Nuclear Spin Dynamics of a Double Quantum Dot

M. J. A. Schuetz,! E. M. Kessler,>3 L. M. K. Vandersypen,* J. I. Cirac,! and G. Giedke!
! Maz-Planck-Institut fiir Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany
%2 Physics Department, Harvard University, Cambridge, MA 02318, USA
SITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA and
*Kavli Institute of NanoScience, TU Delft, PO Boz 5046, 2600 GA, Delft, The Netherlands
(Dated: August 15, 2013)

We propose a scheme for the deterministic generation of steady-state entanglement between the
two nuclear spin ensembles in an electrically defined double quantum dot. Due to quantum inter-
ference in the collective coupling to the electronic degrees of freedom, the nuclear system is actively
driven into a two-mode squeezed-like target state. The entanglement build-up is accompanied by
a self-polarization of the nuclear spins towards large Overhauser field gradients. Moreover, the
feedback between the electronic and nuclear dynamics leads to multi-stability and criticality in the
steady-state solutions.

arXi1v:1308.3079v1



System

e Double Quantum Dot

H, = wp (Sf -+ Sg) + A (Sg — Sf) — € |S()2) (Sozl
+t (|1M) (Soz2| — [41) (Soz2| +h.c.),




System

e Double Quantum Dot

H, = wp (Sf -+ Sg) + A (Sg — Sf) — € |S()2) (Sozl
+t (|1M) (Soz2| — [41) (Soz2| +h.c.),

* Spectrum of He

Eigenstates in §¢, = Oare in red

spectrum of Hy [ueV]

detuniﬁg € [ueV]



Generating entanglement

* Electron spins are not isolated (interact with nuclear spins)
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Generating entanglement (2)

* How do we get rid of the electronic states! Dissipation
Plenio, Huelga, Beige, and Knight, PRA 59, 2468 (1999)
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Nuclear State Dynamics

 ffective flip-flop Hamiltonian
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Nuclear State Dynamics
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Nuclear State Dynamics (2)
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Nuclear State Dynamics (2)

* [ indblad Master Equation (supplemental)
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Nuclear State Dynamics (2)
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* Lindblad Master Equation for Nuclear State
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EPR Uncertainty for Testing Entanglement

Theorem 1.—Sufficient criterion for inseparability: For
any separable quantum state p, the total variance of a
pair of EPR-like operators defined by Eqs. (2a) and (2b)
with the commutators [x;, pj/] = i8;; (j,j' = 1,2) satis-
fies the inequality

7\ \ 1
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Steady State Entanglement
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Figure 2: (color online). Steady-state entanglement between
the two nuclear spin ensembles quantified via the EPR uncer-
tainty Agpr (a) and fidelity F of the nuclear steady state
with the two-mode squeezed target state (b); both shown
here as a function of the interdot tunneling parameter .
As a benchmark, the black solid curve refers to the ideal-
ized setting where the undesired HF-coupling to |A:3) has
been ignored and where J; = Jo = pJmax, p = 0.8 and
Ny = N = 2Juax = 10°, corresponding to Aon = 40ueV.
The blue-dashed line then also takes into account coupling
to |A1,3) while the red-dashed curve in addition accounts
for an asymmetric dot size: N, = 0.8N; = 8 x 10°. The
amount of entanglement decreases for a smaller nuclear po-
larization: p = 0.7 (green dashed curve). Classical uncer-
tainty (symbols) in the total spin J; quantum numbers leads
to a reduced amount of entanglement, but does not disrupt
it completely; here, we have set the range of the distribu-
tion to Ay, = 50v/N;. Other numerical parameters: wg = 0,
' = 25peV, € = 30peV and vso + Ydeph /2 = 1ueV.



Experimental Realization

* Entanglement is accompanied by generation of high gradient fields
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Figure 3: (color online). Semiclassical solution to the nuclear
polarization dynamics. (a) Instantaneous nuclear polarization
rate A;- as a function of the gradient A for t = 20ueV (blue
dashed), t = 30ueV (red solid) and t = 50ueV (black dash-
dotted). Fixed points are found at A;: = 0. The ovals mark
stable high-gradient steady state solutions. The background
coloring refers to the sign of A;: (shown here for ¢ = 30ueV)
which determines the stable fixed point the nuclear system is
attracted to (see arrows). (b) Zoom-in of (a) into the low-
gradient regime: The trivial, unpolarized fixed point lies at
A = 0, whereas critical, instable points Af}; (marked by
stars) can be identified with A;: = 0 and dA;:/dA > 0.
(c) Stable high-polarization fixed points A{;; (see ovals) as a
function of ¢; for t ~ 10ueV we obtain a nuclear polarization
of approximately ~ 90%. Other numerical parameters: ' =
25peV, e = 30ueV, v = 0.3peV and vygepn = 0.5ueV.



Does All of This Make Any Sense?

* Nuclear spins treated as stochastic random variable
* |nitial nuclear state (already entangled?)

e Polarization dynamics treated within bosonic model
(no correlation among nuclear spins)

e Reality: hyperfine coupling not homogeneous
(generalization to Inhomogeneous coupling requires
identical dots)



