Quantum phases of 1D Hubbard models with three- and four-body couplings
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The experimental advances in cold atomic and molecular gases stimulate the investigation of lattice
correlated systems beyond the conventional on-site Hubbard approximation, by possibly including
multi-particle processes. We study fermionic extended Hubbard models in a one dimensional lattice
with different types of particle couplings, including also three- and four-body interaction up to
nearest neighboring sites. By using the Bosonization technique, we investigate the low-energy regime
and determine the conditions for the appearance of ordered phases, for arbitrary particle filling. We
find that three- and four-body couplings may significantly modify the phase diagram. In particular,
diagonal three-body terms that directly couple the local particle densities have qualitatively different
effects from off-diagonal three-body couplings originating from correlated hopping, and favor the
appearance of a Luther-Emery phase even when two-body terms are repulsive. Furthermore, the
four-body coupling gives rise to a rich phase diagram and may lead to the realization of the Haldane
insulator phase at half-filling.
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The Hubbard model at 50

editorial

The Hubbard model at half a century

Models are abundant in virtually all branches of physics, with some achieving iconic status. The Hubbard
model, celebrating its golden jubilee this year, continues to be one of the most popular contrivances of

theoretical condensed-matter physics.
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Hubbard’s original motivation: Ferromagnetism in transition metals

Theoretical solution:

» Exactly solvable in 1D

» Numerical approximations in
2D, 3D using DMFT and DMRG

Today’s main uses:
» High-T, superconductivity
» Atoms in optical lattices
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Hamiltonian

The extended (""all you can eat’’) Hubbard model:

3-particle interaction (off-diagonal)

N, NN hopping Correlated hopping ﬂ
H = [ - Z(C;,UCHLU +h.c)t — X(fjz + Njr15) + Xjshji15]
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+ UnJTnJJf onsite interaction

+ Vnjnjy1 | NN interaction

+ JS; - Sj+1 | Spin exchange
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Symmetries:
» Charge U(1)

> Spin SU(2)
> Discrete lattice translation
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Pair hopping

3-particle interaction (diagonal)

4-particle interaction
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Bosonization

Assumptions:

* Weak coupling regime (all constants < t)

* Linearization of the spectrum around +kz(p)
e Continuum limit

c;r-g — Va (e Rl (z) + et LT ()

a

O, () + Oy ()

P, () — O, ()

> ]

Bosonization: R (z) = “ho exp [—iV4m
2To
Li(z) = Lo exp [+iv4r

V2T

5 ]

Result:

* Spin-charge separation H = H, + H;
* Decoupled sine-Gordon Hamiltonians:

e Spin and charge modes: (I)T,¢(x) — (I)C/S(g;) =
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Operator product expansion

Operator product expansion (OPE): o (0}
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Cijr (r) depends only on scaling dimensions, not on ®

e Useful for RG in conformal invariant systems

Here, OPEs are used directly on the Hamiltonian (small lattice spacing):
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Renormalization group

ﬁ Y Ty
H, = ; /dm[\/l{y (0:0,)% 1 +: (0,9,)?: /K, + 2:’:&2 cos (V8r®, (z))] (v =1¢,s)
Weak coupling analysis: Perturbative RG equations:
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Charge sector: Gap opens if m,, flows to strong coupling

» K.and m, are independent
» Charge gap can occur both for
m,>0andm, <0

> Only at half filling A | Ay | V21D, V2r®, |Type of Phase
=0 | =0 | fluctuating |fluctuating LL
» K. and mg are connected by 7 0|=0 TPc fluctuating MI
SU(2) symmetry: # 0|= 0|n(pc +1/2) |fluctuating HI
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Long-range order

Parity and string operators:
(Non-local)
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Correlation functions: /\Jlﬂ/\l/\dl/\/\dlf\l/\l/\/\ﬁ/\l/\ﬁ
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FIG. 1. (Color online) Cartoon illustrating the possible orders in
presence of fluctuations. The blue continuous (dashed) lines show
the correlated pairs of up-down spin (holon-doublon) allowing (Of[f))
((O',f'])) to remain nonvanishing. The green and red circles show the

alternation of sites occupied by doublons and holons in the chain of
Ac Ay LRO single fermions preserving (0% # 0.

LL 0 0 none
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MI - o 0© Long-range order (LRO):
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from: Barbiero et al., PRB 88, 035109 (2013)



Possible phases

Local order parameters:
» Charge density wave:

» Spin density wave:

» Singlet superconductivity:

» Triplet superconductivity:

Phases at half filling:

Luttinger liquid (LL):

* Gaplessin charge and spin sector
* Attractive interactions: K; > 1
 Dominant correlation function:

(Ors(x)Okg(y)) ~ |z — y| =K

Charge insulator:
- Mott insulator (MI):
(Ospw (2)O% oy (¥)) ~ |z — y| ™"
- Haldane insulator (HI):
(Ocow (2)O oy (1)) ~ |z —y| ™!

Luther-Emery liquid (LE):
- Gapless charge sector
- Gapped spin sector
- CDW and SS order:

<OCDW»SS($)OIJDW,SS(Z/)> ~ |z — gy~

Fully gapped phases:
- CDW and BOW (bond ordered wave)
phases
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Three-particle interaction
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Half filling (p = 1)

Three-body terms:
» Off-diagonal: Hl phase
» Diagonal: LE phase
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Four-particle interaction

For general filling:

Transition between LE and LLfor Q < 0

At half filling (p = 1):

» All phases can be realized as function of V and Q
» Repulsive Q > 0 favors HI, whereas repulsive

U > 0 favors Ml

» No off-diagonal terms necessary for HI
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Conclusions

» The phases of the extended Hubbard model can be classified
with nonlocal spin and charge order parameters.

» Depending on gaps opening in spin and charge sectors, various
phases may emerge:
= Luther-Emery,
= Mott insulator, Haldane insulator,
= Charge density wave, Bond ordered wave

» Three- and four-particle interaction terms may be convenient to
explore these phases in cold atom systems
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