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In this work, we find that Majorana fermions induce selective equal spin Andreev reflections
(SESARs), in which incoming electrons with certain spin polarization in the lead are reflected as
counter propagating holes with the same spin. The spin polarization direction of the electrons of this
Andreev reflected channel is selected by the Majorana fermions. Moreover, electrons with opposite
spin polarization are always reflected as electrons with unchanged spin. As a result, the charge
current in the lead is spin-polarized. Therefore, a topological superconductor which supports Majo-
rana fermions can be used as a novel device to create fully spin-polarized currents in paramagnetic
leads. We point out that SESARs can also be used to detect Majorana fermions in topological
superconductors.

Introduction— A Majorana fermion (MF) [1, 2] is
an anti-particle of itself. Due to this self-Hermitian
property, a MF has only half the degrees of freedom of
a Dirac fermion and two spatially separated MFs can
form a non-local Dirac fermion. This special property
of MFs leads to several interesting phenomena such as
fractional Josephson e↵ects [2–6], resonant Andreev re-
flections [7, 8], electron teleportations [9, 10], enhanced
[11] and even resonant [12] crossed Andreev reflections.
Moreover, MFs in condensed matter systems obey non-
Abelian statistics [13–17] and have potential applications
in fault-tolerant quantum computations [18, 19]. Due
to these remarkable properties of MFs, the search for
topological superconductors which host MFs has become
one of the most important subjects in condensed matter
physics in recent years.

In this work, we point out another intriguing phe-
nomenon due to MFs, namely, MF-induced selective

equal spin Andreev reflections (SESARs). As depicted in
Fig.1, when a spinful paramagnetic normal lead is cou-
pled to a topological superconductor through its MF end
state, electrons with spin pointing to a certain direction ~

n

are reflected as holes with the same spin (Fig.1a), where
~
n is determined by the properties of the topological su-
perconductor. Importantly, electrons with opposite spin
are completely decoupled from the MF and they are re-
flected as electrons with unchanged spin (Fig.1b). As
a result, ordinary Andreev reflection processes [20], in
which electrons with certain spin are reflected as holes
with opposite spin, cannot take place if the Andreev re-
flections are induced by MFs.

Pure equal spin Andreev reflections can take place at
a half-metal/superconductor interface if spin is not con-
served at the interface [21–28]. This is because conduct-
ing electrons in a half-metal are fully spin-polarized and
usual Andreev reflection processes cannot occur. Nev-
ertheless, as we show below, inducing SESARs in para-
magnetic leads is a special property of MFs due to their
self-Hermitian characteristic. Importantly, as in the half-
metal case and depicted in Fig.1a, the charge current
in the normal lead is fully spin-polarized since the cur-

FIG. 1: A paramagnetic normal lead (N) is coupled to a
topological superconductor (TS) with MF end states. The
zero energy MF mode is denoted by the horizontal line inside
the bulk gap of the TS. (a) Electrons with a specific spin
polarization can undergo equal spin Andreev reflections in
which an electron is reflected as a hole with the same spin.
However, the resulting Cooper pair in the superconductor can
be a spin singlet if spin is not conserved due to spin-orbit
coupling. (b) Electrons with opposite spin are totally reflected
as electrons with unchanged spin.

rent is carried by right-moving electrons and counter-
propagating holes with the same spin. Therefore, a topo-
logical superconductor which supports MFs can be used
as a novel device for inducing fully spin-polarized cur-
rents in paramagnetic leads.

In the following sections, we first show, using an e↵ec-
tive Hamiltonian approach, that SESARs are due to the
self-Hermitian property of MFs. Second, to be more spe-
cific, we calculate the spin polarization axis ~n of a normal
lead-topological superconductor (N/TS) junction. The
topological superconductor is engineered by applying an
external magnetic field to a semi-conductor wire in prox-
imity to an s-wave superconductor [29–32]. Third, we
demonstrate how SESARs can be used to detect MFs in
topological superconductors using a spin-polarized lead.

Majorana-induced SESARs— The low energy
transport properties of a N/TS junction can be well de-
scribed by an e↵ective Hamiltonian which includes the
lead and the coupling between the lead and the MF
[6, 9, 11]. The e↵ective Hamiltonian H

T

can be writ-
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tive Hamiltonian approach, that SESARs are due to the
self-Hermitian property of MFs. Second, to be more spe-
cific, we calculate the spin polarization axis ~n of a normal
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(a)   Electron of one spin species:
can be reflected as hole with same spin

(b)   Electron of other spin species:
always reflected as an electron of this spin
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P
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R +1
�1  †

↵

(x)@
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↵

(x)dx,

H
c

= t̃�[a "(0) + b #(0)� a⇤ †
"(0)� b⇤ †

#(0)].

(1)

Here, H
L

describes the normal lead with spin up and spin
down electrons  "/#(x) and Fermi velocity v

F
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general form of coupling between the MF end state � and
the lead is described by H
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, where t̃ is a real number and
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is deter-
mined by the self-Hermitian property of the MF � = �†.
Without loss of generality, one can set |a|2 + |b|2 = 1. It
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that the  1 electrons are reflected as  1 holes with the
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posite spins, where ~� is the Pauli vector. Therefore,
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ple to the MF and undergo equal spin Andreev reflec-
tions, whereas electrons with opposite spin are totally
reflected as electrons. We call this phenomenon MF-
induced SESARs. Since the charge current in the lead is
carried by electrons with spin parallel to ~n and counter-
propagating holes with the same spin, the current in the
lead is spin-polarized to the ~n direction.

SESARs of spin-orbit coupled superconducting

wires— The MF induced SESARs is a general phe-
nomenon due to the self-Hermitian property of MFs as
shown above. However, in the e↵ective Hamiltonian ap-
proach, we assumed that the ratio of a/b is energy in-
dependent such that the MF couples to electrons with
spin parallel to ~n, independent of the incoming energy of
the electrons. In this section, we show that this approx-
imation is valid for a wide range of parameter regimes

in realistic topological superconductors. Moreover, the
e↵ective Hamiltonian cannot determine ~n. Therefore, to
be specific, we study a N/TS junction where the topolog-
ical superconductor can be realized experimentally [33–
35] by applying a magnetic field to a spin-orbit coupled
semiconductor wire which is in proximity to an s-wave
superconductor as depicted in Fig.3a.
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propagating holes with the same spin, the current in the
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nomenon due to the self-Hermitian property of MFs as
shown above. However, in the e↵ective Hamiltonian ap-
proach, we assumed that the ratio of a/b is energy in-
dependent such that the MF couples to electrons with
spin parallel to ~n, independent of the incoming energy of
the electrons. In this section, we show that this approx-
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in realistic topological superconductors. Moreover, the
e↵ective Hamiltonian cannot determine ~n. Therefore, to
be specific, we study a N/TS junction where the topolog-
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lead is spin-polarized to the ~n direction.

SESARs of spin-orbit coupled superconducting

wires— The MF induced SESARs is a general phe-
nomenon due to the self-Hermitian property of MFs as
shown above. However, in the e↵ective Hamiltonian ap-
proach, we assumed that the ratio of a/b is energy in-
dependent such that the MF couples to electrons with
spin parallel to ~n, independent of the incoming energy of
the electrons. In this section, we show that this approx-
imation is valid for a wide range of parameter regimes

in realistic topological superconductors. Moreover, the
e↵ective Hamiltonian cannot determine ~n. Therefore, to
be specific, we study a N/TS junction where the topolog-
ical superconductor can be realized experimentally [33–
35] by applying a magnetic field to a spin-orbit coupled
semiconductor wire which is in proximity to an s-wave
superconductor as depicted in Fig.3a.
In the Nambu basis ( 

k", k#, 
†
�k", 

†
�k#), the Hamil-

tonian for the semi-conductor wire in proximity to a su-
perconductor can be written as [29–32]:

H1D(k) = [(
k2

2m
�µ)�0+ ~V ·~�+↵

R

k�
y

)]⌧
z

���
y

⌧
y

. (4)

Here,  
k" ( 

k#) denotes a spin up (down) electron with
momentum k, the e↵ective mass and the chemical poten-
tial are denoted by m and µ respectively. The Zeeman
field is denoted by ~V and ↵

R

is the Rashba spin-orbit
coupling strength. The Pauli matrices �

i

and ⌧
i

act on
the spin and particle-hole space respectively.
Suppose the one dimensional superconducting wire oc-

cupies the semi-infinite space with x � 0 and a magnetic
field with magnitude V

z

is applied along the z-direction,
there exists a MF end state localized near x = 0 in the
topological regime when V

z

2 > µ2 + �2. The MF end
state � satisfies the condition H1D(k ! �i@

x

)� = 0 with
�† = �. In general, the Majorana mode can be written
as:

�(x) =
3X

i=1

�
i

 
~�
i

~�
i

!
e��

i

x + �4

 
~�4
�~�4

!
e��4x, (5)

where �
i

are the four solutions of the following two quar-
tic equations with positive real parts

✓
�2

2m
+ µ

◆2

+ (↵
R

�±�)2 � V 2
z

= 0. (6)

For realistic semi-conductor wires with 2m↵

2
Rp

V

2
z

��2
⌧ 1

and at chemical potential µ ⇡ 0, we have �1 = �⇤2 = i�0+

� and �3/4 = �0 ⌥ �, where �0 =
p
2m
�
V 2
z

��2
�1/4

and

� = 2m2↵
R

�/�20. Here, ~�i = [�2
i

/(2m)+V
z

,���↵
R

�
i

]T

for ~�1, ~�2 and ~�3, and ~�4 = [�24/(2m) + V
z

,�� ↵
R

�4]T .
Assuming that the lead can be described by the

Hamiltonian H
L

= (k2/2m
L

� µ)�0⌧z, the wavefunc-
tion in the lead at the Fermi energy can be written
as  

L

(x) = ~e1e
ik

F

x + d
e"~e1e

�ik

F

x + d
e#~e2e

�ik

F

x +
d
h"~e3e

ik

F

x + d
h#~e4e

ik

F

x, where k
F

is the Fermi momen-
tum and ~e1 = [1, 0, 0, 0], ~e2 = [0, 1, 0, 0], ~e3 = [0, 0, 1, 0]
and ~e4 = [0, 0, 0, 1]. Here, d

↵,�

denotes the amplitude for
an incoming spin up electron to be reflected as an electron
(e) or hole (h) with spin �. On the other hand, the wave-
function at the Fermi energy on the superconductor side
 

S

(x) can be written as the linear combination of the
four-component vectors associated with ~�

i

in Eq.5. We
note that the wavefunction has to satisfy the continuity

2

ten as:

H
T

= H
L

+H
c

,

H
L

= �iv
F

P
↵2"/#

R +1
�1  †

↵

(x)@
x

 
↵

(x)dx,

H
c

= t̃�[a "(0) + b #(0)� a⇤ †
"(0)� b⇤ †

#(0)].

(1)

Here, H
L

describes the normal lead with spin up and spin
down electrons  "/#(x) and Fermi velocity v

F

. The most
general form of coupling between the MF end state � and
the lead is described by H

c

, where t̃ is a real number and
a and b are complex numbers. The form of H

c

is deter-
mined by the self-Hermitian property of the MF � = �†.
Without loss of generality, one can set |a|2 + |b|2 = 1. It
is important to note that using a unitary transformation
 1 = a "+b # and  2 = �b⇤ "+a⇤ #, the Hamiltonian
becomes

H
L

= �iv
F

P
↵21/2

R +1
�1  †

↵

(x)@
x

 
↵

(x)dx,

H
c

= t̃�[ 1(0)� †
1(0)].

(2)

Evidently, the MF only couples to the  1 electrons with
spinor ~s1 = |a|(1, b/a)T = (cos ✓

2 , e
i� sin ✓

2 )
T , while the

 2 electrons with spinor ~s2 = (� sin ✓

2 , e
i� cos ✓

2 )
T are

totally decoupled from the MF. Denoting the incoming
and outgoing electrons (holes) with energy E relative
to the Fermi energy as  1E(�) ( †

1E(�) ) and  1E(+)

( †
1E(+)) respectively, the scattering matrix of the N/TS

junction is:
✓
 1E(+)
 †

1E(+)

◆
=

1

�+ iE

✓
iE �
� iE

◆✓
 1E(�)
 †

1E(�)

◆
, (3)

where � = 2t̃2/v
F

. From the scattering matrix, we note
that the  1 electrons are reflected as  1 holes with the
same spin with Andreev reflection amplitude �/(�+ iE).
From the spinors ~s1 and ~s2, we note that  1 electrons
have spins parallel to the direction ~

n = h~s1|~�|~s1i =
(sin ✓ cos�, sin ✓ sin�, cos ✓), and  2 electrons have op-
posite spins, where ~� is the Pauli vector. Therefore,
electrons with spin parallel to the ~n directions can cou-
ple to the MF and undergo equal spin Andreev reflec-
tions, whereas electrons with opposite spin are totally
reflected as electrons. We call this phenomenon MF-
induced SESARs. Since the charge current in the lead is
carried by electrons with spin parallel to ~n and counter-
propagating holes with the same spin, the current in the
lead is spin-polarized to the ~n direction.

SESARs of spin-orbit coupled superconducting

wires— The MF induced SESARs is a general phe-
nomenon due to the self-Hermitian property of MFs as
shown above. However, in the e↵ective Hamiltonian ap-
proach, we assumed that the ratio of a/b is energy in-
dependent such that the MF couples to electrons with
spin parallel to ~n, independent of the incoming energy of
the electrons. In this section, we show that this approx-
imation is valid for a wide range of parameter regimes

in realistic topological superconductors. Moreover, the
e↵ective Hamiltonian cannot determine ~n. Therefore, to
be specific, we study a N/TS junction where the topolog-
ical superconductor can be realized experimentally [33–
35] by applying a magnetic field to a spin-orbit coupled
semiconductor wire which is in proximity to an s-wave
superconductor as depicted in Fig.3a.
In the Nambu basis ( 

k", k#, 
†
�k", 

†
�k#), the Hamil-

tonian for the semi-conductor wire in proximity to a su-
perconductor can be written as [29–32]:

H1D(k) = [(
k2

2m
�µ)�0+ ~V ·~�+↵

R

k�
y

)]⌧
z

���
y

⌧
y

. (4)

Here,  
k" ( 

k#) denotes a spin up (down) electron with
momentum k, the e↵ective mass and the chemical poten-
tial are denoted by m and µ respectively. The Zeeman
field is denoted by ~V and ↵

R

is the Rashba spin-orbit
coupling strength. The Pauli matrices �

i

and ⌧
i

act on
the spin and particle-hole space respectively.
Suppose the one dimensional superconducting wire oc-

cupies the semi-infinite space with x � 0 and a magnetic
field with magnitude V

z

is applied along the z-direction,
there exists a MF end state localized near x = 0 in the
topological regime when V

z

2 > µ2 + �2. The MF end
state � satisfies the condition H1D(k ! �i@

x

)� = 0 with
�† = �. In general, the Majorana mode can be written
as:

�(x) =
3X

i=1

�
i

 
~�
i

~�
i

!
e��

i

x + �4

 
~�4
�~�4

!
e��4x, (5)

where �
i

are the four solutions of the following two quar-
tic equations with positive real parts

✓
�2

2m
+ µ

◆2

+ (↵
R

�±�)2 � V 2
z

= 0. (6)

For realistic semi-conductor wires with 2m↵

2
Rp

V

2
z

��2
⌧ 1

and at chemical potential µ ⇡ 0, we have �1 = �⇤2 = i�0+

� and �3/4 = �0 ⌥ �, where �0 =
p
2m
�
V 2
z

��2
�1/4

and

� = 2m2↵
R

�/�20. Here, ~�
i

= [�2
i

/(2m)+V
z

,���↵
R

�
i

]T

for ~�1, ~�2 and ~�3, and ~�4 = [�24/(2m) + V
z

,�� ↵
R

�4]T .
Assuming that the lead can be described by the

Hamiltonian H
L

= (k2/2m
L

� µ)�0⌧z, the wavefunc-
tion in the lead at the Fermi energy can be written
as  

L

(x) = ~e1e
ik

F

x + d
e"~e1e

�ik

F

x + d
e#~e2e

�ik

F

x +
d
h"~e3e

ik

F

x + d
h#~e4e

ik

F

x, where k
F

is the Fermi momen-
tum and ~e1 = [1, 0, 0, 0], ~e2 = [0, 1, 0, 0], ~e3 = [0, 0, 1, 0]
and ~e4 = [0, 0, 0, 1]. Here, d

↵,�

denotes the amplitude for
an incoming spin up electron to be reflected as an electron
(e) or hole (h) with spin �. On the other hand, the wave-
function at the Fermi energy on the superconductor side
 

S

(x) can be written as the linear combination of the
four-component vectors associated with ~�

i

in Eq.5. We
note that the wavefunction has to satisfy the continuity

and
Montag, 9. September 13



Effective Hamiltonian for N/TS junction

N

� = �† et 2 Rand

Majorana Fermion induced selective equal spin Andreev reflections

James J. He1, T. K. Ng1, Patrick A. Lee2 and K. T. Law1⇤
1 Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China

2 Department of Physics, Massachusetts Institute of Technology, Cambridge MA 02139, USA

In this work, we find that Majorana fermions induce selective equal spin Andreev reflections
(SESARs), in which incoming electrons with certain spin polarization in the lead are reflected as
counter propagating holes with the same spin. The spin polarization direction of the electrons of this
Andreev reflected channel is selected by the Majorana fermions. Moreover, electrons with opposite
spin polarization are always reflected as electrons with unchanged spin. As a result, the charge
current in the lead is spin-polarized. Therefore, a topological superconductor which supports Majo-
rana fermions can be used as a novel device to create fully spin-polarized currents in paramagnetic
leads. We point out that SESARs can also be used to detect Majorana fermions in topological
superconductors.

Introduction— A Majorana fermion (MF) [1, 2] is
an anti-particle of itself. Due to this self-Hermitian
property, a MF has only half the degrees of freedom of
a Dirac fermion and two spatially separated MFs can
form a non-local Dirac fermion. This special property
of MFs leads to several interesting phenomena such as
fractional Josephson e↵ects [2–6], resonant Andreev re-
flections [7, 8], electron teleportations [9, 10], enhanced
[11] and even resonant [12] crossed Andreev reflections.
Moreover, MFs in condensed matter systems obey non-
Abelian statistics [13–17] and have potential applications
in fault-tolerant quantum computations [18, 19]. Due
to these remarkable properties of MFs, the search for
topological superconductors which host MFs has become
one of the most important subjects in condensed matter
physics in recent years.

In this work, we point out another intriguing phe-
nomenon due to MFs, namely, MF-induced selective

equal spin Andreev reflections (SESARs). As depicted in
Fig.1, when a spinful paramagnetic normal lead is cou-
pled to a topological superconductor through its MF end
state, electrons with spin pointing to a certain direction ~

n

are reflected as holes with the same spin (Fig.1a), where
~
n is determined by the properties of the topological su-
perconductor. Importantly, electrons with opposite spin
are completely decoupled from the MF and they are re-
flected as electrons with unchanged spin (Fig.1b). As
a result, ordinary Andreev reflection processes [20], in
which electrons with certain spin are reflected as holes
with opposite spin, cannot take place if the Andreev re-
flections are induced by MFs.

Pure equal spin Andreev reflections can take place at
a half-metal/superconductor interface if spin is not con-
served at the interface [21–28]. This is because conduct-
ing electrons in a half-metal are fully spin-polarized and
usual Andreev reflection processes cannot occur. Nev-
ertheless, as we show below, inducing SESARs in para-
magnetic leads is a special property of MFs due to their
self-Hermitian characteristic. Importantly, as in the half-
metal case and depicted in Fig.1a, the charge current
in the normal lead is fully spin-polarized since the cur-

FIG. 1: A paramagnetic normal lead (N) is coupled to a
topological superconductor (TS) with MF end states. The
zero energy MF mode is denoted by the horizontal line inside
the bulk gap of the TS. (a) Electrons with a specific spin
polarization can undergo equal spin Andreev reflections in
which an electron is reflected as a hole with the same spin.
However, the resulting Cooper pair in the superconductor can
be a spin singlet if spin is not conserved due to spin-orbit
coupling. (b) Electrons with opposite spin are totally reflected
as electrons with unchanged spin.

rent is carried by right-moving electrons and counter-
propagating holes with the same spin. Therefore, a topo-
logical superconductor which supports MFs can be used
as a novel device for inducing fully spin-polarized cur-
rents in paramagnetic leads.

In the following sections, we first show, using an e↵ec-
tive Hamiltonian approach, that SESARs are due to the
self-Hermitian property of MFs. Second, to be more spe-
cific, we calculate the spin polarization axis ~n of a normal
lead-topological superconductor (N/TS) junction. The
topological superconductor is engineered by applying an
external magnetic field to a semi-conductor wire in prox-
imity to an s-wave superconductor [29–32]. Third, we
demonstrate how SESARs can be used to detect MFs in
topological superconductors using a spin-polarized lead.

Majorana-induced SESARs— The low energy
transport properties of a N/TS junction can be well de-
scribed by an e↵ective Hamiltonian which includes the
lead and the coupling between the lead and the MF
[6, 9, 11]. The e↵ective Hamiltonian H

T

can be writ-
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Here, H
L

describes the normal lead with spin up and spin
down electrons  "/#(x) and Fermi velocity v

F

. The most
general form of coupling between the MF end state � and
the lead is described by H

c

, where t̃ is a real number and
a and b are complex numbers. The form of H

c

is deter-
mined by the self-Hermitian property of the MF � = �†.
Without loss of generality, one can set |a|2 + |b|2 = 1. It
is important to note that using a unitary transformation
 1 = a "+b # and  2 = �b⇤ "+a⇤ #, the Hamiltonian
becomes
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(x)dx,
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Evidently, the MF only couples to the  1 electrons with
spinor ~s1 = |a|(1, b/a)T = (cos ✓

2 , e
i� sin ✓

2 )
T , while the

 2 electrons with spinor ~s2 = (� sin ✓

2 , e
i� cos ✓

2 )
T are

totally decoupled from the MF. Denoting the incoming
and outgoing electrons (holes) with energy E relative
to the Fermi energy as  1E(�) ( †

1E(�) ) and  1E(+)

( †
1E(+)) respectively, the scattering matrix of the N/TS

junction is:
✓
 1E(+)
 †

1E(+)

◆
=

1

�+ iE

✓
iE �
� iE

◆✓
 1E(�)
 †

1E(�)

◆
, (3)

where � = 2t̃2/v
F

. From the scattering matrix, we note
that the  1 electrons are reflected as  1 holes with the
same spin with Andreev reflection amplitude �/(�+ iE).
From the spinors ~s1 and ~s2, we note that  1 electrons
have spins parallel to the direction ~

n = h~s1|~�|~s1i =
(sin ✓ cos�, sin ✓ sin�, cos ✓), and  2 electrons have op-
posite spins, where ~� is the Pauli vector. Therefore,
electrons with spin parallel to the ~n directions can cou-
ple to the MF and undergo equal spin Andreev reflec-
tions, whereas electrons with opposite spin are totally
reflected as electrons. We call this phenomenon MF-
induced SESARs. Since the charge current in the lead is
carried by electrons with spin parallel to ~n and counter-
propagating holes with the same spin, the current in the
lead is spin-polarized to the ~n direction.

SESARs of spin-orbit coupled superconducting

wires— The MF induced SESARs is a general phe-
nomenon due to the self-Hermitian property of MFs as
shown above. However, in the e↵ective Hamiltonian ap-
proach, we assumed that the ratio of a/b is energy in-
dependent such that the MF couples to electrons with
spin parallel to ~n, independent of the incoming energy of
the electrons. In this section, we show that this approx-
imation is valid for a wide range of parameter regimes

in realistic topological superconductors. Moreover, the
e↵ective Hamiltonian cannot determine ~n. Therefore, to
be specific, we study a N/TS junction where the topolog-
ical superconductor can be realized experimentally [33–
35] by applying a magnetic field to a spin-orbit coupled
semiconductor wire which is in proximity to an s-wave
superconductor as depicted in Fig.3a.
In the Nambu basis ( 

k", k#, 
†
�k", 

†
�k#), the Hamil-

tonian for the semi-conductor wire in proximity to a su-
perconductor can be written as [29–32]:

H1D(k) = [(
k2

2m
�µ)�0+ ~V ·~�+↵
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)]⌧
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Here,  
k" ( 

k#) denotes a spin up (down) electron with
momentum k, the e↵ective mass and the chemical poten-
tial are denoted by m and µ respectively. The Zeeman
field is denoted by ~V and ↵

R

is the Rashba spin-orbit
coupling strength. The Pauli matrices �

i

and ⌧
i

act on
the spin and particle-hole space respectively.
Suppose the one dimensional superconducting wire oc-

cupies the semi-infinite space with x � 0 and a magnetic
field with magnitude V

z

is applied along the z-direction,
there exists a MF end state localized near x = 0 in the
topological regime when V

z

2 > µ2 + �2. The MF end
state � satisfies the condition H1D(k ! �i@

x

)� = 0 with
�† = �. In general, the Majorana mode can be written
as:
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where �
i

are the four solutions of the following two quar-
tic equations with positive real parts
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Assuming that the lead can be described by the

Hamiltonian H
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is the Fermi momen-
tum and ~e1 = [1, 0, 0, 0], ~e2 = [0, 1, 0, 0], ~e3 = [0, 0, 1, 0]
and ~e4 = [0, 0, 0, 1]. Here, d

↵,�

denotes the amplitude for
an incoming spin up electron to be reflected as an electron
(e) or hole (h) with spin �. On the other hand, the wave-
function at the Fermi energy on the superconductor side
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that the  1 electrons are reflected as  1 holes with the
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From the spinors ~s1 and ~s2, we note that  1 electrons
have spins parallel to the direction ~
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(sin ✓ cos�, sin ✓ sin�, cos ✓), and  2 electrons have op-
posite spins, where ~� is the Pauli vector. Therefore,
electrons with spin parallel to the ~n directions can cou-
ple to the MF and undergo equal spin Andreev reflec-
tions, whereas electrons with opposite spin are totally
reflected as electrons. We call this phenomenon MF-
induced SESARs. Since the charge current in the lead is
carried by electrons with spin parallel to ~n and counter-
propagating holes with the same spin, the current in the
lead is spin-polarized to the ~n direction.

SESARs of spin-orbit coupled superconducting

wires— The MF induced SESARs is a general phe-
nomenon due to the self-Hermitian property of MFs as
shown above. However, in the e↵ective Hamiltonian ap-
proach, we assumed that the ratio of a/b is energy in-
dependent such that the MF couples to electrons with
spin parallel to ~n, independent of the incoming energy of
the electrons. In this section, we show that this approx-
imation is valid for a wide range of parameter regimes

in realistic topological superconductors. Moreover, the
e↵ective Hamiltonian cannot determine ~n. Therefore, to
be specific, we study a N/TS junction where the topolog-
ical superconductor can be realized experimentally [33–
35] by applying a magnetic field to a spin-orbit coupled
semiconductor wire which is in proximity to an s-wave
superconductor as depicted in Fig.3a.
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Assuming that the lead can be described by the
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denotes the amplitude for
an incoming spin up electron to be reflected as an electron
(e) or hole (h) with spin �. On the other hand, the wave-
function at the Fermi energy on the superconductor side
 

S

(x) can be written as the linear combination of the
four-component vectors associated with ~�

i

in Eq.5. We
note that the wavefunction has to satisfy the continuity

2

ten as:

H
T

= H
L

+H
c

,

H
L

= �iv
F

P
↵2"/#

R +1
�1  †

↵

(x)@
x

 
↵

(x)dx,

H
c

= t̃�[a "(0) + b #(0)� a⇤ †
"(0)� b⇤ †

#(0)].

(1)

Here, H
L

describes the normal lead with spin up and spin
down electrons  "/#(x) and Fermi velocity v

F

. The most
general form of coupling between the MF end state � and
the lead is described by H

c

, where t̃ is a real number and
a and b are complex numbers. The form of H

c

is deter-
mined by the self-Hermitian property of the MF � = �†.
Without loss of generality, one can set |a|2 + |b|2 = 1. It
is important to note that using a unitary transformation
 1 = a "+b # and  2 = �b⇤ "+a⇤ #, the Hamiltonian
becomes

H
L

= �iv
F

P
↵21/2

R +1
�1  †

↵

(x)@
x

 
↵

(x)dx,

H
c

= t̃�[ 1(0)� †
1(0)].

(2)

Evidently, the MF only couples to the  1 electrons with
spinor ~s1 = |a|(1, b/a)T = (cos ✓

2 , e
i� sin ✓

2 )
T , while the

 2 electrons with spinor ~s2 = (� sin ✓

2 , e
i� cos ✓

2 )
T are

totally decoupled from the MF. Denoting the incoming
and outgoing electrons (holes) with energy E relative
to the Fermi energy as  1E(�) ( †

1E(�) ) and  1E(+)

( †
1E(+)) respectively, the scattering matrix of the N/TS

junction is:
✓
 1E(+)
 †

1E(+)

◆
=

1

�+ iE

✓
iE �
� iE

◆✓
 1E(�)
 †

1E(�)

◆
, (3)

where � = 2t̃2/v
F

. From the scattering matrix, we note
that the  1 electrons are reflected as  1 holes with the
same spin with Andreev reflection amplitude �/(�+ iE).
From the spinors ~s1 and ~s2, we note that  1 electrons
have spins parallel to the direction ~

n = h~s1|~�|~s1i =
(sin ✓ cos�, sin ✓ sin�, cos ✓), and  2 electrons have op-
posite spins, where ~� is the Pauli vector. Therefore,
electrons with spin parallel to the ~n directions can cou-
ple to the MF and undergo equal spin Andreev reflec-
tions, whereas electrons with opposite spin are totally
reflected as electrons. We call this phenomenon MF-
induced SESARs. Since the charge current in the lead is
carried by electrons with spin parallel to ~n and counter-
propagating holes with the same spin, the current in the
lead is spin-polarized to the ~n direction.

SESARs of spin-orbit coupled superconducting

wires— The MF induced SESARs is a general phe-
nomenon due to the self-Hermitian property of MFs as
shown above. However, in the e↵ective Hamiltonian ap-
proach, we assumed that the ratio of a/b is energy in-
dependent such that the MF couples to electrons with
spin parallel to ~n, independent of the incoming energy of
the electrons. In this section, we show that this approx-
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In this work, we find that Majorana fermions induce selective equal spin Andreev reflections
(SESARs), in which incoming electrons with certain spin polarization in the lead are reflected as
counter propagating holes with the same spin. The spin polarization direction of the electrons of this
Andreev reflected channel is selected by the Majorana fermions. Moreover, electrons with opposite
spin polarization are always reflected as electrons with unchanged spin. As a result, the charge
current in the lead is spin-polarized. Therefore, a topological superconductor which supports Majo-
rana fermions can be used as a novel device to create fully spin-polarized currents in paramagnetic
leads. We point out that SESARs can also be used to detect Majorana fermions in topological
superconductors.

Introduction— A Majorana fermion (MF) [1, 2] is
an anti-particle of itself. Due to this self-Hermitian
property, a MF has only half the degrees of freedom of
a Dirac fermion and two spatially separated MFs can
form a non-local Dirac fermion. This special property
of MFs leads to several interesting phenomena such as
fractional Josephson e↵ects [2–6], resonant Andreev re-
flections [7, 8], electron teleportations [9, 10], enhanced
[11] and even resonant [12] crossed Andreev reflections.
Moreover, MFs in condensed matter systems obey non-
Abelian statistics [13–17] and have potential applications
in fault-tolerant quantum computations [18, 19]. Due
to these remarkable properties of MFs, the search for
topological superconductors which host MFs has become
one of the most important subjects in condensed matter
physics in recent years.

In this work, we point out another intriguing phe-
nomenon due to MFs, namely, MF-induced selective

equal spin Andreev reflections (SESARs). As depicted in
Fig.1, when a spinful paramagnetic normal lead is cou-
pled to a topological superconductor through its MF end
state, electrons with spin pointing to a certain direction ~

n

are reflected as holes with the same spin (Fig.1a), where
~
n is determined by the properties of the topological su-
perconductor. Importantly, electrons with opposite spin
are completely decoupled from the MF and they are re-
flected as electrons with unchanged spin (Fig.1b). As
a result, ordinary Andreev reflection processes [20], in
which electrons with certain spin are reflected as holes
with opposite spin, cannot take place if the Andreev re-
flections are induced by MFs.

Pure equal spin Andreev reflections can take place at
a half-metal/superconductor interface if spin is not con-
served at the interface [21–28]. This is because conduct-
ing electrons in a half-metal are fully spin-polarized and
usual Andreev reflection processes cannot occur. Nev-
ertheless, as we show below, inducing SESARs in para-
magnetic leads is a special property of MFs due to their
self-Hermitian characteristic. Importantly, as in the half-
metal case and depicted in Fig.1a, the charge current
in the normal lead is fully spin-polarized since the cur-

FIG. 1: A paramagnetic normal lead (N) is coupled to a
topological superconductor (TS) with MF end states. The
zero energy MF mode is denoted by the horizontal line inside
the bulk gap of the TS. (a) Electrons with a specific spin
polarization can undergo equal spin Andreev reflections in
which an electron is reflected as a hole with the same spin.
However, the resulting Cooper pair in the superconductor can
be a spin singlet if spin is not conserved due to spin-orbit
coupling. (b) Electrons with opposite spin are totally reflected
as electrons with unchanged spin.

rent is carried by right-moving electrons and counter-
propagating holes with the same spin. Therefore, a topo-
logical superconductor which supports MFs can be used
as a novel device for inducing fully spin-polarized cur-
rents in paramagnetic leads.

In the following sections, we first show, using an e↵ec-
tive Hamiltonian approach, that SESARs are due to the
self-Hermitian property of MFs. Second, to be more spe-
cific, we calculate the spin polarization axis ~n of a normal
lead-topological superconductor (N/TS) junction. The
topological superconductor is engineered by applying an
external magnetic field to a semi-conductor wire in prox-
imity to an s-wave superconductor [29–32]. Third, we
demonstrate how SESARs can be used to detect MFs in
topological superconductors using a spin-polarized lead.

Majorana-induced SESARs— The low energy
transport properties of a N/TS junction can be well de-
scribed by an e↵ective Hamiltonian which includes the
lead and the coupling between the lead and the MF
[6, 9, 11]. The e↵ective Hamiltonian H

T

can be writ-
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Here, H
L

describes the normal lead with spin up and spin
down electrons  "/#(x) and Fermi velocity v

F

. The most
general form of coupling between the MF end state � and
the lead is described by H

c

, where t̃ is a real number and
a and b are complex numbers. The form of H

c

is deter-
mined by the self-Hermitian property of the MF � = �†.
Without loss of generality, one can set |a|2 + |b|2 = 1. It
is important to note that using a unitary transformation
 1 = a "+b # and  2 = �b⇤ "+a⇤ #, the Hamiltonian
becomes
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Evidently, the MF only couples to the  1 electrons with
spinor ~s1 = |a|(1, b/a)T = (cos ✓

2 , e
i� sin ✓

2 )
T , while the

 2 electrons with spinor ~s2 = (� sin ✓

2 , e
i� cos ✓

2 )
T are

totally decoupled from the MF. Denoting the incoming
and outgoing electrons (holes) with energy E relative
to the Fermi energy as  1E(�) ( †

1E(�) ) and  1E(+)

( †
1E(+)) respectively, the scattering matrix of the N/TS

junction is:
✓
 1E(+)
 †

1E(+)

◆
=
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�+ iE

✓
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� iE

◆✓
 1E(�)
 †

1E(�)
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, (3)

where � = 2t̃2/v
F

. From the scattering matrix, we note
that the  1 electrons are reflected as  1 holes with the
same spin with Andreev reflection amplitude �/(�+ iE).
From the spinors ~s1 and ~s2, we note that  1 electrons
have spins parallel to the direction ~

n = h~s1|~�|~s1i =
(sin ✓ cos�, sin ✓ sin�, cos ✓), and  2 electrons have op-
posite spins, where ~� is the Pauli vector. Therefore,
electrons with spin parallel to the ~n directions can cou-
ple to the MF and undergo equal spin Andreev reflec-
tions, whereas electrons with opposite spin are totally
reflected as electrons. We call this phenomenon MF-
induced SESARs. Since the charge current in the lead is
carried by electrons with spin parallel to ~n and counter-
propagating holes with the same spin, the current in the
lead is spin-polarized to the ~n direction.

SESARs of spin-orbit coupled superconducting

wires— The MF induced SESARs is a general phe-
nomenon due to the self-Hermitian property of MFs as
shown above. However, in the e↵ective Hamiltonian ap-
proach, we assumed that the ratio of a/b is energy in-
dependent such that the MF couples to electrons with
spin parallel to ~n, independent of the incoming energy of
the electrons. In this section, we show that this approx-
imation is valid for a wide range of parameter regimes

in realistic topological superconductors. Moreover, the
e↵ective Hamiltonian cannot determine ~n. Therefore, to
be specific, we study a N/TS junction where the topolog-
ical superconductor can be realized experimentally [33–
35] by applying a magnetic field to a spin-orbit coupled
semiconductor wire which is in proximity to an s-wave
superconductor as depicted in Fig.3a.
In the Nambu basis ( 

k", k#, 
†
�k", 

†
�k#), the Hamil-

tonian for the semi-conductor wire in proximity to a su-
perconductor can be written as [29–32]:
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Here,  
k" ( 

k#) denotes a spin up (down) electron with
momentum k, the e↵ective mass and the chemical poten-
tial are denoted by m and µ respectively. The Zeeman
field is denoted by ~V and ↵
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is the Rashba spin-orbit
coupling strength. The Pauli matrices �
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and ⌧
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act on
the spin and particle-hole space respectively.
Suppose the one dimensional superconducting wire oc-

cupies the semi-infinite space with x � 0 and a magnetic
field with magnitude V
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is applied along the z-direction,
there exists a MF end state localized near x = 0 in the
topological regime when V
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tum and ~e1 = [1, 0, 0, 0], ~e2 = [0, 1, 0, 0], ~e3 = [0, 0, 1, 0]
and ~e4 = [0, 0, 0, 1]. Here, d
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denotes the amplitude for
an incoming spin up electron to be reflected as an electron
(e) or hole (h) with spin �. On the other hand, the wave-
function at the Fermi energy on the superconductor side
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that the  1 electrons are reflected as  1 holes with the
same spin with Andreev reflection amplitude �/(�+ iE).
From the spinors ~s1 and ~s2, we note that  1 electrons
have spins parallel to the direction ~
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posite spins, where ~� is the Pauli vector. Therefore,
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ple to the MF and undergo equal spin Andreev reflec-
tions, whereas electrons with opposite spin are totally
reflected as electrons. We call this phenomenon MF-
induced SESARs. Since the charge current in the lead is
carried by electrons with spin parallel to ~n and counter-
propagating holes with the same spin, the current in the
lead is spin-polarized to the ~n direction.
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dependent such that the MF couples to electrons with
spin parallel to ~n, independent of the incoming energy of
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e↵ective Hamiltonian cannot determine ~n. Therefore, to
be specific, we study a N/TS junction where the topolog-
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(e) or hole (h) with spin �. On the other hand, the wave-
function at the Fermi energy on the superconductor side
 

S

(x) can be written as the linear combination of the
four-component vectors associated with ~�

i

in Eq.5. We
note that the wavefunction has to satisfy the continuity

2

ten as:

H
T

= H
L

+H
c

,

H
L

= �iv
F

P
↵2"/#

R +1
�1  †

↵

(x)@
x

 
↵

(x)dx,

H
c

= t̃�[a "(0) + b #(0)� a⇤ †
"(0)� b⇤ †

#(0)].

(1)

Here, H
L

describes the normal lead with spin up and spin
down electrons  "/#(x) and Fermi velocity v

F

. The most
general form of coupling between the MF end state � and
the lead is described by H

c

, where t̃ is a real number and
a and b are complex numbers. The form of H

c

is deter-
mined by the self-Hermitian property of the MF � = �†.
Without loss of generality, one can set |a|2 + |b|2 = 1. It
is important to note that using a unitary transformation
 1 = a "+b # and  2 = �b⇤ "+a⇤ #, the Hamiltonian
becomes

H
L

= �iv
F

P
↵21/2

R +1
�1  †

↵

(x)@
x

 
↵

(x)dx,

H
c

= t̃�[ 1(0)� †
1(0)].

(2)

Evidently, the MF only couples to the  1 electrons with
spinor ~s1 = |a|(1, b/a)T = (cos ✓

2 , e
i� sin ✓

2 )
T , while the

 2 electrons with spinor ~s2 = (� sin ✓

2 , e
i� cos ✓

2 )
T are

totally decoupled from the MF. Denoting the incoming
and outgoing electrons (holes) with energy E relative
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propagating holes with the same spin, the current in the
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ical superconductor can be realized experimentally [33–
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In this work, we find that Majorana fermions induce selective equal spin Andreev reflections
(SESARs), in which incoming electrons with certain spin polarization in the lead are reflected as
counter propagating holes with the same spin. The spin polarization direction of the electrons of this
Andreev reflected channel is selected by the Majorana fermions. Moreover, electrons with opposite
spin polarization are always reflected as electrons with unchanged spin. As a result, the charge
current in the lead is spin-polarized. Therefore, a topological superconductor which supports Majo-
rana fermions can be used as a novel device to create fully spin-polarized currents in paramagnetic
leads. We point out that SESARs can also be used to detect Majorana fermions in topological
superconductors.

Introduction— A Majorana fermion (MF) [1, 2] is
an anti-particle of itself. Due to this self-Hermitian
property, a MF has only half the degrees of freedom of
a Dirac fermion and two spatially separated MFs can
form a non-local Dirac fermion. This special property
of MFs leads to several interesting phenomena such as
fractional Josephson e↵ects [2–6], resonant Andreev re-
flections [7, 8], electron teleportations [9, 10], enhanced
[11] and even resonant [12] crossed Andreev reflections.
Moreover, MFs in condensed matter systems obey non-
Abelian statistics [13–17] and have potential applications
in fault-tolerant quantum computations [18, 19]. Due
to these remarkable properties of MFs, the search for
topological superconductors which host MFs has become
one of the most important subjects in condensed matter
physics in recent years.

In this work, we point out another intriguing phe-
nomenon due to MFs, namely, MF-induced selective

equal spin Andreev reflections (SESARs). As depicted in
Fig.1, when a spinful paramagnetic normal lead is cou-
pled to a topological superconductor through its MF end
state, electrons with spin pointing to a certain direction ~

n

are reflected as holes with the same spin (Fig.1a), where
~
n is determined by the properties of the topological su-
perconductor. Importantly, electrons with opposite spin
are completely decoupled from the MF and they are re-
flected as electrons with unchanged spin (Fig.1b). As
a result, ordinary Andreev reflection processes [20], in
which electrons with certain spin are reflected as holes
with opposite spin, cannot take place if the Andreev re-
flections are induced by MFs.

Pure equal spin Andreev reflections can take place at
a half-metal/superconductor interface if spin is not con-
served at the interface [21–28]. This is because conduct-
ing electrons in a half-metal are fully spin-polarized and
usual Andreev reflection processes cannot occur. Nev-
ertheless, as we show below, inducing SESARs in para-
magnetic leads is a special property of MFs due to their
self-Hermitian characteristic. Importantly, as in the half-
metal case and depicted in Fig.1a, the charge current
in the normal lead is fully spin-polarized since the cur-

FIG. 1: A paramagnetic normal lead (N) is coupled to a
topological superconductor (TS) with MF end states. The
zero energy MF mode is denoted by the horizontal line inside
the bulk gap of the TS. (a) Electrons with a specific spin
polarization can undergo equal spin Andreev reflections in
which an electron is reflected as a hole with the same spin.
However, the resulting Cooper pair in the superconductor can
be a spin singlet if spin is not conserved due to spin-orbit
coupling. (b) Electrons with opposite spin are totally reflected
as electrons with unchanged spin.

rent is carried by right-moving electrons and counter-
propagating holes with the same spin. Therefore, a topo-
logical superconductor which supports MFs can be used
as a novel device for inducing fully spin-polarized cur-
rents in paramagnetic leads.

In the following sections, we first show, using an e↵ec-
tive Hamiltonian approach, that SESARs are due to the
self-Hermitian property of MFs. Second, to be more spe-
cific, we calculate the spin polarization axis ~n of a normal
lead-topological superconductor (N/TS) junction. The
topological superconductor is engineered by applying an
external magnetic field to a semi-conductor wire in prox-
imity to an s-wave superconductor [29–32]. Third, we
demonstrate how SESARs can be used to detect MFs in
topological superconductors using a spin-polarized lead.

Majorana-induced SESARs— The low energy
transport properties of a N/TS junction can be well de-
scribed by an e↵ective Hamiltonian which includes the
lead and the coupling between the lead and the MF
[6, 9, 11]. The e↵ective Hamiltonian H

T

can be writ-
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totally decoupled from the MF. Denoting the incoming
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that the  1 electrons are reflected as  1 holes with the
same spin with Andreev reflection amplitude �/(�+ iE).
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(sin ✓ cos�, sin ✓ sin�, cos ✓), and  2 electrons have op-
posite spins, where ~� is the Pauli vector. Therefore,
electrons with spin parallel to the ~n directions can cou-
ple to the MF and undergo equal spin Andreev reflec-
tions, whereas electrons with opposite spin are totally
reflected as electrons. We call this phenomenon MF-
induced SESARs. Since the charge current in the lead is
carried by electrons with spin parallel to ~n and counter-
propagating holes with the same spin, the current in the
lead is spin-polarized to the ~n direction.
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wires— The MF induced SESARs is a general phe-
nomenon due to the self-Hermitian property of MFs as
shown above. However, in the e↵ective Hamiltonian ap-
proach, we assumed that the ratio of a/b is energy in-
dependent such that the MF couples to electrons with
spin parallel to ~n, independent of the incoming energy of
the electrons. In this section, we show that this approx-
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e↵ective Hamiltonian cannot determine ~n. Therefore, to
be specific, we study a N/TS junction where the topolog-
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(e) or hole (h) with spin �. On the other hand, the wave-
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that the  1 electrons are reflected as  1 holes with the
same spin with Andreev reflection amplitude �/(�+ iE).
From the spinors ~s1 and ~s2, we note that  1 electrons
have spins parallel to the direction ~

n = h~s1|~�|~s1i =
(sin ✓ cos�, sin ✓ sin�, cos ✓), and  2 electrons have op-
posite spins, where ~� is the Pauli vector. Therefore,
electrons with spin parallel to the ~n directions can cou-
ple to the MF and undergo equal spin Andreev reflec-
tions, whereas electrons with opposite spin are totally
reflected as electrons. We call this phenomenon MF-
induced SESARs. Since the charge current in the lead is
carried by electrons with spin parallel to ~n and counter-
propagating holes with the same spin, the current in the
lead is spin-polarized to the ~n direction.

SESARs of spin-orbit coupled superconducting

wires— The MF induced SESARs is a general phe-
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shown above. However, in the e↵ective Hamiltonian ap-
proach, we assumed that the ratio of a/b is energy in-
dependent such that the MF couples to electrons with
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the electrons. In this section, we show that this approx-
imation is valid for a wide range of parameter regimes

in realistic topological superconductors. Moreover, the
e↵ective Hamiltonian cannot determine ~n. Therefore, to
be specific, we study a N/TS junction where the topolog-
ical superconductor can be realized experimentally [33–
35] by applying a magnetic field to a spin-orbit coupled
semiconductor wire which is in proximity to an s-wave
superconductor as depicted in Fig.3a.
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have spins parallel to the direction ~
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electrons with spin parallel to the ~n directions can cou-
ple to the MF and undergo equal spin Andreev reflec-
tions, whereas electrons with opposite spin are totally
reflected as electrons. We call this phenomenon MF-
induced SESARs. Since the charge current in the lead is
carried by electrons with spin parallel to ~n and counter-
propagating holes with the same spin, the current in the
lead is spin-polarized to the ~n direction.
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wires— The MF induced SESARs is a general phe-
nomenon due to the self-Hermitian property of MFs as
shown above. However, in the e↵ective Hamiltonian ap-
proach, we assumed that the ratio of a/b is energy in-
dependent such that the MF couples to electrons with
spin parallel to ~n, independent of the incoming energy of
the electrons. In this section, we show that this approx-
imation is valid for a wide range of parameter regimes

in realistic topological superconductors. Moreover, the
e↵ective Hamiltonian cannot determine ~n. Therefore, to
be specific, we study a N/TS junction where the topolog-
ical superconductor can be realized experimentally [33–
35] by applying a magnetic field to a spin-orbit coupled
semiconductor wire which is in proximity to an s-wave
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In this work, we find that Majorana fermions induce selective equal spin Andreev reflections
(SESARs), in which incoming electrons with certain spin polarization in the lead are reflected as
counter propagating holes with the same spin. The spin polarization direction of the electrons of this
Andreev reflected channel is selected by the Majorana fermions. Moreover, electrons with opposite
spin polarization are always reflected as electrons with unchanged spin. As a result, the charge
current in the lead is spin-polarized. Therefore, a topological superconductor which supports Majo-
rana fermions can be used as a novel device to create fully spin-polarized currents in paramagnetic
leads. We point out that SESARs can also be used to detect Majorana fermions in topological
superconductors.

Introduction— A Majorana fermion (MF) [1, 2] is
an anti-particle of itself. Due to this self-Hermitian
property, a MF has only half the degrees of freedom of
a Dirac fermion and two spatially separated MFs can
form a non-local Dirac fermion. This special property
of MFs leads to several interesting phenomena such as
fractional Josephson e↵ects [2–6], resonant Andreev re-
flections [7, 8], electron teleportations [9, 10], enhanced
[11] and even resonant [12] crossed Andreev reflections.
Moreover, MFs in condensed matter systems obey non-
Abelian statistics [13–17] and have potential applications
in fault-tolerant quantum computations [18, 19]. Due
to these remarkable properties of MFs, the search for
topological superconductors which host MFs has become
one of the most important subjects in condensed matter
physics in recent years.

In this work, we point out another intriguing phe-
nomenon due to MFs, namely, MF-induced selective

equal spin Andreev reflections (SESARs). As depicted in
Fig.1, when a spinful paramagnetic normal lead is cou-
pled to a topological superconductor through its MF end
state, electrons with spin pointing to a certain direction ~

n

are reflected as holes with the same spin (Fig.1a), where
~
n is determined by the properties of the topological su-
perconductor. Importantly, electrons with opposite spin
are completely decoupled from the MF and they are re-
flected as electrons with unchanged spin (Fig.1b). As
a result, ordinary Andreev reflection processes [20], in
which electrons with certain spin are reflected as holes
with opposite spin, cannot take place if the Andreev re-
flections are induced by MFs.

Pure equal spin Andreev reflections can take place at
a half-metal/superconductor interface if spin is not con-
served at the interface [21–28]. This is because conduct-
ing electrons in a half-metal are fully spin-polarized and
usual Andreev reflection processes cannot occur. Nev-
ertheless, as we show below, inducing SESARs in para-
magnetic leads is a special property of MFs due to their
self-Hermitian characteristic. Importantly, as in the half-
metal case and depicted in Fig.1a, the charge current
in the normal lead is fully spin-polarized since the cur-

FIG. 1: A paramagnetic normal lead (N) is coupled to a
topological superconductor (TS) with MF end states. The
zero energy MF mode is denoted by the horizontal line inside
the bulk gap of the TS. (a) Electrons with a specific spin
polarization can undergo equal spin Andreev reflections in
which an electron is reflected as a hole with the same spin.
However, the resulting Cooper pair in the superconductor can
be a spin singlet if spin is not conserved due to spin-orbit
coupling. (b) Electrons with opposite spin are totally reflected
as electrons with unchanged spin.

rent is carried by right-moving electrons and counter-
propagating holes with the same spin. Therefore, a topo-
logical superconductor which supports MFs can be used
as a novel device for inducing fully spin-polarized cur-
rents in paramagnetic leads.

In the following sections, we first show, using an e↵ec-
tive Hamiltonian approach, that SESARs are due to the
self-Hermitian property of MFs. Second, to be more spe-
cific, we calculate the spin polarization axis ~n of a normal
lead-topological superconductor (N/TS) junction. The
topological superconductor is engineered by applying an
external magnetic field to a semi-conductor wire in prox-
imity to an s-wave superconductor [29–32]. Third, we
demonstrate how SESARs can be used to detect MFs in
topological superconductors using a spin-polarized lead.

Majorana-induced SESARs— The low energy
transport properties of a N/TS junction can be well de-
scribed by an e↵ective Hamiltonian which includes the
lead and the coupling between the lead and the MF
[6, 9, 11]. The e↵ective Hamiltonian H

T

can be writ-
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posite spins, where ~� is the Pauli vector. Therefore,
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reflected as electrons. We call this phenomenon MF-
induced SESARs. Since the charge current in the lead is
carried by electrons with spin parallel to ~n and counter-
propagating holes with the same spin, the current in the
lead is spin-polarized to the ~n direction.

SESARs of spin-orbit coupled superconducting

wires— The MF induced SESARs is a general phe-
nomenon due to the self-Hermitian property of MFs as
shown above. However, in the e↵ective Hamiltonian ap-
proach, we assumed that the ratio of a/b is energy in-
dependent such that the MF couples to electrons with
spin parallel to ~n, independent of the incoming energy of
the electrons. In this section, we show that this approx-
imation is valid for a wide range of parameter regimes

in realistic topological superconductors. Moreover, the
e↵ective Hamiltonian cannot determine ~n. Therefore, to
be specific, we study a N/TS junction where the topolog-
ical superconductor can be realized experimentally [33–
35] by applying a magnetic field to a spin-orbit coupled
semiconductor wire which is in proximity to an s-wave
superconductor as depicted in Fig.3a.
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an incoming spin up electron to be reflected as an electron
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�† = �. In general, the Majorana mode can be written
as:
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for ~�1, ~�2 and ~�3, and ~�4 = [�24/(2m) + V
z

,�� ↵
R

�4]T .
Assuming that the lead can be described by the

Hamiltonian H
L

= (k2/2m
L

� µ)�0⌧z, the wavefunc-
tion in the lead at the Fermi energy can be written
as  
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x, where k
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is the Fermi momen-
tum and ~e1 = [1, 0, 0, 0], ~e2 = [0, 1, 0, 0], ~e3 = [0, 0, 1, 0]
and ~e4 = [0, 0, 0, 1]. Here, d

↵,�

denotes the amplitude for
an incoming spin up electron to be reflected as an electron
(e) or hole (h) with spin �. On the other hand, the wave-
function at the Fermi energy on the superconductor side
 

S

(x) can be written as the linear combination of the
four-component vectors associated with ~�

i

in Eq.5. We
note that the wavefunction has to satisfy the continuity
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Reminder: Andreev reflection

• Normal metal / superconductor interface: Andreev reflection possible

incoming electron of spin            hole of spin     

• Important for instance for Andreev bound states in dots, crossed Andreev 
reflections (entanglement), ...
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Spin selectivity of the Majorana bound state

• Majorana only couples to half of the modes in the normal lead:

• Define
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Here, H
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describes the normal lead with spin up and spin
down electrons  "/#(x) and Fermi velocity v
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. The most
general form of coupling between the MF end state � and
the lead is described by H

c

, where t̃ is a real number and
a and b are complex numbers. The form of H
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is deter-
mined by the self-Hermitian property of the MF � = �†.
Without loss of generality, one can set |a|2 + |b|2 = 1. It
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totally decoupled from the MF. Denoting the incoming
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1E(+)) respectively, the scattering matrix of the N/TS
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imation is valid for a wide range of parameter regimes
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e↵ective Hamiltonian cannot determine ~n. Therefore, to
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ical superconductor can be realized experimentally [33–
35] by applying a magnetic field to a spin-orbit coupled
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denotes the amplitude for
an incoming spin up electron to be reflected as an electron
(e) or hole (h) with spin �. On the other hand, the wave-
function at the Fermi energy on the superconductor side
 

S

(x) can be written as the linear combination of the
four-component vectors associated with ~�
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Majorana Fermion induced selective equal spin Andreev reflections
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In this work, we find that Majorana fermions induce selective equal spin Andreev reflections
(SESARs), in which incoming electrons with certain spin polarization in the lead are reflected as
counter propagating holes with the same spin. The spin polarization direction of the electrons of this
Andreev reflected channel is selected by the Majorana fermions. Moreover, electrons with opposite
spin polarization are always reflected as electrons with unchanged spin. As a result, the charge
current in the lead is spin-polarized. Therefore, a topological superconductor which supports Majo-
rana fermions can be used as a novel device to create fully spin-polarized currents in paramagnetic
leads. We point out that SESARs can also be used to detect Majorana fermions in topological
superconductors.

Introduction— A Majorana fermion (MF) [1, 2] is
an anti-particle of itself. Due to this self-Hermitian
property, a MF has only half the degrees of freedom of
a Dirac fermion and two spatially separated MFs can
form a non-local Dirac fermion. This special property
of MFs leads to several interesting phenomena such as
fractional Josephson e↵ects [2–6], resonant Andreev re-
flections [7, 8], electron teleportations [9, 10], enhanced
[11] and even resonant [12] crossed Andreev reflections.
Moreover, MFs in condensed matter systems obey non-
Abelian statistics [13–17] and have potential applications
in fault-tolerant quantum computations [18, 19]. Due
to these remarkable properties of MFs, the search for
topological superconductors which host MFs has become
one of the most important subjects in condensed matter
physics in recent years.

In this work, we point out another intriguing phe-
nomenon due to MFs, namely, MF-induced selective

equal spin Andreev reflections (SESARs). As depicted in
Fig.1, when a spinful paramagnetic normal lead is cou-
pled to a topological superconductor through its MF end
state, electrons with spin pointing to a certain direction ~

n

are reflected as holes with the same spin (Fig.1a), where
~
n is determined by the properties of the topological su-
perconductor. Importantly, electrons with opposite spin
are completely decoupled from the MF and they are re-
flected as electrons with unchanged spin (Fig.1b). As
a result, ordinary Andreev reflection processes [20], in
which electrons with certain spin are reflected as holes
with opposite spin, cannot take place if the Andreev re-
flections are induced by MFs.

Pure equal spin Andreev reflections can take place at
a half-metal/superconductor interface if spin is not con-
served at the interface [21–28]. This is because conduct-
ing electrons in a half-metal are fully spin-polarized and
usual Andreev reflection processes cannot occur. Nev-
ertheless, as we show below, inducing SESARs in para-
magnetic leads is a special property of MFs due to their
self-Hermitian characteristic. Importantly, as in the half-
metal case and depicted in Fig.1a, the charge current
in the normal lead is fully spin-polarized since the cur-

FIG. 1: A paramagnetic normal lead (N) is coupled to a
topological superconductor (TS) with MF end states. The
zero energy MF mode is denoted by the horizontal line inside
the bulk gap of the TS. (a) Electrons with a specific spin
polarization can undergo equal spin Andreev reflections in
which an electron is reflected as a hole with the same spin.
However, the resulting Cooper pair in the superconductor can
be a spin singlet if spin is not conserved due to spin-orbit
coupling. (b) Electrons with opposite spin are totally reflected
as electrons with unchanged spin.

rent is carried by right-moving electrons and counter-
propagating holes with the same spin. Therefore, a topo-
logical superconductor which supports MFs can be used
as a novel device for inducing fully spin-polarized cur-
rents in paramagnetic leads.

In the following sections, we first show, using an e↵ec-
tive Hamiltonian approach, that SESARs are due to the
self-Hermitian property of MFs. Second, to be more spe-
cific, we calculate the spin polarization axis ~n of a normal
lead-topological superconductor (N/TS) junction. The
topological superconductor is engineered by applying an
external magnetic field to a semi-conductor wire in prox-
imity to an s-wave superconductor [29–32]. Third, we
demonstrate how SESARs can be used to detect MFs in
topological superconductors using a spin-polarized lead.

Majorana-induced SESARs— The low energy
transport properties of a N/TS junction can be well de-
scribed by an e↵ective Hamiltonian which includes the
lead and the coupling between the lead and the MF
[6, 9, 11]. The e↵ective Hamiltonian H

T

can be writ-
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Spin selectivity of the Majorana bound state

• Majorana only couples to half of the modes in the normal lead:
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Here, H
L

describes the normal lead with spin up and spin
down electrons  "/#(x) and Fermi velocity v

F

. The most
general form of coupling between the MF end state � and
the lead is described by H

c

, where t̃ is a real number and
a and b are complex numbers. The form of H

c

is deter-
mined by the self-Hermitian property of the MF � = �†.
Without loss of generality, one can set |a|2 + |b|2 = 1. It
is important to note that using a unitary transformation
 1 = a "+b # and  2 = �b⇤ "+a⇤ #, the Hamiltonian
becomes
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= t̃�[ 1(0)� †
1(0)].

(2)

Evidently, the MF only couples to the  1 electrons with
spinor ~s1 = |a|(1, b/a)T = (cos ✓

2 , e
i� sin ✓

2 )
T , while the

 2 electrons with spinor ~s2 = (� sin ✓

2 , e
i� cos ✓

2 )
T are

totally decoupled from the MF. Denoting the incoming
and outgoing electrons (holes) with energy E relative
to the Fermi energy as  1E(�) ( †

1E(�) ) and  1E(+)

( †
1E(+)) respectively, the scattering matrix of the N/TS

junction is:
✓
 1E(+)
 †

1E(+)

◆
=

1

�+ iE

✓
iE �
� iE

◆✓
 1E(�)
 †

1E(�)

◆
, (3)

where � = 2t̃2/v
F

. From the scattering matrix, we note
that the  1 electrons are reflected as  1 holes with the
same spin with Andreev reflection amplitude �/(�+ iE).
From the spinors ~s1 and ~s2, we note that  1 electrons
have spins parallel to the direction ~

n = h~s1|~�|~s1i =
(sin ✓ cos�, sin ✓ sin�, cos ✓), and  2 electrons have op-
posite spins, where ~� is the Pauli vector. Therefore,
electrons with spin parallel to the ~n directions can cou-
ple to the MF and undergo equal spin Andreev reflec-
tions, whereas electrons with opposite spin are totally
reflected as electrons. We call this phenomenon MF-
induced SESARs. Since the charge current in the lead is
carried by electrons with spin parallel to ~n and counter-
propagating holes with the same spin, the current in the
lead is spin-polarized to the ~n direction.

SESARs of spin-orbit coupled superconducting

wires— The MF induced SESARs is a general phe-
nomenon due to the self-Hermitian property of MFs as
shown above. However, in the e↵ective Hamiltonian ap-
proach, we assumed that the ratio of a/b is energy in-
dependent such that the MF couples to electrons with
spin parallel to ~n, independent of the incoming energy of
the electrons. In this section, we show that this approx-
imation is valid for a wide range of parameter regimes

in realistic topological superconductors. Moreover, the
e↵ective Hamiltonian cannot determine ~n. Therefore, to
be specific, we study a N/TS junction where the topolog-
ical superconductor can be realized experimentally [33–
35] by applying a magnetic field to a spin-orbit coupled
semiconductor wire which is in proximity to an s-wave
superconductor as depicted in Fig.3a.
In the Nambu basis ( 

k", k#, 
†
�k", 

†
�k#), the Hamil-

tonian for the semi-conductor wire in proximity to a su-
perconductor can be written as [29–32]:
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Here,  
k" ( 

k#) denotes a spin up (down) electron with
momentum k, the e↵ective mass and the chemical poten-
tial are denoted by m and µ respectively. The Zeeman
field is denoted by ~V and ↵

R

is the Rashba spin-orbit
coupling strength. The Pauli matrices �

i

and ⌧
i

act on
the spin and particle-hole space respectively.
Suppose the one dimensional superconducting wire oc-

cupies the semi-infinite space with x � 0 and a magnetic
field with magnitude V
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is applied along the z-direction,
there exists a MF end state localized near x = 0 in the
topological regime when V
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2 > µ2 + �2. The MF end
state � satisfies the condition H1D(k ! �i@

x

)� = 0 with
�† = �. In general, the Majorana mode can be written
as:

�(x) =
3X

i=1

�
i

 
~�
i

~�
i

!
e��

i

x + �4

 
~�4
�~�4

!
e��4x, (5)

where �
i

are the four solutions of the following two quar-
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reflected as electrons. We call this phenomenon MF-
induced SESARs. Since the charge current in the lead is
carried by electrons with spin parallel to ~n and counter-
propagating holes with the same spin, the current in the
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e↵ective Hamiltonian cannot determine ~n. Therefore, to
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ical superconductor can be realized experimentally [33–
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Assuming that the lead can be described by the
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denotes the amplitude for
an incoming spin up electron to be reflected as an electron
(e) or hole (h) with spin �. On the other hand, the wave-
function at the Fermi energy on the superconductor side
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In this work, we find that Majorana fermions induce selective equal spin Andreev reflections
(SESARs), in which incoming electrons with certain spin polarization in the lead are reflected as
counter propagating holes with the same spin. The spin polarization direction of the electrons of this
Andreev reflected channel is selected by the Majorana fermions. Moreover, electrons with opposite
spin polarization are always reflected as electrons with unchanged spin. As a result, the charge
current in the lead is spin-polarized. Therefore, a topological superconductor which supports Majo-
rana fermions can be used as a novel device to create fully spin-polarized currents in paramagnetic
leads. We point out that SESARs can also be used to detect Majorana fermions in topological
superconductors.

Introduction— A Majorana fermion (MF) [1, 2] is
an anti-particle of itself. Due to this self-Hermitian
property, a MF has only half the degrees of freedom of
a Dirac fermion and two spatially separated MFs can
form a non-local Dirac fermion. This special property
of MFs leads to several interesting phenomena such as
fractional Josephson e↵ects [2–6], resonant Andreev re-
flections [7, 8], electron teleportations [9, 10], enhanced
[11] and even resonant [12] crossed Andreev reflections.
Moreover, MFs in condensed matter systems obey non-
Abelian statistics [13–17] and have potential applications
in fault-tolerant quantum computations [18, 19]. Due
to these remarkable properties of MFs, the search for
topological superconductors which host MFs has become
one of the most important subjects in condensed matter
physics in recent years.

In this work, we point out another intriguing phe-
nomenon due to MFs, namely, MF-induced selective

equal spin Andreev reflections (SESARs). As depicted in
Fig.1, when a spinful paramagnetic normal lead is cou-
pled to a topological superconductor through its MF end
state, electrons with spin pointing to a certain direction ~

n

are reflected as holes with the same spin (Fig.1a), where
~
n is determined by the properties of the topological su-
perconductor. Importantly, electrons with opposite spin
are completely decoupled from the MF and they are re-
flected as electrons with unchanged spin (Fig.1b). As
a result, ordinary Andreev reflection processes [20], in
which electrons with certain spin are reflected as holes
with opposite spin, cannot take place if the Andreev re-
flections are induced by MFs.

Pure equal spin Andreev reflections can take place at
a half-metal/superconductor interface if spin is not con-
served at the interface [21–28]. This is because conduct-
ing electrons in a half-metal are fully spin-polarized and
usual Andreev reflection processes cannot occur. Nev-
ertheless, as we show below, inducing SESARs in para-
magnetic leads is a special property of MFs due to their
self-Hermitian characteristic. Importantly, as in the half-
metal case and depicted in Fig.1a, the charge current
in the normal lead is fully spin-polarized since the cur-

FIG. 1: A paramagnetic normal lead (N) is coupled to a
topological superconductor (TS) with MF end states. The
zero energy MF mode is denoted by the horizontal line inside
the bulk gap of the TS. (a) Electrons with a specific spin
polarization can undergo equal spin Andreev reflections in
which an electron is reflected as a hole with the same spin.
However, the resulting Cooper pair in the superconductor can
be a spin singlet if spin is not conserved due to spin-orbit
coupling. (b) Electrons with opposite spin are totally reflected
as electrons with unchanged spin.

rent is carried by right-moving electrons and counter-
propagating holes with the same spin. Therefore, a topo-
logical superconductor which supports MFs can be used
as a novel device for inducing fully spin-polarized cur-
rents in paramagnetic leads.

In the following sections, we first show, using an e↵ec-
tive Hamiltonian approach, that SESARs are due to the
self-Hermitian property of MFs. Second, to be more spe-
cific, we calculate the spin polarization axis ~n of a normal
lead-topological superconductor (N/TS) junction. The
topological superconductor is engineered by applying an
external magnetic field to a semi-conductor wire in prox-
imity to an s-wave superconductor [29–32]. Third, we
demonstrate how SESARs can be used to detect MFs in
topological superconductors using a spin-polarized lead.

Majorana-induced SESARs— The low energy
transport properties of a N/TS junction can be well de-
scribed by an e↵ective Hamiltonian which includes the
lead and the coupling between the lead and the MF
[6, 9, 11]. The e↵ective Hamiltonian H

T

can be writ-
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Scattering of electrons at Majorana

• Scattering matrix for incoming electron of energy E in state 
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Here, H
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describes the normal lead with spin up and spin
down electrons  "/#(x) and Fermi velocity v

F

. The most
general form of coupling between the MF end state � and
the lead is described by H

c

, where t̃ is a real number and
a and b are complex numbers. The form of H

c

is deter-
mined by the self-Hermitian property of the MF � = �†.
Without loss of generality, one can set |a|2 + |b|2 = 1. It
is important to note that using a unitary transformation
 1 = a "+b # and  2 = �b⇤ "+a⇤ #, the Hamiltonian
becomes
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Evidently, the MF only couples to the  1 electrons with
spinor ~s1 = |a|(1, b/a)T = (cos ✓

2 , e
i� sin ✓

2 )
T , while the

 2 electrons with spinor ~s2 = (� sin ✓

2 , e
i� cos ✓

2 )
T are

totally decoupled from the MF. Denoting the incoming
and outgoing electrons (holes) with energy E relative
to the Fermi energy as  1E(�) ( †

1E(�) ) and  1E(+)

( †
1E(+)) respectively, the scattering matrix of the N/TS

junction is:
✓
 1E(+)
 †
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=
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◆✓
 1E(�)
 †

1E(�)
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, (3)

where � = 2t̃2/v
F

. From the scattering matrix, we note
that the  1 electrons are reflected as  1 holes with the
same spin with Andreev reflection amplitude �/(�+ iE).
From the spinors ~s1 and ~s2, we note that  1 electrons
have spins parallel to the direction ~

n = h~s1|~�|~s1i =
(sin ✓ cos�, sin ✓ sin�, cos ✓), and  2 electrons have op-
posite spins, where ~� is the Pauli vector. Therefore,
electrons with spin parallel to the ~n directions can cou-
ple to the MF and undergo equal spin Andreev reflec-
tions, whereas electrons with opposite spin are totally
reflected as electrons. We call this phenomenon MF-
induced SESARs. Since the charge current in the lead is
carried by electrons with spin parallel to ~n and counter-
propagating holes with the same spin, the current in the
lead is spin-polarized to the ~n direction.

SESARs of spin-orbit coupled superconducting

wires— The MF induced SESARs is a general phe-
nomenon due to the self-Hermitian property of MFs as
shown above. However, in the e↵ective Hamiltonian ap-
proach, we assumed that the ratio of a/b is energy in-
dependent such that the MF couples to electrons with
spin parallel to ~n, independent of the incoming energy of
the electrons. In this section, we show that this approx-
imation is valid for a wide range of parameter regimes

in realistic topological superconductors. Moreover, the
e↵ective Hamiltonian cannot determine ~n. Therefore, to
be specific, we study a N/TS junction where the topolog-
ical superconductor can be realized experimentally [33–
35] by applying a magnetic field to a spin-orbit coupled
semiconductor wire which is in proximity to an s-wave
superconductor as depicted in Fig.3a.
In the Nambu basis ( 

k", k#, 
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�k", 
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�k#), the Hamil-

tonian for the semi-conductor wire in proximity to a su-
perconductor can be written as [29–32]:
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Here,  
k" ( 

k#) denotes a spin up (down) electron with
momentum k, the e↵ective mass and the chemical poten-
tial are denoted by m and µ respectively. The Zeeman
field is denoted by ~V and ↵

R

is the Rashba spin-orbit
coupling strength. The Pauli matrices �
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and ⌧
i

act on
the spin and particle-hole space respectively.
Suppose the one dimensional superconducting wire oc-

cupies the semi-infinite space with x � 0 and a magnetic
field with magnitude V
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is applied along the z-direction,
there exists a MF end state localized near x = 0 in the
topological regime when V
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2 > µ2 + �2. The MF end
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denotes the amplitude for
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that the  1 electrons are reflected as  1 holes with the
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imation is valid for a wide range of parameter regimes

in realistic topological superconductors. Moreover, the
e↵ective Hamiltonian cannot determine ~n. Therefore, to
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2 > µ2 + �2. The MF end
state � satisfies the condition H1D(k ! �i@
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)� = 0 with
�† = �. In general, the Majorana mode can be written
as:
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Assuming that the lead can be described by the

Hamiltonian H
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� µ)�0⌧z, the wavefunc-
tion in the lead at the Fermi energy can be written
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x, where k
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tum and ~e1 = [1, 0, 0, 0], ~e2 = [0, 1, 0, 0], ~e3 = [0, 0, 1, 0]
and ~e4 = [0, 0, 0, 1]. Here, d
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denotes the amplitude for
an incoming spin up electron to be reflected as an electron
(e) or hole (h) with spin �. On the other hand, the wave-
function at the Fermi energy on the superconductor side
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(x) can be written as the linear combination of the
four-component vectors associated with ~�
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in Eq.5. We
note that the wavefunction has to satisfy the continuity
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In this work, we find that Majorana fermions induce selective equal spin Andreev reflections
(SESARs), in which incoming electrons with certain spin polarization in the lead are reflected as
counter propagating holes with the same spin. The spin polarization direction of the electrons of this
Andreev reflected channel is selected by the Majorana fermions. Moreover, electrons with opposite
spin polarization are always reflected as electrons with unchanged spin. As a result, the charge
current in the lead is spin-polarized. Therefore, a topological superconductor which supports Majo-
rana fermions can be used as a novel device to create fully spin-polarized currents in paramagnetic
leads. We point out that SESARs can also be used to detect Majorana fermions in topological
superconductors.

Introduction— A Majorana fermion (MF) [1, 2] is
an anti-particle of itself. Due to this self-Hermitian
property, a MF has only half the degrees of freedom of
a Dirac fermion and two spatially separated MFs can
form a non-local Dirac fermion. This special property
of MFs leads to several interesting phenomena such as
fractional Josephson e↵ects [2–6], resonant Andreev re-
flections [7, 8], electron teleportations [9, 10], enhanced
[11] and even resonant [12] crossed Andreev reflections.
Moreover, MFs in condensed matter systems obey non-
Abelian statistics [13–17] and have potential applications
in fault-tolerant quantum computations [18, 19]. Due
to these remarkable properties of MFs, the search for
topological superconductors which host MFs has become
one of the most important subjects in condensed matter
physics in recent years.

In this work, we point out another intriguing phe-
nomenon due to MFs, namely, MF-induced selective

equal spin Andreev reflections (SESARs). As depicted in
Fig.1, when a spinful paramagnetic normal lead is cou-
pled to a topological superconductor through its MF end
state, electrons with spin pointing to a certain direction ~

n

are reflected as holes with the same spin (Fig.1a), where
~
n is determined by the properties of the topological su-
perconductor. Importantly, electrons with opposite spin
are completely decoupled from the MF and they are re-
flected as electrons with unchanged spin (Fig.1b). As
a result, ordinary Andreev reflection processes [20], in
which electrons with certain spin are reflected as holes
with opposite spin, cannot take place if the Andreev re-
flections are induced by MFs.

Pure equal spin Andreev reflections can take place at
a half-metal/superconductor interface if spin is not con-
served at the interface [21–28]. This is because conduct-
ing electrons in a half-metal are fully spin-polarized and
usual Andreev reflection processes cannot occur. Nev-
ertheless, as we show below, inducing SESARs in para-
magnetic leads is a special property of MFs due to their
self-Hermitian characteristic. Importantly, as in the half-
metal case and depicted in Fig.1a, the charge current
in the normal lead is fully spin-polarized since the cur-

FIG. 1: A paramagnetic normal lead (N) is coupled to a
topological superconductor (TS) with MF end states. The
zero energy MF mode is denoted by the horizontal line inside
the bulk gap of the TS. (a) Electrons with a specific spin
polarization can undergo equal spin Andreev reflections in
which an electron is reflected as a hole with the same spin.
However, the resulting Cooper pair in the superconductor can
be a spin singlet if spin is not conserved due to spin-orbit
coupling. (b) Electrons with opposite spin are totally reflected
as electrons with unchanged spin.

rent is carried by right-moving electrons and counter-
propagating holes with the same spin. Therefore, a topo-
logical superconductor which supports MFs can be used
as a novel device for inducing fully spin-polarized cur-
rents in paramagnetic leads.

In the following sections, we first show, using an e↵ec-
tive Hamiltonian approach, that SESARs are due to the
self-Hermitian property of MFs. Second, to be more spe-
cific, we calculate the spin polarization axis ~n of a normal
lead-topological superconductor (N/TS) junction. The
topological superconductor is engineered by applying an
external magnetic field to a semi-conductor wire in prox-
imity to an s-wave superconductor [29–32]. Third, we
demonstrate how SESARs can be used to detect MFs in
topological superconductors using a spin-polarized lead.

Majorana-induced SESARs— The low energy
transport properties of a N/TS junction can be well de-
scribed by an e↵ective Hamiltonian which includes the
lead and the coupling between the lead and the MF
[6, 9, 11]. The e↵ective Hamiltonian H

T

can be writ-
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Introduction— A Majorana fermion (MF) [1, 2] is
an anti-particle of itself. Due to this self-Hermitian
property, a MF has only half the degrees of freedom of
a Dirac fermion and two spatially separated MFs can
form a non-local Dirac fermion. This special property
of MFs leads to several interesting phenomena such as
fractional Josephson e↵ects [2–6], resonant Andreev re-
flections [7, 8], electron teleportations [9, 10], enhanced
[11] and even resonant [12] crossed Andreev reflections.
Moreover, MFs in condensed matter systems obey non-
Abelian statistics [13–17] and have potential applications
in fault-tolerant quantum computations [18, 19]. Due
to these remarkable properties of MFs, the search for
topological superconductors which host MFs has become
one of the most important subjects in condensed matter
physics in recent years.

In this work, we point out another intriguing phe-
nomenon due to MFs, namely, MF-induced selective

equal spin Andreev reflections (SESARs). As depicted in
Fig.1, when a spinful paramagnetic normal lead is cou-
pled to a topological superconductor through its MF end
state, electrons with spin pointing to a certain direction ~

n

are reflected as holes with the same spin (Fig.1a), where
~
n is determined by the properties of the topological su-
perconductor. Importantly, electrons with opposite spin
are completely decoupled from the MF and they are re-
flected as electrons with unchanged spin (Fig.1b). As
a result, ordinary Andreev reflection processes [20], in
which electrons with certain spin are reflected as holes
with opposite spin, cannot take place if the Andreev re-
flections are induced by MFs.

Pure equal spin Andreev reflections can take place at
a half-metal/superconductor interface if spin is not con-
served at the interface [21–28]. This is because conduct-
ing electrons in a half-metal are fully spin-polarized and
usual Andreev reflection processes cannot occur. Nev-
ertheless, as we show below, inducing SESARs in para-
magnetic leads is a special property of MFs due to their
self-Hermitian characteristic. Importantly, as in the half-
metal case and depicted in Fig.1a, the charge current
in the normal lead is fully spin-polarized since the cur-

FIG. 1: A paramagnetic normal lead (N) is coupled to a
topological superconductor (TS) with MF end states. The
zero energy MF mode is denoted by the horizontal line inside
the bulk gap of the TS. (a) Electrons with a specific spin
polarization can undergo equal spin Andreev reflections in
which an electron is reflected as a hole with the same spin.
However, the resulting Cooper pair in the superconductor can
be a spin singlet if spin is not conserved due to spin-orbit
coupling. (b) Electrons with opposite spin are totally reflected
as electrons with unchanged spin.

rent is carried by right-moving electrons and counter-
propagating holes with the same spin. Therefore, a topo-
logical superconductor which supports MFs can be used
as a novel device for inducing fully spin-polarized cur-
rents in paramagnetic leads.

In the following sections, we first show, using an e↵ec-
tive Hamiltonian approach, that SESARs are due to the
self-Hermitian property of MFs. Second, to be more spe-
cific, we calculate the spin polarization axis ~n of a normal
lead-topological superconductor (N/TS) junction. The
topological superconductor is engineered by applying an
external magnetic field to a semi-conductor wire in prox-
imity to an s-wave superconductor [29–32]. Third, we
demonstrate how SESARs can be used to detect MFs in
topological superconductors using a spin-polarized lead.

Majorana-induced SESARs— The low energy
transport properties of a N/TS junction can be well de-
scribed by an e↵ective Hamiltonian which includes the
lead and the coupling between the lead and the MF
[6, 9, 11]. The e↵ective Hamiltonian H

T

can be writ-
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Here, H
L

describes the normal lead with spin up and spin
down electrons  "/#(x) and Fermi velocity v

F

. The most
general form of coupling between the MF end state � and
the lead is described by H

c

, where t̃ is a real number and
a and b are complex numbers. The form of H

c

is deter-
mined by the self-Hermitian property of the MF � = �†.
Without loss of generality, one can set |a|2 + |b|2 = 1. It
is important to note that using a unitary transformation
 1 = a "+b # and  2 = �b⇤ "+a⇤ #, the Hamiltonian
becomes

H
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Evidently, the MF only couples to the  1 electrons with
spinor ~s1 = |a|(1, b/a)T = (cos ✓

2 , e
i� sin ✓

2 )
T , while the

 2 electrons with spinor ~s2 = (� sin ✓

2 , e
i� cos ✓

2 )
T are

totally decoupled from the MF. Denoting the incoming
and outgoing electrons (holes) with energy E relative
to the Fermi energy as  1E(�) ( †

1E(�) ) and  1E(+)

( †
1E(+)) respectively, the scattering matrix of the N/TS

junction is:
✓
 1E(+)
 †

1E(+)

◆
=

1

�+ iE

✓
iE �
� iE

◆✓
 1E(�)
 †

1E(�)

◆
, (3)

where � = 2t̃2/v
F

. From the scattering matrix, we note
that the  1 electrons are reflected as  1 holes with the
same spin with Andreev reflection amplitude �/(�+ iE).
From the spinors ~s1 and ~s2, we note that  1 electrons
have spins parallel to the direction ~

n = h~s1|~�|~s1i =
(sin ✓ cos�, sin ✓ sin�, cos ✓), and  2 electrons have op-
posite spins, where ~� is the Pauli vector. Therefore,
electrons with spin parallel to the ~n directions can cou-
ple to the MF and undergo equal spin Andreev reflec-
tions, whereas electrons with opposite spin are totally
reflected as electrons. We call this phenomenon MF-
induced SESARs. Since the charge current in the lead is
carried by electrons with spin parallel to ~n and counter-
propagating holes with the same spin, the current in the
lead is spin-polarized to the ~n direction.

SESARs of spin-orbit coupled superconducting

wires— The MF induced SESARs is a general phe-
nomenon due to the self-Hermitian property of MFs as
shown above. However, in the e↵ective Hamiltonian ap-
proach, we assumed that the ratio of a/b is energy in-
dependent such that the MF couples to electrons with
spin parallel to ~n, independent of the incoming energy of
the electrons. In this section, we show that this approx-
imation is valid for a wide range of parameter regimes

in realistic topological superconductors. Moreover, the
e↵ective Hamiltonian cannot determine ~n. Therefore, to
be specific, we study a N/TS junction where the topolog-
ical superconductor can be realized experimentally [33–
35] by applying a magnetic field to a spin-orbit coupled
semiconductor wire which is in proximity to an s-wave
superconductor as depicted in Fig.3a.
In the Nambu basis ( 

k", k#, 
†
�k", 

†
�k#), the Hamil-

tonian for the semi-conductor wire in proximity to a su-
perconductor can be written as [29–32]:

H1D(k) = [(
k2

2m
�µ)�0+ ~V ·~�+↵

R

k�
y

)]⌧
z

���
y

⌧
y

. (4)

Here,  
k" ( 

k#) denotes a spin up (down) electron with
momentum k, the e↵ective mass and the chemical poten-
tial are denoted by m and µ respectively. The Zeeman
field is denoted by ~V and ↵

R

is the Rashba spin-orbit
coupling strength. The Pauli matrices �

i

and ⌧
i

act on
the spin and particle-hole space respectively.
Suppose the one dimensional superconducting wire oc-

cupies the semi-infinite space with x � 0 and a magnetic
field with magnitude V

z

is applied along the z-direction,
there exists a MF end state localized near x = 0 in the
topological regime when V

z

2 > µ2 + �2. The MF end
state � satisfies the condition H1D(k ! �i@

x

)� = 0 with
�† = �. In general, the Majorana mode can be written
as:
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where �
i

are the four solutions of the following two quar-
tic equations with positive real parts
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For realistic semi-conductor wires with 2m↵
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and at chemical potential µ ⇡ 0, we have �1 = �⇤2 = i�0+
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Assuming that the lead can be described by the

Hamiltonian H
L

= (k2/2m
L

� µ)�0⌧z, the wavefunc-
tion in the lead at the Fermi energy can be written
as  
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x, where k
F

is the Fermi momen-
tum and ~e1 = [1, 0, 0, 0], ~e2 = [0, 1, 0, 0], ~e3 = [0, 0, 1, 0]
and ~e4 = [0, 0, 0, 1]. Here, d

↵,�

denotes the amplitude for
an incoming spin up electron to be reflected as an electron
(e) or hole (h) with spin �. On the other hand, the wave-
function at the Fermi energy on the superconductor side
 

S

(x) can be written as the linear combination of the
four-component vectors associated with ~�

i

in Eq.5. We
note that the wavefunction has to satisfy the continuity
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counter propagating holes with the same spin. The spin polarization direction of the electrons of this
Andreev reflected channel is selected by the Majorana fermions. Moreover, electrons with opposite
spin polarization are always reflected as electrons with unchanged spin. As a result, the charge
current in the lead is spin-polarized. Therefore, a topological superconductor which supports Majo-
rana fermions can be used as a novel device to create fully spin-polarized currents in paramagnetic
leads. We point out that SESARs can also be used to detect Majorana fermions in topological
superconductors.

Introduction— A Majorana fermion (MF) [1, 2] is
an anti-particle of itself. Due to this self-Hermitian
property, a MF has only half the degrees of freedom of
a Dirac fermion and two spatially separated MFs can
form a non-local Dirac fermion. This special property
of MFs leads to several interesting phenomena such as
fractional Josephson e↵ects [2–6], resonant Andreev re-
flections [7, 8], electron teleportations [9, 10], enhanced
[11] and even resonant [12] crossed Andreev reflections.
Moreover, MFs in condensed matter systems obey non-
Abelian statistics [13–17] and have potential applications
in fault-tolerant quantum computations [18, 19]. Due
to these remarkable properties of MFs, the search for
topological superconductors which host MFs has become
one of the most important subjects in condensed matter
physics in recent years.

In this work, we point out another intriguing phe-
nomenon due to MFs, namely, MF-induced selective

equal spin Andreev reflections (SESARs). As depicted in
Fig.1, when a spinful paramagnetic normal lead is cou-
pled to a topological superconductor through its MF end
state, electrons with spin pointing to a certain direction ~

n

are reflected as holes with the same spin (Fig.1a), where
~
n is determined by the properties of the topological su-
perconductor. Importantly, electrons with opposite spin
are completely decoupled from the MF and they are re-
flected as electrons with unchanged spin (Fig.1b). As
a result, ordinary Andreev reflection processes [20], in
which electrons with certain spin are reflected as holes
with opposite spin, cannot take place if the Andreev re-
flections are induced by MFs.

Pure equal spin Andreev reflections can take place at
a half-metal/superconductor interface if spin is not con-
served at the interface [21–28]. This is because conduct-
ing electrons in a half-metal are fully spin-polarized and
usual Andreev reflection processes cannot occur. Nev-
ertheless, as we show below, inducing SESARs in para-
magnetic leads is a special property of MFs due to their
self-Hermitian characteristic. Importantly, as in the half-
metal case and depicted in Fig.1a, the charge current
in the normal lead is fully spin-polarized since the cur-

FIG. 1: A paramagnetic normal lead (N) is coupled to a
topological superconductor (TS) with MF end states. The
zero energy MF mode is denoted by the horizontal line inside
the bulk gap of the TS. (a) Electrons with a specific spin
polarization can undergo equal spin Andreev reflections in
which an electron is reflected as a hole with the same spin.
However, the resulting Cooper pair in the superconductor can
be a spin singlet if spin is not conserved due to spin-orbit
coupling. (b) Electrons with opposite spin are totally reflected
as electrons with unchanged spin.

rent is carried by right-moving electrons and counter-
propagating holes with the same spin. Therefore, a topo-
logical superconductor which supports MFs can be used
as a novel device for inducing fully spin-polarized cur-
rents in paramagnetic leads.

In the following sections, we first show, using an e↵ec-
tive Hamiltonian approach, that SESARs are due to the
self-Hermitian property of MFs. Second, to be more spe-
cific, we calculate the spin polarization axis ~n of a normal
lead-topological superconductor (N/TS) junction. The
topological superconductor is engineered by applying an
external magnetic field to a semi-conductor wire in prox-
imity to an s-wave superconductor [29–32]. Third, we
demonstrate how SESARs can be used to detect MFs in
topological superconductors using a spin-polarized lead.

Majorana-induced SESARs— The low energy
transport properties of a N/TS junction can be well de-
scribed by an e↵ective Hamiltonian which includes the
lead and the coupling between the lead and the MF
[6, 9, 11]. The e↵ective Hamiltonian H

T

can be writ-
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Here, H
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describes the normal lead with spin up and spin
down electrons  "/#(x) and Fermi velocity v

F

. The most
general form of coupling between the MF end state � and
the lead is described by H

c

, where t̃ is a real number and
a and b are complex numbers. The form of H

c

is deter-
mined by the self-Hermitian property of the MF � = �†.
Without loss of generality, one can set |a|2 + |b|2 = 1. It
is important to note that using a unitary transformation
 1 = a "+b # and  2 = �b⇤ "+a⇤ #, the Hamiltonian
becomes
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Evidently, the MF only couples to the  1 electrons with
spinor ~s1 = |a|(1, b/a)T = (cos ✓

2 , e
i� sin ✓

2 )
T , while the

 2 electrons with spinor ~s2 = (� sin ✓

2 , e
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2 )
T are

totally decoupled from the MF. Denoting the incoming
and outgoing electrons (holes) with energy E relative
to the Fermi energy as  1E(�) ( †

1E(�) ) and  1E(+)

( †
1E(+)) respectively, the scattering matrix of the N/TS

junction is:
✓
 1E(+)
 †

1E(+)

◆
=

1

�+ iE

✓
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� iE

◆✓
 1E(�)
 †

1E(�)

◆
, (3)

where � = 2t̃2/v
F

. From the scattering matrix, we note
that the  1 electrons are reflected as  1 holes with the
same spin with Andreev reflection amplitude �/(�+ iE).
From the spinors ~s1 and ~s2, we note that  1 electrons
have spins parallel to the direction ~

n = h~s1|~�|~s1i =
(sin ✓ cos�, sin ✓ sin�, cos ✓), and  2 electrons have op-
posite spins, where ~� is the Pauli vector. Therefore,
electrons with spin parallel to the ~n directions can cou-
ple to the MF and undergo equal spin Andreev reflec-
tions, whereas electrons with opposite spin are totally
reflected as electrons. We call this phenomenon MF-
induced SESARs. Since the charge current in the lead is
carried by electrons with spin parallel to ~n and counter-
propagating holes with the same spin, the current in the
lead is spin-polarized to the ~n direction.

SESARs of spin-orbit coupled superconducting

wires— The MF induced SESARs is a general phe-
nomenon due to the self-Hermitian property of MFs as
shown above. However, in the e↵ective Hamiltonian ap-
proach, we assumed that the ratio of a/b is energy in-
dependent such that the MF couples to electrons with
spin parallel to ~n, independent of the incoming energy of
the electrons. In this section, we show that this approx-
imation is valid for a wide range of parameter regimes

in realistic topological superconductors. Moreover, the
e↵ective Hamiltonian cannot determine ~n. Therefore, to
be specific, we study a N/TS junction where the topolog-
ical superconductor can be realized experimentally [33–
35] by applying a magnetic field to a spin-orbit coupled
semiconductor wire which is in proximity to an s-wave
superconductor as depicted in Fig.3a.
In the Nambu basis ( 

k", k#, 
†
�k", 

†
�k#), the Hamil-

tonian for the semi-conductor wire in proximity to a su-
perconductor can be written as [29–32]:

H1D(k) = [(
k2

2m
�µ)�0+ ~V ·~�+↵

R

k�
y

)]⌧
z

���
y

⌧
y

. (4)

Here,  
k" ( 

k#) denotes a spin up (down) electron with
momentum k, the e↵ective mass and the chemical poten-
tial are denoted by m and µ respectively. The Zeeman
field is denoted by ~V and ↵

R

is the Rashba spin-orbit
coupling strength. The Pauli matrices �

i

and ⌧
i

act on
the spin and particle-hole space respectively.
Suppose the one dimensional superconducting wire oc-

cupies the semi-infinite space with x � 0 and a magnetic
field with magnitude V

z

is applied along the z-direction,
there exists a MF end state localized near x = 0 in the
topological regime when V

z

2 > µ2 + �2. The MF end
state � satisfies the condition H1D(k ! �i@

x

)� = 0 with
�† = �. In general, the Majorana mode can be written
as:

�(x) =
3X

i=1

�
i

 
~�
i

~�
i

!
e��

i

x + �4

 
~�4
�~�4

!
e��4x, (5)

where �
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are the four solutions of the following two quar-
tic equations with positive real parts
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Assuming that the lead can be described by the

Hamiltonian H
L

= (k2/2m
L

� µ)�0⌧z, the wavefunc-
tion in the lead at the Fermi energy can be written
as  
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(x) = ~e1e
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�ik
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e#~e2e
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x +
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x, where k
F

is the Fermi momen-
tum and ~e1 = [1, 0, 0, 0], ~e2 = [0, 1, 0, 0], ~e3 = [0, 0, 1, 0]
and ~e4 = [0, 0, 0, 1]. Here, d

↵,�

denotes the amplitude for
an incoming spin up electron to be reflected as an electron
(e) or hole (h) with spin �. On the other hand, the wave-
function at the Fermi energy on the superconductor side
 

S

(x) can be written as the linear combination of the
four-component vectors associated with ~�

i

in Eq.5. We
note that the wavefunction has to satisfy the continuity
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In this work, we find that Majorana fermions induce selective equal spin Andreev reflections
(SESARs), in which incoming electrons with certain spin polarization in the lead are reflected as
counter propagating holes with the same spin. The spin polarization direction of the electrons of this
Andreev reflected channel is selected by the Majorana fermions. Moreover, electrons with opposite
spin polarization are always reflected as electrons with unchanged spin. As a result, the charge
current in the lead is spin-polarized. Therefore, a topological superconductor which supports Majo-
rana fermions can be used as a novel device to create fully spin-polarized currents in paramagnetic
leads. We point out that SESARs can also be used to detect Majorana fermions in topological
superconductors.

Introduction— A Majorana fermion (MF) [1, 2] is
an anti-particle of itself. Due to this self-Hermitian
property, a MF has only half the degrees of freedom of
a Dirac fermion and two spatially separated MFs can
form a non-local Dirac fermion. This special property
of MFs leads to several interesting phenomena such as
fractional Josephson e↵ects [2–6], resonant Andreev re-
flections [7, 8], electron teleportations [9, 10], enhanced
[11] and even resonant [12] crossed Andreev reflections.
Moreover, MFs in condensed matter systems obey non-
Abelian statistics [13–17] and have potential applications
in fault-tolerant quantum computations [18, 19]. Due
to these remarkable properties of MFs, the search for
topological superconductors which host MFs has become
one of the most important subjects in condensed matter
physics in recent years.

In this work, we point out another intriguing phe-
nomenon due to MFs, namely, MF-induced selective

equal spin Andreev reflections (SESARs). As depicted in
Fig.1, when a spinful paramagnetic normal lead is cou-
pled to a topological superconductor through its MF end
state, electrons with spin pointing to a certain direction ~

n

are reflected as holes with the same spin (Fig.1a), where
~
n is determined by the properties of the topological su-
perconductor. Importantly, electrons with opposite spin
are completely decoupled from the MF and they are re-
flected as electrons with unchanged spin (Fig.1b). As
a result, ordinary Andreev reflection processes [20], in
which electrons with certain spin are reflected as holes
with opposite spin, cannot take place if the Andreev re-
flections are induced by MFs.

Pure equal spin Andreev reflections can take place at
a half-metal/superconductor interface if spin is not con-
served at the interface [21–28]. This is because conduct-
ing electrons in a half-metal are fully spin-polarized and
usual Andreev reflection processes cannot occur. Nev-
ertheless, as we show below, inducing SESARs in para-
magnetic leads is a special property of MFs due to their
self-Hermitian characteristic. Importantly, as in the half-
metal case and depicted in Fig.1a, the charge current
in the normal lead is fully spin-polarized since the cur-

FIG. 1: A paramagnetic normal lead (N) is coupled to a
topological superconductor (TS) with MF end states. The
zero energy MF mode is denoted by the horizontal line inside
the bulk gap of the TS. (a) Electrons with a specific spin
polarization can undergo equal spin Andreev reflections in
which an electron is reflected as a hole with the same spin.
However, the resulting Cooper pair in the superconductor can
be a spin singlet if spin is not conserved due to spin-orbit
coupling. (b) Electrons with opposite spin are totally reflected
as electrons with unchanged spin.

rent is carried by right-moving electrons and counter-
propagating holes with the same spin. Therefore, a topo-
logical superconductor which supports MFs can be used
as a novel device for inducing fully spin-polarized cur-
rents in paramagnetic leads.

In the following sections, we first show, using an e↵ec-
tive Hamiltonian approach, that SESARs are due to the
self-Hermitian property of MFs. Second, to be more spe-
cific, we calculate the spin polarization axis ~n of a normal
lead-topological superconductor (N/TS) junction. The
topological superconductor is engineered by applying an
external magnetic field to a semi-conductor wire in prox-
imity to an s-wave superconductor [29–32]. Third, we
demonstrate how SESARs can be used to detect MFs in
topological superconductors using a spin-polarized lead.

Majorana-induced SESARs— The low energy
transport properties of a N/TS junction can be well de-
scribed by an e↵ective Hamiltonian which includes the
lead and the coupling between the lead and the MF
[6, 9, 11]. The e↵ective Hamiltonian H

T

can be writ-
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counter propagating holes with the same spin. The spin polarization direction of the electrons of this
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spin polarization are always reflected as electrons with unchanged spin. As a result, the charge
current in the lead is spin-polarized. Therefore, a topological superconductor which supports Majo-
rana fermions can be used as a novel device to create fully spin-polarized currents in paramagnetic
leads. We point out that SESARs can also be used to detect Majorana fermions in topological
superconductors.

Introduction— A Majorana fermion (MF) [1, 2] is
an anti-particle of itself. Due to this self-Hermitian
property, a MF has only half the degrees of freedom of
a Dirac fermion and two spatially separated MFs can
form a non-local Dirac fermion. This special property
of MFs leads to several interesting phenomena such as
fractional Josephson e↵ects [2–6], resonant Andreev re-
flections [7, 8], electron teleportations [9, 10], enhanced
[11] and even resonant [12] crossed Andreev reflections.
Moreover, MFs in condensed matter systems obey non-
Abelian statistics [13–17] and have potential applications
in fault-tolerant quantum computations [18, 19]. Due
to these remarkable properties of MFs, the search for
topological superconductors which host MFs has become
one of the most important subjects in condensed matter
physics in recent years.

In this work, we point out another intriguing phe-
nomenon due to MFs, namely, MF-induced selective

equal spin Andreev reflections (SESARs). As depicted in
Fig.1, when a spinful paramagnetic normal lead is cou-
pled to a topological superconductor through its MF end
state, electrons with spin pointing to a certain direction ~

n

are reflected as holes with the same spin (Fig.1a), where
~
n is determined by the properties of the topological su-
perconductor. Importantly, electrons with opposite spin
are completely decoupled from the MF and they are re-
flected as electrons with unchanged spin (Fig.1b). As
a result, ordinary Andreev reflection processes [20], in
which electrons with certain spin are reflected as holes
with opposite spin, cannot take place if the Andreev re-
flections are induced by MFs.

Pure equal spin Andreev reflections can take place at
a half-metal/superconductor interface if spin is not con-
served at the interface [21–28]. This is because conduct-
ing electrons in a half-metal are fully spin-polarized and
usual Andreev reflection processes cannot occur. Nev-
ertheless, as we show below, inducing SESARs in para-
magnetic leads is a special property of MFs due to their
self-Hermitian characteristic. Importantly, as in the half-
metal case and depicted in Fig.1a, the charge current
in the normal lead is fully spin-polarized since the cur-

FIG. 1: A paramagnetic normal lead (N) is coupled to a
topological superconductor (TS) with MF end states. The
zero energy MF mode is denoted by the horizontal line inside
the bulk gap of the TS. (a) Electrons with a specific spin
polarization can undergo equal spin Andreev reflections in
which an electron is reflected as a hole with the same spin.
However, the resulting Cooper pair in the superconductor can
be a spin singlet if spin is not conserved due to spin-orbit
coupling. (b) Electrons with opposite spin are totally reflected
as electrons with unchanged spin.

rent is carried by right-moving electrons and counter-
propagating holes with the same spin. Therefore, a topo-
logical superconductor which supports MFs can be used
as a novel device for inducing fully spin-polarized cur-
rents in paramagnetic leads.

In the following sections, we first show, using an e↵ec-
tive Hamiltonian approach, that SESARs are due to the
self-Hermitian property of MFs. Second, to be more spe-
cific, we calculate the spin polarization axis ~n of a normal
lead-topological superconductor (N/TS) junction. The
topological superconductor is engineered by applying an
external magnetic field to a semi-conductor wire in prox-
imity to an s-wave superconductor [29–32]. Third, we
demonstrate how SESARs can be used to detect MFs in
topological superconductors using a spin-polarized lead.

Majorana-induced SESARs— The low energy
transport properties of a N/TS junction can be well de-
scribed by an e↵ective Hamiltonian which includes the
lead and the coupling between the lead and the MF
[6, 9, 11]. The e↵ective Hamiltonian H

T

can be writ-
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Towards more realistic setups

So far, couping between Majorana     and wire modes energy independent: 

What about more realistic setup, e.g. Rashba wire + superconductor?

Does Majorana couple to electron spin   same     for any incoming energy?

�

a

b
= const.

2

ten as:

H
T

= H
L

+H
c

,

H
L

= �iv
F

P
↵2"/#

R +1
�1  †

↵

(x)@
x

 
↵

(x)dx,

H
c

= t̃�[a "(0) + b #(0)� a⇤ †
"(0)� b⇤ †

#(0)].

(1)

Here, H
L

describes the normal lead with spin up and spin
down electrons  "/#(x) and Fermi velocity v

F

. The most
general form of coupling between the MF end state � and
the lead is described by H

c

, where t̃ is a real number and
a and b are complex numbers. The form of H

c

is deter-
mined by the self-Hermitian property of the MF � = �†.
Without loss of generality, one can set |a|2 + |b|2 = 1. It
is important to note that using a unitary transformation
 1 = a "+b # and  2 = �b⇤ "+a⇤ #, the Hamiltonian
becomes

H
L

= �iv
F

P
↵21/2

R +1
�1  †

↵

(x)@
x

 
↵

(x)dx,

H
c

= t̃�[ 1(0)� †
1(0)].

(2)

Evidently, the MF only couples to the  1 electrons with
spinor ~s1 = |a|(1, b/a)T = (cos ✓

2 , e
i� sin ✓

2 )
T , while the

 2 electrons with spinor ~s2 = (� sin ✓

2 , e
i� cos ✓

2 )
T are

totally decoupled from the MF. Denoting the incoming
and outgoing electrons (holes) with energy E relative
to the Fermi energy as  1E(�) ( †

1E(�) ) and  1E(+)

( †
1E(+)) respectively, the scattering matrix of the N/TS

junction is:
✓
 1E(+)
 †

1E(+)

◆
=

1

�+ iE

✓
iE �
� iE

◆✓
 1E(�)
 †

1E(�)

◆
, (3)

where � = 2t̃2/v
F

. From the scattering matrix, we note
that the  1 electrons are reflected as  1 holes with the
same spin with Andreev reflection amplitude �/(�+ iE).
From the spinors ~s1 and ~s2, we note that  1 electrons
have spins parallel to the direction ~

n = h~s1|~�|~s1i =
(sin ✓ cos�, sin ✓ sin�, cos ✓), and  2 electrons have op-
posite spins, where ~� is the Pauli vector. Therefore,
electrons with spin parallel to the ~n directions can cou-
ple to the MF and undergo equal spin Andreev reflec-
tions, whereas electrons with opposite spin are totally
reflected as electrons. We call this phenomenon MF-
induced SESARs. Since the charge current in the lead is
carried by electrons with spin parallel to ~n and counter-
propagating holes with the same spin, the current in the
lead is spin-polarized to the ~n direction.

SESARs of spin-orbit coupled superconducting

wires— The MF induced SESARs is a general phe-
nomenon due to the self-Hermitian property of MFs as
shown above. However, in the e↵ective Hamiltonian ap-
proach, we assumed that the ratio of a/b is energy in-
dependent such that the MF couples to electrons with
spin parallel to ~n, independent of the incoming energy of
the electrons. In this section, we show that this approx-
imation is valid for a wide range of parameter regimes

in realistic topological superconductors. Moreover, the
e↵ective Hamiltonian cannot determine ~n. Therefore, to
be specific, we study a N/TS junction where the topolog-
ical superconductor can be realized experimentally [33–
35] by applying a magnetic field to a spin-orbit coupled
semiconductor wire which is in proximity to an s-wave
superconductor as depicted in Fig.3a.
In the Nambu basis ( 

k", k#, 
†
�k", 

†
�k#), the Hamil-

tonian for the semi-conductor wire in proximity to a su-
perconductor can be written as [29–32]:

H1D(k) = [(
k2

2m
�µ)�0+ ~V ·~�+↵

R

k�
y

)]⌧
z

���
y

⌧
y

. (4)

Here,  
k" ( 

k#) denotes a spin up (down) electron with
momentum k, the e↵ective mass and the chemical poten-
tial are denoted by m and µ respectively. The Zeeman
field is denoted by ~V and ↵

R

is the Rashba spin-orbit
coupling strength. The Pauli matrices �

i

and ⌧
i

act on
the spin and particle-hole space respectively.
Suppose the one dimensional superconducting wire oc-

cupies the semi-infinite space with x � 0 and a magnetic
field with magnitude V

z

is applied along the z-direction,
there exists a MF end state localized near x = 0 in the
topological regime when V

z

2 > µ2 + �2. The MF end
state � satisfies the condition H1D(k ! �i@

x

)� = 0 with
�† = �. In general, the Majorana mode can be written
as:
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where �
i

are the four solutions of the following two quar-
tic equations with positive real parts
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z

= 0. (6)

For realistic semi-conductor wires with 2m↵
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2
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and at chemical potential µ ⇡ 0, we have �1 = �⇤2 = i�0+
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Assuming that the lead can be described by the

Hamiltonian H
L

= (k2/2m
L

� µ)�0⌧z, the wavefunc-
tion in the lead at the Fermi energy can be written
as  

L

(x) = ~e1e
ik

F

x + d
e"~e1e

�ik
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e#~e2e
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x +
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x, where k
F

is the Fermi momen-
tum and ~e1 = [1, 0, 0, 0], ~e2 = [0, 1, 0, 0], ~e3 = [0, 0, 1, 0]
and ~e4 = [0, 0, 0, 1]. Here, d

↵,�

denotes the amplitude for
an incoming spin up electron to be reflected as an electron
(e) or hole (h) with spin �. On the other hand, the wave-
function at the Fermi energy on the superconductor side
 

S

(x) can be written as the linear combination of the
four-component vectors associated with ~�

i

in Eq.5. We
note that the wavefunction has to satisfy the continuity
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In this work, we find that Majorana fermions induce selective equal spin Andreev reflections
(SESARs), in which incoming electrons with certain spin polarization in the lead are reflected as
counter propagating holes with the same spin. The spin polarization direction of the electrons of this
Andreev reflected channel is selected by the Majorana fermions. Moreover, electrons with opposite
spin polarization are always reflected as electrons with unchanged spin. As a result, the charge
current in the lead is spin-polarized. Therefore, a topological superconductor which supports Majo-
rana fermions can be used as a novel device to create fully spin-polarized currents in paramagnetic
leads. We point out that SESARs can also be used to detect Majorana fermions in topological
superconductors.

Introduction— A Majorana fermion (MF) [1, 2] is
an anti-particle of itself. Due to this self-Hermitian
property, a MF has only half the degrees of freedom of
a Dirac fermion and two spatially separated MFs can
form a non-local Dirac fermion. This special property
of MFs leads to several interesting phenomena such as
fractional Josephson e↵ects [2–6], resonant Andreev re-
flections [7, 8], electron teleportations [9, 10], enhanced
[11] and even resonant [12] crossed Andreev reflections.
Moreover, MFs in condensed matter systems obey non-
Abelian statistics [13–17] and have potential applications
in fault-tolerant quantum computations [18, 19]. Due
to these remarkable properties of MFs, the search for
topological superconductors which host MFs has become
one of the most important subjects in condensed matter
physics in recent years.

In this work, we point out another intriguing phe-
nomenon due to MFs, namely, MF-induced selective

equal spin Andreev reflections (SESARs). As depicted in
Fig.1, when a spinful paramagnetic normal lead is cou-
pled to a topological superconductor through its MF end
state, electrons with spin pointing to a certain direction ~

n

are reflected as holes with the same spin (Fig.1a), where
~
n is determined by the properties of the topological su-
perconductor. Importantly, electrons with opposite spin
are completely decoupled from the MF and they are re-
flected as electrons with unchanged spin (Fig.1b). As
a result, ordinary Andreev reflection processes [20], in
which electrons with certain spin are reflected as holes
with opposite spin, cannot take place if the Andreev re-
flections are induced by MFs.

Pure equal spin Andreev reflections can take place at
a half-metal/superconductor interface if spin is not con-
served at the interface [21–28]. This is because conduct-
ing electrons in a half-metal are fully spin-polarized and
usual Andreev reflection processes cannot occur. Nev-
ertheless, as we show below, inducing SESARs in para-
magnetic leads is a special property of MFs due to their
self-Hermitian characteristic. Importantly, as in the half-
metal case and depicted in Fig.1a, the charge current
in the normal lead is fully spin-polarized since the cur-

FIG. 1: A paramagnetic normal lead (N) is coupled to a
topological superconductor (TS) with MF end states. The
zero energy MF mode is denoted by the horizontal line inside
the bulk gap of the TS. (a) Electrons with a specific spin
polarization can undergo equal spin Andreev reflections in
which an electron is reflected as a hole with the same spin.
However, the resulting Cooper pair in the superconductor can
be a spin singlet if spin is not conserved due to spin-orbit
coupling. (b) Electrons with opposite spin are totally reflected
as electrons with unchanged spin.

rent is carried by right-moving electrons and counter-
propagating holes with the same spin. Therefore, a topo-
logical superconductor which supports MFs can be used
as a novel device for inducing fully spin-polarized cur-
rents in paramagnetic leads.

In the following sections, we first show, using an e↵ec-
tive Hamiltonian approach, that SESARs are due to the
self-Hermitian property of MFs. Second, to be more spe-
cific, we calculate the spin polarization axis ~n of a normal
lead-topological superconductor (N/TS) junction. The
topological superconductor is engineered by applying an
external magnetic field to a semi-conductor wire in prox-
imity to an s-wave superconductor [29–32]. Third, we
demonstrate how SESARs can be used to detect MFs in
topological superconductors using a spin-polarized lead.

Majorana-induced SESARs— The low energy
transport properties of a N/TS junction can be well de-
scribed by an e↵ective Hamiltonian which includes the
lead and the coupling between the lead and the MF
[6, 9, 11]. The e↵ective Hamiltonian H

T

can be writ-
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Rashba nanowire + superconductor

• Setup: Rashba nanowire + proximity coupling to s-wave superconductor

• System: semi-infinite TSC wire + normal metal / ferromagnetic metal lead
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Here, H
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describes the normal lead with spin up and spin
down electrons  "/#(x) and Fermi velocity v
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. The most
general form of coupling between the MF end state � and
the lead is described by H
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, where t̃ is a real number and
a and b are complex numbers. The form of H

c

is deter-
mined by the self-Hermitian property of the MF � = �†.
Without loss of generality, one can set |a|2 + |b|2 = 1. It
is important to note that using a unitary transformation
 1 = a "+b # and  2 = �b⇤ "+a⇤ #, the Hamiltonian
becomes
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Evidently, the MF only couples to the  1 electrons with
spinor ~s1 = |a|(1, b/a)T = (cos ✓

2 , e
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2 )
T , while the

 2 electrons with spinor ~s2 = (� sin ✓

2 , e
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2 )
T are

totally decoupled from the MF. Denoting the incoming
and outgoing electrons (holes) with energy E relative
to the Fermi energy as  1E(�) ( †

1E(�) ) and  1E(+)

( †
1E(+)) respectively, the scattering matrix of the N/TS

junction is:
✓
 1E(+)
 †

1E(+)

◆
=

1

�+ iE

✓
iE �
� iE

◆✓
 1E(�)
 †

1E(�)

◆
, (3)

where � = 2t̃2/v
F

. From the scattering matrix, we note
that the  1 electrons are reflected as  1 holes with the
same spin with Andreev reflection amplitude �/(�+ iE).
From the spinors ~s1 and ~s2, we note that  1 electrons
have spins parallel to the direction ~

n = h~s1|~�|~s1i =
(sin ✓ cos�, sin ✓ sin�, cos ✓), and  2 electrons have op-
posite spins, where ~� is the Pauli vector. Therefore,
electrons with spin parallel to the ~n directions can cou-
ple to the MF and undergo equal spin Andreev reflec-
tions, whereas electrons with opposite spin are totally
reflected as electrons. We call this phenomenon MF-
induced SESARs. Since the charge current in the lead is
carried by electrons with spin parallel to ~n and counter-
propagating holes with the same spin, the current in the
lead is spin-polarized to the ~n direction.

SESARs of spin-orbit coupled superconducting

wires— The MF induced SESARs is a general phe-
nomenon due to the self-Hermitian property of MFs as
shown above. However, in the e↵ective Hamiltonian ap-
proach, we assumed that the ratio of a/b is energy in-
dependent such that the MF couples to electrons with
spin parallel to ~n, independent of the incoming energy of
the electrons. In this section, we show that this approx-
imation is valid for a wide range of parameter regimes

in realistic topological superconductors. Moreover, the
e↵ective Hamiltonian cannot determine ~n. Therefore, to
be specific, we study a N/TS junction where the topolog-
ical superconductor can be realized experimentally [33–
35] by applying a magnetic field to a spin-orbit coupled
semiconductor wire which is in proximity to an s-wave
superconductor as depicted in Fig.3a.
In the Nambu basis ( 

k", k#, 
†
�k", 

†
�k#), the Hamil-

tonian for the semi-conductor wire in proximity to a su-
perconductor can be written as [29–32]:

H1D(k) = [(
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R

k�
y

)]⌧
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. (4)

Here,  
k" ( 

k#) denotes a spin up (down) electron with
momentum k, the e↵ective mass and the chemical poten-
tial are denoted by m and µ respectively. The Zeeman
field is denoted by ~V and ↵

R

is the Rashba spin-orbit
coupling strength. The Pauli matrices �

i

and ⌧
i

act on
the spin and particle-hole space respectively.
Suppose the one dimensional superconducting wire oc-

cupies the semi-infinite space with x � 0 and a magnetic
field with magnitude V

z

is applied along the z-direction,
there exists a MF end state localized near x = 0 in the
topological regime when V

z

2 > µ2 + �2. The MF end
state � satisfies the condition H1D(k ! �i@
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)� = 0 with
�† = �. In general, the Majorana mode can be written
as:
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where �
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are the four solutions of the following two quar-
tic equations with positive real parts
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Assuming that the lead can be described by the

Hamiltonian H
L

= (k2/2m
L

� µ)�0⌧z, the wavefunc-
tion in the lead at the Fermi energy can be written
as  

L

(x) = ~e1e
ik

F

x + d
e"~e1e

�ik

F

x + d
e#~e2e

�ik

F

x +
d
h"~e3e

ik

F

x + d
h#~e4e
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x, where k
F

is the Fermi momen-
tum and ~e1 = [1, 0, 0, 0], ~e2 = [0, 1, 0, 0], ~e3 = [0, 0, 1, 0]
and ~e4 = [0, 0, 0, 1]. Here, d

↵,�

denotes the amplitude for
an incoming spin up electron to be reflected as an electron
(e) or hole (h) with spin �. On the other hand, the wave-
function at the Fermi energy on the superconductor side
 

S

(x) can be written as the linear combination of the
four-component vectors associated with ~�

i

in Eq.5. We
note that the wavefunction has to satisfy the continuity

4

reflection amplitude is m0
1. This is consistent with the

e↵ective Hamiltonian results.
The di↵erential conductance dI/dV , as a function of

voltage bias V between the lead and the superconductor,
is shown in Fig.2a. As expected, the zero bias conduc-
tance is quantized to 2e2/h as the MF couples to only a
single conducting channel of the lead.

To study the spin polarization vector ~n = h~s
n

|~�|~s
n

i, we
plot the angle ✓ calculated from the tight-binding model
in Eq.9 as a function of V

z

for di↵erent incoming energy
eV and di↵erent ↵

R

. The results are shown in Fig.2b.
The zeroth order analytic result at zero bias, which is
a good approximation for the numerical results for small
↵
R

, is also shown in Fig.2b. The finite voltage bias results
are denoted by dashed lines. It is important to note that
✓ is not sensitive to the energy of the incoming electrons
so that the current at finite bias is also spin-polarized.

In Fig.2c, ~n as a function of V
z

is depicted. As ex-
pected, the projection of ~n on the z-axis increases as V

z

increases. On the other hand, � is only weakly depen-
dent on V

z

and it deviates only slightly from 2⇡ for small
Rashba strength. The ~

n dependent on ↵
R

for fixed V
z

is
shown in Fig.2d. Experimentally, it is also convenient to
apply the magnetic field along the wire so that V

x

is fi-
nite. The V

x

and ↵
R

dependence of ~n is shown in Figs.2e
and 2f.

Coupling between MFs and spin-polarized

leads— It is shown above that incoming electrons with
di↵erent spin polarizations interact with the topological
superconductor di↵erently. Electrons with spin parallel
to ~

n can undergo equal spin Andreev reflections, whereas
electrons with opposite spin polarization are totally re-
flected as electrons. Therefore, if the normal lead is spin-
polarized, we expect that the conductance of a N/TS
junction will strongly depend on the spin polarization of
the lead.

The experimental setup is depicted in Fig.3a in which
a normal lead is coupled to one end of a topological su-
perconductor. A ferromagnet is coupled to a section of
the normal lead so that electrons passing through the
magnetic section is strongly polarized by the ferromag-
net. The schematic band structure of di↵erent sections
of the system is shown in Fig.3a. By controlling the mag-
netization direction of the ferromagnet, one can control
the spin polarization direction of the incoming electrons
at the N/TS junction.

We denote the polarization angle of the ferromagnet
and the topological superconductor with respect to the
z-axis as ✓

F

and ✓
S

respectively. The conductance of the
N/TS junction for di↵erent angles �✓ = ✓

F

� ✓
S

is shown
in Fig.3b. When �✓ ⇡ 0, most of the incoming electrons
can undergo equal spin Andreev reflections. As a result,
the width of the conductance peak, which measures the
coupling strength between the lead and the topological
superconductor, is wide. As �✓ deviates from zero, the
incoming electrons can be decomposed into the Andreev
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FIG. 3: (a) A normal lead (N) is coupled to a semi-conductor
wire with Rashba spin-orbit coupling and in proximity to a
superconductor (SC). The wire can support MF end states.
A ferromagnetic (FM) section is added to the normal lead to
polarize the electrons of the wire. The schematic band struc-
ture of di↵erent sections of the wire are shown. The Fermi
energy is denoted by the yellow dashed line. The spin degen-
eracy of the spin up and spin down bands in the ferromagnetic
section of the normal lead is lifted. (b) The di↵erential con-
ductance as a function of �✓ in the topological regime with
MFs. The tight-binding parameters are the same as in Fig.2a
except that a Zeeman field ~V

F

with |~V
F

| = 10� is applied to
a section of 20 sites of the normal lead, which is 10 sites away
from the N/TS interface. (c) The di↵erential conductance as
a function of ✓

F

in the topologically trivial regime.

reflected channel and the totally reflected channel. As
�✓ increases, the weight of the totally reflected channel
becomes more important and the width of the conduc-
tance peak becomes narrower. Nevertheless, the height
of the zero bias conductance peak at zero temperature
is not changed due to resonant Andreev reflections. On
the contrary, in the topologically trivial regime, in which
two transverse subbands of the semiconductor wire are
occupied, Andreev reflections are mainly induced by or-
dinary fermionic end states and ordinary Andreev reflec-
tion processes dominate. As a result, the conductance
is only weakly dependent on ✓

F

. Therefore, the MF-
induced SESARs can be used to distinguish the topolog-
ical regime from the trivial regime of the superconductor.

Conclusion— In short, we show in this work that MFs
induce SESARs. As a result, topological superconductors
can be used as novel devices to generate spin-polarized
currents in paramagnetic leads. The SESARs can also
be used to detect MFs if spin-polarized leads are used.
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Here, H
L

describes the normal lead with spin up and spin
down electrons  "/#(x) and Fermi velocity v

F

. The most
general form of coupling between the MF end state � and
the lead is described by H

c

, where t̃ is a real number and
a and b are complex numbers. The form of H

c

is deter-
mined by the self-Hermitian property of the MF � = �†.
Without loss of generality, one can set |a|2 + |b|2 = 1. It
is important to note that using a unitary transformation
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becomes
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Evidently, the MF only couples to the  1 electrons with
spinor ~s1 = |a|(1, b/a)T = (cos ✓

2 , e
i� sin ✓

2 )
T , while the

 2 electrons with spinor ~s2 = (� sin ✓

2 , e
i� cos ✓

2 )
T are

totally decoupled from the MF. Denoting the incoming
and outgoing electrons (holes) with energy E relative
to the Fermi energy as  1E(�) ( †

1E(�) ) and  1E(+)

( †
1E(+)) respectively, the scattering matrix of the N/TS

junction is:
✓
 1E(+)
 †

1E(+)

◆
=
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�+ iE

✓
iE �
� iE

◆✓
 1E(�)
 †

1E(�)

◆
, (3)

where � = 2t̃2/v
F

. From the scattering matrix, we note
that the  1 electrons are reflected as  1 holes with the
same spin with Andreev reflection amplitude �/(�+ iE).
From the spinors ~s1 and ~s2, we note that  1 electrons
have spins parallel to the direction ~

n = h~s1|~�|~s1i =
(sin ✓ cos�, sin ✓ sin�, cos ✓), and  2 electrons have op-
posite spins, where ~� is the Pauli vector. Therefore,
electrons with spin parallel to the ~n directions can cou-
ple to the MF and undergo equal spin Andreev reflec-
tions, whereas electrons with opposite spin are totally
reflected as electrons. We call this phenomenon MF-
induced SESARs. Since the charge current in the lead is
carried by electrons with spin parallel to ~n and counter-
propagating holes with the same spin, the current in the
lead is spin-polarized to the ~n direction.

SESARs of spin-orbit coupled superconducting

wires— The MF induced SESARs is a general phe-
nomenon due to the self-Hermitian property of MFs as
shown above. However, in the e↵ective Hamiltonian ap-
proach, we assumed that the ratio of a/b is energy in-
dependent such that the MF couples to electrons with
spin parallel to ~n, independent of the incoming energy of
the electrons. In this section, we show that this approx-
imation is valid for a wide range of parameter regimes

in realistic topological superconductors. Moreover, the
e↵ective Hamiltonian cannot determine ~n. Therefore, to
be specific, we study a N/TS junction where the topolog-
ical superconductor can be realized experimentally [33–
35] by applying a magnetic field to a spin-orbit coupled
semiconductor wire which is in proximity to an s-wave
superconductor as depicted in Fig.3a.
In the Nambu basis ( 

k", k#, 
†
�k", 

†
�k#), the Hamil-

tonian for the semi-conductor wire in proximity to a su-
perconductor can be written as [29–32]:
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)]⌧
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Here,  
k" ( 

k#) denotes a spin up (down) electron with
momentum k, the e↵ective mass and the chemical poten-
tial are denoted by m and µ respectively. The Zeeman
field is denoted by ~V and ↵

R

is the Rashba spin-orbit
coupling strength. The Pauli matrices �

i

and ⌧
i

act on
the spin and particle-hole space respectively.
Suppose the one dimensional superconducting wire oc-

cupies the semi-infinite space with x � 0 and a magnetic
field with magnitude V

z

is applied along the z-direction,
there exists a MF end state localized near x = 0 in the
topological regime when V

z

2 > µ2 + �2. The MF end
state � satisfies the condition H1D(k ! �i@
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)� = 0 with
�† = �. In general, the Majorana mode can be written
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where �
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are the four solutions of the following two quar-
tic equations with positive real parts
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Assuming that the lead can be described by the

Hamiltonian H
L

= (k2/2m
L

� µ)�0⌧z, the wavefunc-
tion in the lead at the Fermi energy can be written
as  
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x, where k
F

is the Fermi momen-
tum and ~e1 = [1, 0, 0, 0], ~e2 = [0, 1, 0, 0], ~e3 = [0, 0, 1, 0]
and ~e4 = [0, 0, 0, 1]. Here, d

↵,�

denotes the amplitude for
an incoming spin up electron to be reflected as an electron
(e) or hole (h) with spin �. On the other hand, the wave-
function at the Fermi energy on the superconductor side
 

S

(x) can be written as the linear combination of the
four-component vectors associated with ~�

i

in Eq.5. We
note that the wavefunction has to satisfy the continuity
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reflection amplitude is m0
1. This is consistent with the

e↵ective Hamiltonian results.
The di↵erential conductance dI/dV , as a function of

voltage bias V between the lead and the superconductor,
is shown in Fig.2a. As expected, the zero bias conduc-
tance is quantized to 2e2/h as the MF couples to only a
single conducting channel of the lead.

To study the spin polarization vector ~n = h~s
n

|~�|~s
n

i, we
plot the angle ✓ calculated from the tight-binding model
in Eq.9 as a function of V

z

for di↵erent incoming energy
eV and di↵erent ↵

R

. The results are shown in Fig.2b.
The zeroth order analytic result at zero bias, which is
a good approximation for the numerical results for small
↵
R

, is also shown in Fig.2b. The finite voltage bias results
are denoted by dashed lines. It is important to note that
✓ is not sensitive to the energy of the incoming electrons
so that the current at finite bias is also spin-polarized.

In Fig.2c, ~n as a function of V
z

is depicted. As ex-
pected, the projection of ~n on the z-axis increases as V

z

increases. On the other hand, � is only weakly depen-
dent on V

z

and it deviates only slightly from 2⇡ for small
Rashba strength. The ~

n dependent on ↵
R

for fixed V
z

is
shown in Fig.2d. Experimentally, it is also convenient to
apply the magnetic field along the wire so that V

x

is fi-
nite. The V

x

and ↵
R

dependence of ~n is shown in Figs.2e
and 2f.

Coupling between MFs and spin-polarized

leads— It is shown above that incoming electrons with
di↵erent spin polarizations interact with the topological
superconductor di↵erently. Electrons with spin parallel
to ~

n can undergo equal spin Andreev reflections, whereas
electrons with opposite spin polarization are totally re-
flected as electrons. Therefore, if the normal lead is spin-
polarized, we expect that the conductance of a N/TS
junction will strongly depend on the spin polarization of
the lead.

The experimental setup is depicted in Fig.3a in which
a normal lead is coupled to one end of a topological su-
perconductor. A ferromagnet is coupled to a section of
the normal lead so that electrons passing through the
magnetic section is strongly polarized by the ferromag-
net. The schematic band structure of di↵erent sections
of the system is shown in Fig.3a. By controlling the mag-
netization direction of the ferromagnet, one can control
the spin polarization direction of the incoming electrons
at the N/TS junction.

We denote the polarization angle of the ferromagnet
and the topological superconductor with respect to the
z-axis as ✓

F

and ✓
S

respectively. The conductance of the
N/TS junction for di↵erent angles �✓ = ✓

F

� ✓
S

is shown
in Fig.3b. When �✓ ⇡ 0, most of the incoming electrons
can undergo equal spin Andreev reflections. As a result,
the width of the conductance peak, which measures the
coupling strength between the lead and the topological
superconductor, is wide. As �✓ deviates from zero, the
incoming electrons can be decomposed into the Andreev
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FIG. 3: (a) A normal lead (N) is coupled to a semi-conductor
wire with Rashba spin-orbit coupling and in proximity to a
superconductor (SC). The wire can support MF end states.
A ferromagnetic (FM) section is added to the normal lead to
polarize the electrons of the wire. The schematic band struc-
ture of di↵erent sections of the wire are shown. The Fermi
energy is denoted by the yellow dashed line. The spin degen-
eracy of the spin up and spin down bands in the ferromagnetic
section of the normal lead is lifted. (b) The di↵erential con-
ductance as a function of �✓ in the topological regime with
MFs. The tight-binding parameters are the same as in Fig.2a
except that a Zeeman field ~V

F

with |~V
F

| = 10� is applied to
a section of 20 sites of the normal lead, which is 10 sites away
from the N/TS interface. (c) The di↵erential conductance as
a function of ✓

F

in the topologically trivial regime.

reflected channel and the totally reflected channel. As
�✓ increases, the weight of the totally reflected channel
becomes more important and the width of the conduc-
tance peak becomes narrower. Nevertheless, the height
of the zero bias conductance peak at zero temperature
is not changed due to resonant Andreev reflections. On
the contrary, in the topologically trivial regime, in which
two transverse subbands of the semiconductor wire are
occupied, Andreev reflections are mainly induced by or-
dinary fermionic end states and ordinary Andreev reflec-
tion processes dominate. As a result, the conductance
is only weakly dependent on ✓

F

. Therefore, the MF-
induced SESARs can be used to distinguish the topolog-
ical regime from the trivial regime of the superconductor.

Conclusion— In short, we show in this work that MFs
induce SESARs. As a result, topological superconductors
can be used as novel devices to generate spin-polarized
currents in paramagnetic leads. The SESARs can also
be used to detect MFs if spin-polarized leads are used.
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Here, H
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describes the normal lead with spin up and spin
down electrons  "/#(x) and Fermi velocity v
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. The most
general form of coupling between the MF end state � and
the lead is described by H

c

, where t̃ is a real number and
a and b are complex numbers. The form of H

c

is deter-
mined by the self-Hermitian property of the MF � = �†.
Without loss of generality, one can set |a|2 + |b|2 = 1. It
is important to note that using a unitary transformation
 1 = a "+b # and  2 = �b⇤ "+a⇤ #, the Hamiltonian
becomes
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Evidently, the MF only couples to the  1 electrons with
spinor ~s1 = |a|(1, b/a)T = (cos ✓
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T , while the

 2 electrons with spinor ~s2 = (� sin ✓
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T are

totally decoupled from the MF. Denoting the incoming
and outgoing electrons (holes) with energy E relative
to the Fermi energy as  1E(�) ( †

1E(�) ) and  1E(+)

( †
1E(+)) respectively, the scattering matrix of the N/TS

junction is:
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where � = 2t̃2/v
F

. From the scattering matrix, we note
that the  1 electrons are reflected as  1 holes with the
same spin with Andreev reflection amplitude �/(�+ iE).
From the spinors ~s1 and ~s2, we note that  1 electrons
have spins parallel to the direction ~

n = h~s1|~�|~s1i =
(sin ✓ cos�, sin ✓ sin�, cos ✓), and  2 electrons have op-
posite spins, where ~� is the Pauli vector. Therefore,
electrons with spin parallel to the ~n directions can cou-
ple to the MF and undergo equal spin Andreev reflec-
tions, whereas electrons with opposite spin are totally
reflected as electrons. We call this phenomenon MF-
induced SESARs. Since the charge current in the lead is
carried by electrons with spin parallel to ~n and counter-
propagating holes with the same spin, the current in the
lead is spin-polarized to the ~n direction.

SESARs of spin-orbit coupled superconducting

wires— The MF induced SESARs is a general phe-
nomenon due to the self-Hermitian property of MFs as
shown above. However, in the e↵ective Hamiltonian ap-
proach, we assumed that the ratio of a/b is energy in-
dependent such that the MF couples to electrons with
spin parallel to ~n, independent of the incoming energy of
the electrons. In this section, we show that this approx-
imation is valid for a wide range of parameter regimes

in realistic topological superconductors. Moreover, the
e↵ective Hamiltonian cannot determine ~n. Therefore, to
be specific, we study a N/TS junction where the topolog-
ical superconductor can be realized experimentally [33–
35] by applying a magnetic field to a spin-orbit coupled
semiconductor wire which is in proximity to an s-wave
superconductor as depicted in Fig.3a.
In the Nambu basis ( 

k", k#, 
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field is denoted by ~V and ↵
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2 > µ2 + �2. The MF end
state � satisfies the condition H1D(k ! �i@

x

)� = 0 with
�† = �. In general, the Majorana mode can be written
as:

�(x) =
3X

i=1

�
i

 
~�
i

~�
i

!
e��

i

x + �4

 
~�4
�~�4

!
e��4x, (5)

where �
i

are the four solutions of the following two quar-
tic equations with positive real parts

✓
�2

2m
+ µ

◆2

+ (↵
R

�±�)2 � V 2
z

= 0. (6)

For realistic semi-conductor wires with 2m↵

2
Rp

V

2
z

��2
⌧ 1

and at chemical potential µ ⇡ 0, we have �1 = �⇤2 = i�0+

� and �3/4 = �0 ⌥ �, where �0 =
p
2m
�
V 2
z

��2
�1/4

and

� = 2m2↵
R

�/�20. Here, ~�
i

= [�2
i

/(2m)+V
z

,���↵
R

�
i

]T

for ~�1, ~�2 and ~�3, and ~�4 = [�24/(2m) + V
z

,�� ↵
R

�4]T .
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denotes the amplitude for
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(e) or hole (h) with spin �. On the other hand, the wave-
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e↵ective Hamiltonian results.
The di↵erential conductance dI/dV , as a function of

voltage bias V between the lead and the superconductor,
is shown in Fig.2a. As expected, the zero bias conduc-
tance is quantized to 2e2/h as the MF couples to only a
single conducting channel of the lead.
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|~�|~s
n
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. The results are shown in Fig.2b.
The zeroth order analytic result at zero bias, which is
a good approximation for the numerical results for small
↵
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, is also shown in Fig.2b. The finite voltage bias results
are denoted by dashed lines. It is important to note that
✓ is not sensitive to the energy of the incoming electrons
so that the current at finite bias is also spin-polarized.

In Fig.2c, ~n as a function of V
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Rashba strength. The ~

n dependent on ↵
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is
shown in Fig.2d. Experimentally, it is also convenient to
apply the magnetic field along the wire so that V

x

is fi-
nite. The V

x

and ↵
R

dependence of ~n is shown in Figs.2e
and 2f.

Coupling between MFs and spin-polarized

leads— It is shown above that incoming electrons with
di↵erent spin polarizations interact with the topological
superconductor di↵erently. Electrons with spin parallel
to ~

n can undergo equal spin Andreev reflections, whereas
electrons with opposite spin polarization are totally re-
flected as electrons. Therefore, if the normal lead is spin-
polarized, we expect that the conductance of a N/TS
junction will strongly depend on the spin polarization of
the lead.

The experimental setup is depicted in Fig.3a in which
a normal lead is coupled to one end of a topological su-
perconductor. A ferromagnet is coupled to a section of
the normal lead so that electrons passing through the
magnetic section is strongly polarized by the ferromag-
net. The schematic band structure of di↵erent sections
of the system is shown in Fig.3a. By controlling the mag-
netization direction of the ferromagnet, one can control
the spin polarization direction of the incoming electrons
at the N/TS junction.

We denote the polarization angle of the ferromagnet
and the topological superconductor with respect to the
z-axis as ✓

F

and ✓
S

respectively. The conductance of the
N/TS junction for di↵erent angles �✓ = ✓

F

� ✓
S

is shown
in Fig.3b. When �✓ ⇡ 0, most of the incoming electrons
can undergo equal spin Andreev reflections. As a result,
the width of the conductance peak, which measures the
coupling strength between the lead and the topological
superconductor, is wide. As �✓ deviates from zero, the
incoming electrons can be decomposed into the Andreev

FM SC 

N Rashba Wire 

(a) 

MF 

𝜃ி 𝑧 𝑉ி 𝜃ௌ 
𝑧 𝑉 

FIG. 3: (a) A normal lead (N) is coupled to a semi-conductor
wire with Rashba spin-orbit coupling and in proximity to a
superconductor (SC). The wire can support MF end states.
A ferromagnetic (FM) section is added to the normal lead to
polarize the electrons of the wire. The schematic band struc-
ture of di↵erent sections of the wire are shown. The Fermi
energy is denoted by the yellow dashed line. The spin degen-
eracy of the spin up and spin down bands in the ferromagnetic
section of the normal lead is lifted. (b) The di↵erential con-
ductance as a function of �✓ in the topological regime with
MFs. The tight-binding parameters are the same as in Fig.2a
except that a Zeeman field ~V

F

with |~V
F

| = 10� is applied to
a section of 20 sites of the normal lead, which is 10 sites away
from the N/TS interface. (c) The di↵erential conductance as
a function of ✓

F

in the topologically trivial regime.

reflected channel and the totally reflected channel. As
�✓ increases, the weight of the totally reflected channel
becomes more important and the width of the conduc-
tance peak becomes narrower. Nevertheless, the height
of the zero bias conductance peak at zero temperature
is not changed due to resonant Andreev reflections. On
the contrary, in the topologically trivial regime, in which
two transverse subbands of the semiconductor wire are
occupied, Andreev reflections are mainly induced by or-
dinary fermionic end states and ordinary Andreev reflec-
tion processes dominate. As a result, the conductance
is only weakly dependent on ✓

F

. Therefore, the MF-
induced SESARs can be used to distinguish the topolog-
ical regime from the trivial regime of the superconductor.

Conclusion— In short, we show in this work that MFs
induce SESARs. As a result, topological superconductors
can be used as novel devices to generate spin-polarized
currents in paramagnetic leads. The SESARs can also
be used to detect MFs if spin-polarized leads are used.
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Majorana mode

• Majorana mode present if „magnetic field > superconductivity“

• Majorana mode ansatz

• Parameters defined by using that the Majorana has zero energy:        solve
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Here, H
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describes the normal lead with spin up and spin
down electrons  "/#(x) and Fermi velocity v
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. The most
general form of coupling between the MF end state � and
the lead is described by H
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, where t̃ is a real number and
a and b are complex numbers. The form of H
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is deter-
mined by the self-Hermitian property of the MF � = �†.
Without loss of generality, one can set |a|2 + |b|2 = 1. It
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T , while the
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T are

totally decoupled from the MF. Denoting the incoming
and outgoing electrons (holes) with energy E relative
to the Fermi energy as  1E(�) ( †
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1E(+)) respectively, the scattering matrix of the N/TS
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where � = 2t̃2/v
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. From the scattering matrix, we note
that the  1 electrons are reflected as  1 holes with the
same spin with Andreev reflection amplitude �/(�+ iE).
From the spinors ~s1 and ~s2, we note that  1 electrons
have spins parallel to the direction ~

n = h~s1|~�|~s1i =
(sin ✓ cos�, sin ✓ sin�, cos ✓), and  2 electrons have op-
posite spins, where ~� is the Pauli vector. Therefore,
electrons with spin parallel to the ~n directions can cou-
ple to the MF and undergo equal spin Andreev reflec-
tions, whereas electrons with opposite spin are totally
reflected as electrons. We call this phenomenon MF-
induced SESARs. Since the charge current in the lead is
carried by electrons with spin parallel to ~n and counter-
propagating holes with the same spin, the current in the
lead is spin-polarized to the ~n direction.

SESARs of spin-orbit coupled superconducting

wires— The MF induced SESARs is a general phe-
nomenon due to the self-Hermitian property of MFs as
shown above. However, in the e↵ective Hamiltonian ap-
proach, we assumed that the ratio of a/b is energy in-
dependent such that the MF couples to electrons with
spin parallel to ~n, independent of the incoming energy of
the electrons. In this section, we show that this approx-
imation is valid for a wide range of parameter regimes

in realistic topological superconductors. Moreover, the
e↵ective Hamiltonian cannot determine ~n. Therefore, to
be specific, we study a N/TS junction where the topolog-
ical superconductor can be realized experimentally [33–
35] by applying a magnetic field to a spin-orbit coupled
semiconductor wire which is in proximity to an s-wave
superconductor as depicted in Fig.3a.
In the Nambu basis ( 

k", k#, 
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†
�k#), the Hamil-

tonian for the semi-conductor wire in proximity to a su-
perconductor can be written as [29–32]:
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Here,  
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k#) denotes a spin up (down) electron with
momentum k, the e↵ective mass and the chemical poten-
tial are denoted by m and µ respectively. The Zeeman
field is denoted by ~V and ↵
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is the Rashba spin-orbit
coupling strength. The Pauli matrices �
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and ⌧
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act on
the spin and particle-hole space respectively.
Suppose the one dimensional superconducting wire oc-

cupies the semi-infinite space with x � 0 and a magnetic
field with magnitude V
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is applied along the z-direction,
there exists a MF end state localized near x = 0 in the
topological regime when V
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2 > µ2 + �2. The MF end
state � satisfies the condition H1D(k ! �i@

x

)� = 0 with
�† = �. In general, the Majorana mode can be written
as:

�(x) =
3X

i=1

�
i

 
~�
i

~�
i

!
e��

i

x + �4

 
~�4
�~�4

!
e��4x, (5)

where �
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are the four solutions of the following two quar-
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Assuming that the lead can be described by the
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and ~e4 = [0, 0, 0, 1]. Here, d
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denotes the amplitude for
an incoming spin up electron to be reflected as an electron
(e) or hole (h) with spin �. On the other hand, the wave-
function at the Fermi energy on the superconductor side
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. From the scattering matrix, we note
that the  1 electrons are reflected as  1 holes with the
same spin with Andreev reflection amplitude �/(�+ iE).
From the spinors ~s1 and ~s2, we note that  1 electrons
have spins parallel to the direction ~

n = h~s1|~�|~s1i =
(sin ✓ cos�, sin ✓ sin�, cos ✓), and  2 electrons have op-
posite spins, where ~� is the Pauli vector. Therefore,
electrons with spin parallel to the ~n directions can cou-
ple to the MF and undergo equal spin Andreev reflec-
tions, whereas electrons with opposite spin are totally
reflected as electrons. We call this phenomenon MF-
induced SESARs. Since the charge current in the lead is
carried by electrons with spin parallel to ~n and counter-
propagating holes with the same spin, the current in the
lead is spin-polarized to the ~n direction.

SESARs of spin-orbit coupled superconducting

wires— The MF induced SESARs is a general phe-
nomenon due to the self-Hermitian property of MFs as
shown above. However, in the e↵ective Hamiltonian ap-
proach, we assumed that the ratio of a/b is energy in-
dependent such that the MF couples to electrons with
spin parallel to ~n, independent of the incoming energy of
the electrons. In this section, we show that this approx-
imation is valid for a wide range of parameter regimes

in realistic topological superconductors. Moreover, the
e↵ective Hamiltonian cannot determine ~n. Therefore, to
be specific, we study a N/TS junction where the topolog-
ical superconductor can be realized experimentally [33–
35] by applying a magnetic field to a spin-orbit coupled
semiconductor wire which is in proximity to an s-wave
superconductor as depicted in Fig.3a.
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in realistic topological superconductors. Moreover, the
e↵ective Hamiltonian cannot determine ~n. Therefore, to
be specific, we study a N/TS junction where the topolog-
ical superconductor can be realized experimentally [33–
35] by applying a magnetic field to a spin-orbit coupled
semiconductor wire which is in proximity to an s-wave
superconductor as depicted in Fig.3a.
In the Nambu basis ( 

k", k#, 
†
�k", 

†
�k#), the Hamil-

tonian for the semi-conductor wire in proximity to a su-
perconductor can be written as [29–32]:

H1D(k) = [(
k2

2m
�µ)�0+ ~V ·~�+↵

R

k�
y

)]⌧
z

���
y

⌧
y

. (4)

Here,  
k" ( 

k#) denotes a spin up (down) electron with
momentum k, the e↵ective mass and the chemical poten-
tial are denoted by m and µ respectively. The Zeeman
field is denoted by ~V and ↵

R

is the Rashba spin-orbit
coupling strength. The Pauli matrices �

i

and ⌧
i

act on
the spin and particle-hole space respectively.
Suppose the one dimensional superconducting wire oc-

cupies the semi-infinite space with x � 0 and a magnetic
field with magnitude V

z

is applied along the z-direction,
there exists a MF end state localized near x = 0 in the
topological regime when V

z

2 > µ2 + �2. The MF end
state � satisfies the condition H1D(k ! �i@

x

)� = 0 with
�† = �. In general, the Majorana mode can be written
as:

�(x) =
3X
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where �
i

are the four solutions of the following two quar-
tic equations with positive real parts
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For realistic semi-conductor wires with 2m↵
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and at chemical potential µ ⇡ 0, we have �1 = �⇤2 = i�0+

� and �3/4 = �0 ⌥ �, where �0 =
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and

� = 2m2↵
R
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for ~�1, ~�2 and ~�3, and ~�4 = [�24/(2m) + V
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Assuming that the lead can be described by the

Hamiltonian H
L

= (k2/2m
L

� µ)�0⌧z, the wavefunc-
tion in the lead at the Fermi energy can be written
as  

L

(x) = ~e1e
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e#~e2e

�ik

F

x +
d
h"~e3e
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x, where k
F

is the Fermi momen-
tum and ~e1 = [1, 0, 0, 0], ~e2 = [0, 1, 0, 0], ~e3 = [0, 0, 1, 0]
and ~e4 = [0, 0, 0, 1]. Here, d

↵,�

denotes the amplitude for
an incoming spin up electron to be reflected as an electron
(e) or hole (h) with spin �. On the other hand, the wave-
function at the Fermi energy on the superconductor side
 

S

(x) can be written as the linear combination of the
four-component vectors associated with ~�

i

in Eq.5. We
note that the wavefunction has to satisfy the continuity
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H
c

= t̃�[a "(0) + b #(0)� a⇤ †
"(0)� b⇤ †

#(0)].

(1)

Here, H
L

describes the normal lead with spin up and spin
down electrons  "/#(x) and Fermi velocity v

F

. The most
general form of coupling between the MF end state � and
the lead is described by H

c

, where t̃ is a real number and
a and b are complex numbers. The form of H

c

is deter-
mined by the self-Hermitian property of the MF � = �†.
Without loss of generality, one can set |a|2 + |b|2 = 1. It
is important to note that using a unitary transformation
 1 = a "+b # and  2 = �b⇤ "+a⇤ #, the Hamiltonian
becomes

H
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Evidently, the MF only couples to the  1 electrons with
spinor ~s1 = |a|(1, b/a)T = (cos ✓

2 , e
i� sin ✓

2 )
T , while the

 2 electrons with spinor ~s2 = (� sin ✓

2 , e
i� cos ✓

2 )
T are

totally decoupled from the MF. Denoting the incoming
and outgoing electrons (holes) with energy E relative
to the Fermi energy as  1E(�) ( †

1E(�) ) and  1E(+)

( †
1E(+)) respectively, the scattering matrix of the N/TS

junction is:
✓
 1E(+)
 †

1E(+)

◆
=
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�+ iE

✓
iE �
� iE

◆✓
 1E(�)
 †

1E(�)

◆
, (3)

where � = 2t̃2/v
F

. From the scattering matrix, we note
that the  1 electrons are reflected as  1 holes with the
same spin with Andreev reflection amplitude �/(�+ iE).
From the spinors ~s1 and ~s2, we note that  1 electrons
have spins parallel to the direction ~

n = h~s1|~�|~s1i =
(sin ✓ cos�, sin ✓ sin�, cos ✓), and  2 electrons have op-
posite spins, where ~� is the Pauli vector. Therefore,
electrons with spin parallel to the ~n directions can cou-
ple to the MF and undergo equal spin Andreev reflec-
tions, whereas electrons with opposite spin are totally
reflected as electrons. We call this phenomenon MF-
induced SESARs. Since the charge current in the lead is
carried by electrons with spin parallel to ~n and counter-
propagating holes with the same spin, the current in the
lead is spin-polarized to the ~n direction.

SESARs of spin-orbit coupled superconducting

wires— The MF induced SESARs is a general phe-
nomenon due to the self-Hermitian property of MFs as
shown above. However, in the e↵ective Hamiltonian ap-
proach, we assumed that the ratio of a/b is energy in-
dependent such that the MF couples to electrons with
spin parallel to ~n, independent of the incoming energy of
the electrons. In this section, we show that this approx-
imation is valid for a wide range of parameter regimes

in realistic topological superconductors. Moreover, the
e↵ective Hamiltonian cannot determine ~n. Therefore, to
be specific, we study a N/TS junction where the topolog-
ical superconductor can be realized experimentally [33–
35] by applying a magnetic field to a spin-orbit coupled
semiconductor wire which is in proximity to an s-wave
superconductor as depicted in Fig.3a.
In the Nambu basis ( 

k", k#, 
†
�k", 

†
�k#), the Hamil-

tonian for the semi-conductor wire in proximity to a su-
perconductor can be written as [29–32]:

H1D(k) = [(
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�µ)�0+ ~V ·~�+↵
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)]⌧
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⌧
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Here,  
k" ( 

k#) denotes a spin up (down) electron with
momentum k, the e↵ective mass and the chemical poten-
tial are denoted by m and µ respectively. The Zeeman
field is denoted by ~V and ↵

R

is the Rashba spin-orbit
coupling strength. The Pauli matrices �

i

and ⌧
i

act on
the spin and particle-hole space respectively.
Suppose the one dimensional superconducting wire oc-

cupies the semi-infinite space with x � 0 and a magnetic
field with magnitude V

z

is applied along the z-direction,
there exists a MF end state localized near x = 0 in the
topological regime when V

z

2 > µ2 + �2. The MF end
state � satisfies the condition H1D(k ! �i@
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)� = 0 with
�† = �. In general, the Majorana mode can be written
as:
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where �
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are the four solutions of the following two quar-
tic equations with positive real parts
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For realistic semi-conductor wires with 2m↵
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and at chemical potential µ ⇡ 0, we have �1 = �⇤2 = i�0+

� and �3/4 = �0 ⌥ �, where �0 =
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and
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Assuming that the lead can be described by the

Hamiltonian H
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= (k2/2m
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� µ)�0⌧z, the wavefunc-
tion in the lead at the Fermi energy can be written
as  
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x +
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x, where k
F

is the Fermi momen-
tum and ~e1 = [1, 0, 0, 0], ~e2 = [0, 1, 0, 0], ~e3 = [0, 0, 1, 0]
and ~e4 = [0, 0, 0, 1]. Here, d

↵,�

denotes the amplitude for
an incoming spin up electron to be reflected as an electron
(e) or hole (h) with spin �. On the other hand, the wave-
function at the Fermi energy on the superconductor side
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(x) can be written as the linear combination of the
four-component vectors associated with ~�

i

in Eq.5. We
note that the wavefunction has to satisfy the continuity
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Majorana mode (2)
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= H
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c

,
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R +1
�1  †

↵
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↵

(x)dx,

H
c

= t̃�[a "(0) + b #(0)� a⇤ †
"(0)� b⇤ †

#(0)].

(1)

Here, H
L

describes the normal lead with spin up and spin
down electrons  "/#(x) and Fermi velocity v

F

. The most
general form of coupling between the MF end state � and
the lead is described by H

c

, where t̃ is a real number and
a and b are complex numbers. The form of H

c

is deter-
mined by the self-Hermitian property of the MF � = �†.
Without loss of generality, one can set |a|2 + |b|2 = 1. It
is important to note that using a unitary transformation
 1 = a "+b # and  2 = �b⇤ "+a⇤ #, the Hamiltonian
becomes

H
L

= �iv
F

P
↵21/2

R +1
�1  †

↵
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↵

(x)dx,

H
c

= t̃�[ 1(0)� †
1(0)].

(2)

Evidently, the MF only couples to the  1 electrons with
spinor ~s1 = |a|(1, b/a)T = (cos ✓

2 , e
i� sin ✓

2 )
T , while the

 2 electrons with spinor ~s2 = (� sin ✓

2 , e
i� cos ✓

2 )
T are

totally decoupled from the MF. Denoting the incoming
and outgoing electrons (holes) with energy E relative
to the Fermi energy as  1E(�) ( †

1E(�) ) and  1E(+)

( †
1E(+)) respectively, the scattering matrix of the N/TS

junction is:
✓
 1E(+)
 †

1E(+)

◆
=

1

�+ iE

✓
iE �
� iE

◆✓
 1E(�)
 †

1E(�)

◆
, (3)

where � = 2t̃2/v
F

. From the scattering matrix, we note
that the  1 electrons are reflected as  1 holes with the
same spin with Andreev reflection amplitude �/(�+ iE).
From the spinors ~s1 and ~s2, we note that  1 electrons
have spins parallel to the direction ~

n = h~s1|~�|~s1i =
(sin ✓ cos�, sin ✓ sin�, cos ✓), and  2 electrons have op-
posite spins, where ~� is the Pauli vector. Therefore,
electrons with spin parallel to the ~n directions can cou-
ple to the MF and undergo equal spin Andreev reflec-
tions, whereas electrons with opposite spin are totally
reflected as electrons. We call this phenomenon MF-
induced SESARs. Since the charge current in the lead is
carried by electrons with spin parallel to ~n and counter-
propagating holes with the same spin, the current in the
lead is spin-polarized to the ~n direction.

SESARs of spin-orbit coupled superconducting

wires— The MF induced SESARs is a general phe-
nomenon due to the self-Hermitian property of MFs as
shown above. However, in the e↵ective Hamiltonian ap-
proach, we assumed that the ratio of a/b is energy in-
dependent such that the MF couples to electrons with
spin parallel to ~n, independent of the incoming energy of
the electrons. In this section, we show that this approx-
imation is valid for a wide range of parameter regimes

in realistic topological superconductors. Moreover, the
e↵ective Hamiltonian cannot determine ~n. Therefore, to
be specific, we study a N/TS junction where the topolog-
ical superconductor can be realized experimentally [33–
35] by applying a magnetic field to a spin-orbit coupled
semiconductor wire which is in proximity to an s-wave
superconductor as depicted in Fig.3a.
In the Nambu basis ( 

k", k#, 
†
�k", 

†
�k#), the Hamil-

tonian for the semi-conductor wire in proximity to a su-
perconductor can be written as [29–32]:

H1D(k) = [(
k2

2m
�µ)�0+ ~V ·~�+↵

R

k�
y

)]⌧
z

���
y

⌧
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. (4)

Here,  
k" ( 

k#) denotes a spin up (down) electron with
momentum k, the e↵ective mass and the chemical poten-
tial are denoted by m and µ respectively. The Zeeman
field is denoted by ~V and ↵

R

is the Rashba spin-orbit
coupling strength. The Pauli matrices �

i

and ⌧
i

act on
the spin and particle-hole space respectively.
Suppose the one dimensional superconducting wire oc-

cupies the semi-infinite space with x � 0 and a magnetic
field with magnitude V

z

is applied along the z-direction,
there exists a MF end state localized near x = 0 in the
topological regime when V

z

2 > µ2 + �2. The MF end
state � satisfies the condition H1D(k ! �i@

x

)� = 0 with
�† = �. In general, the Majorana mode can be written
as:

�(x) =
3X
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where �
i

are the four solutions of the following two quar-
tic equations with positive real parts
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For realistic semi-conductor wires with 2m↵
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and at chemical potential µ ⇡ 0, we have �1 = �⇤2 = i�0+

� and �3/4 = �0 ⌥ �, where �0 =
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and
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for ~�1, ~�2 and ~�3, and ~�4 = [�24/(2m) + V
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Assuming that the lead can be described by the

Hamiltonian H
L

= (k2/2m
L

� µ)�0⌧z, the wavefunc-
tion in the lead at the Fermi energy can be written
as  
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(x) = ~e1e
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x + d
e#~e2e
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x +
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x, where k
F

is the Fermi momen-
tum and ~e1 = [1, 0, 0, 0], ~e2 = [0, 1, 0, 0], ~e3 = [0, 0, 1, 0]
and ~e4 = [0, 0, 0, 1]. Here, d

↵,�

denotes the amplitude for
an incoming spin up electron to be reflected as an electron
(e) or hole (h) with spin �. On the other hand, the wave-
function at the Fermi energy on the superconductor side
 

S

(x) can be written as the linear combination of the
four-component vectors associated with ~�

i

in Eq.5. We
note that the wavefunction has to satisfy the continuity
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Lead modes

• Lead Hamiltonian:

• Decompose lead modes
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,
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(x)dx,
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= t̃�[a "(0) + b #(0)� a⇤ †
"(0)� b⇤ †

#(0)].

(1)

Here, H
L

describes the normal lead with spin up and spin
down electrons  "/#(x) and Fermi velocity v

F

. The most
general form of coupling between the MF end state � and
the lead is described by H

c

, where t̃ is a real number and
a and b are complex numbers. The form of H

c

is deter-
mined by the self-Hermitian property of the MF � = �†.
Without loss of generality, one can set |a|2 + |b|2 = 1. It
is important to note that using a unitary transformation
 1 = a "+b # and  2 = �b⇤ "+a⇤ #, the Hamiltonian
becomes
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(x)dx,

H
c

= t̃�[ 1(0)� †
1(0)].

(2)

Evidently, the MF only couples to the  1 electrons with
spinor ~s1 = |a|(1, b/a)T = (cos ✓

2 , e
i� sin ✓

2 )
T , while the

 2 electrons with spinor ~s2 = (� sin ✓

2 , e
i� cos ✓

2 )
T are

totally decoupled from the MF. Denoting the incoming
and outgoing electrons (holes) with energy E relative
to the Fermi energy as  1E(�) ( †

1E(�) ) and  1E(+)

( †
1E(+)) respectively, the scattering matrix of the N/TS

junction is:
✓
 1E(+)
 †

1E(+)

◆
=

1

�+ iE

✓
iE �
� iE

◆✓
 1E(�)
 †

1E(�)

◆
, (3)

where � = 2t̃2/v
F

. From the scattering matrix, we note
that the  1 electrons are reflected as  1 holes with the
same spin with Andreev reflection amplitude �/(�+ iE).
From the spinors ~s1 and ~s2, we note that  1 electrons
have spins parallel to the direction ~

n = h~s1|~�|~s1i =
(sin ✓ cos�, sin ✓ sin�, cos ✓), and  2 electrons have op-
posite spins, where ~� is the Pauli vector. Therefore,
electrons with spin parallel to the ~n directions can cou-
ple to the MF and undergo equal spin Andreev reflec-
tions, whereas electrons with opposite spin are totally
reflected as electrons. We call this phenomenon MF-
induced SESARs. Since the charge current in the lead is
carried by electrons with spin parallel to ~n and counter-
propagating holes with the same spin, the current in the
lead is spin-polarized to the ~n direction.

SESARs of spin-orbit coupled superconducting

wires— The MF induced SESARs is a general phe-
nomenon due to the self-Hermitian property of MFs as
shown above. However, in the e↵ective Hamiltonian ap-
proach, we assumed that the ratio of a/b is energy in-
dependent such that the MF couples to electrons with
spin parallel to ~n, independent of the incoming energy of
the electrons. In this section, we show that this approx-
imation is valid for a wide range of parameter regimes

in realistic topological superconductors. Moreover, the
e↵ective Hamiltonian cannot determine ~n. Therefore, to
be specific, we study a N/TS junction where the topolog-
ical superconductor can be realized experimentally [33–
35] by applying a magnetic field to a spin-orbit coupled
semiconductor wire which is in proximity to an s-wave
superconductor as depicted in Fig.3a.
In the Nambu basis ( 

k", k#, 
†
�k", 

†
�k#), the Hamil-

tonian for the semi-conductor wire in proximity to a su-
perconductor can be written as [29–32]:

H1D(k) = [(
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)]⌧
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Here,  
k" ( 

k#) denotes a spin up (down) electron with
momentum k, the e↵ective mass and the chemical poten-
tial are denoted by m and µ respectively. The Zeeman
field is denoted by ~V and ↵

R

is the Rashba spin-orbit
coupling strength. The Pauli matrices �

i

and ⌧
i

act on
the spin and particle-hole space respectively.
Suppose the one dimensional superconducting wire oc-

cupies the semi-infinite space with x � 0 and a magnetic
field with magnitude V

z

is applied along the z-direction,
there exists a MF end state localized near x = 0 in the
topological regime when V

z

2 > µ2 + �2. The MF end
state � satisfies the condition H1D(k ! �i@
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)� = 0 with
�† = �. In general, the Majorana mode can be written
as:
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where �
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are the four solutions of the following two quar-
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Assuming that the lead can be described by the
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= (k2/2m
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� µ)�0⌧z, the wavefunc-
tion in the lead at the Fermi energy can be written
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x, where k
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is the Fermi momen-
tum and ~e1 = [1, 0, 0, 0], ~e2 = [0, 1, 0, 0], ~e3 = [0, 0, 1, 0]
and ~e4 = [0, 0, 0, 1]. Here, d

↵,�

denotes the amplitude for
an incoming spin up electron to be reflected as an electron
(e) or hole (h) with spin �. On the other hand, the wave-
function at the Fermi energy on the superconductor side
 

S

(x) can be written as the linear combination of the
four-component vectors associated with ~�

i

in Eq.5. We
note that the wavefunction has to satisfy the continuity
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Boundary conditions

• At boundary: wave function continuous (        = general SC wave function)

• Current continuous: 
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By solving the above boundary conditions, for both spin
up and spin down incoming electrons, the scattering ma-
trix of the N/TS junction at the Fermi energy can be
found. At zeroth order in ↵
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with ↵
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! 0, the Andreev
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On the other hand, the normal reflection matrix which
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~s0 = 0. Therefore,
to the zeroth order in ↵

R

, electrons in the conduct-
ing channel with spin parallel to ~
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anti-parallel to ~n0 are totally reflected as electrons with
unchanged spin since r
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~u0 = ei�~u0.
To further verify the analytic results and generalize the

results to arbitrary Rashba strength and voltage bias,
we calculate the scattering matrix of the N/TS junction
using a tight-binding model [32]:
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Here, H

S

and H
L

are the tight-binding Hamiltonians
for the superconductor and the normal lead respectively.
The electron operator  

Si�

( 
Li�

) denotes an electron
in the superconductor (lead) at site i with spin �. The
hopping amplitudes in the superconductor and the lead
are t and t0 respectively. The coupling between the su-
perconductor and the lead is described by H

t

where t
c

is
the coupling strength.

The scattering matrix of the N/TS junction can be
calculated using the recursive Green’s function method
[36, 37]. For example, the reflection matrix elements for
an incoming electron are:
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FIG. 2: � = 1, t = 25, t0 = 30, t
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The di↵erential conductance dI/dV of the N/TS junction as
a function of voltage bias V . The parameters are chosen as:
↵
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= 2, V
z

= 2. (b) The angle ✓ of the polarization vector
~n as a function of V

z

, for di↵erent ↵
R

and voltage bias. The
zeroth order result from ~n0, which is a good approximation
for the numerical results for small ↵

R

, is also presented. (c)-
(f) The polarization vector ~n for di↵erent parameters at zero
voltage bias. The coordinates ✓ and � denote the coordinates
of the dashed vector. (c) ~n with ↵
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= 2 and di↵erent V
z

.
V
z

= �2 for the dashed vector. (d) ~n with V
z

= �2 at
di↵erent ↵
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. ↵
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= 2 for the dashed vector. (e) ~n with
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= 2 and di↵erent V
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. V
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= �2 for the dashed vector (f)
~n with V
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. ↵
R

= 2 for the dashed
vector.

Here, r̃�
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other hand, electrons with spinor ~s
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holes with the same spin. The corresponding Andreev
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By solving the above boundary conditions, for both spin
up and spin down incoming electrons, the scattering ma-
trix of the N/TS junction at the Fermi energy can be
found. At zeroth order in ↵
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with ↵
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On the other hand, the normal reflection matrix which
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~s0 = 0. Therefore,
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flected as holes with the same spin. On the contrary,
electrons with spinor ~u0 = (� sin ✓0
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2 ) and spin
anti-parallel to ~n0 are totally reflected as electrons with
unchanged spin since r
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To further verify the analytic results and generalize the

results to arbitrary Rashba strength and voltage bias,
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Here, H
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and H
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are the tight-binding Hamiltonians
for the superconductor and the normal lead respectively.
The electron operator  
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) denotes an electron
in the superconductor (lead) at site i with spin �. The
hopping amplitudes in the superconductor and the lead
are t and t0 respectively. The coupling between the su-
perconductor and the lead is described by H
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where t
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is
the coupling strength.

The scattering matrix of the N/TS junction can be
calculated using the recursive Green’s function method
[36, 37]. For example, the reflection matrix elements for
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~n as a function of V
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zeroth order result from ~n0, which is a good approximation
for the numerical results for small ↵
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of the dashed vector. (c) ~n with ↵
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with r̃
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are reflected as electrons with the same spin. On the
other hand, electrons with spinor ~s
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By solving the above boundary conditions, for both spin
up and spin down incoming electrons, the scattering ma-
trix of the N/TS junction at the Fermi energy can be
found. At zeroth order in ↵

R

with ↵
R

! 0, the Andreev
reflection matrix r

he

, which relates the incoming elec-
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On the other hand, the normal reflection matrix which
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anti-parallel to ~n0 are totally reflected as electrons with
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Here, H
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hopping amplitudes in the superconductor and the lead
are t and t0 respectively. The coupling between the su-
perconductor and the lead is described by H
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where t
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the coupling strength.

The scattering matrix of the N/TS junction can be
calculated using the recursive Green’s function method
[36, 37]. For example, the reflection matrix elements for
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a function of voltage bias V . The parameters are chosen as:
↵
R

= 2, V
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~n as a function of V
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and voltage bias. The
zeroth order result from ~n0, which is a good approximation
for the numerical results for small ↵
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, is also presented. (c)-
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Andreev and normal reflection

• Solve boundary condition equations, find scattering matrix to order 

• Scattering matrix for an electron                to be reflected into a hole

• Scattering matrix for an electron                  to be reflected into an electron
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By solving the above boundary conditions, for both spin
up and spin down incoming electrons, the scattering ma-
trix of the N/TS junction at the Fermi energy can be
found. At zeroth order in ↵
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By solving the above boundary conditions, for both spin
up and spin down incoming electrons, the scattering ma-
trix of the N/TS junction at the Fermi energy can be
found. At zeroth order in ↵
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anti-parallel to ~n0 are totally reflected as electrons with
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Here, H
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and H
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are the tight-binding Hamiltonians
for the superconductor and the normal lead respectively.
The electron operator  
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) denotes an electron
in the superconductor (lead) at site i with spin �. The
hopping amplitudes in the superconductor and the lead
are t and t0 respectively. The coupling between the su-
perconductor and the lead is described by H

t

where t
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is
the coupling strength.

The scattering matrix of the N/TS junction can be
calculated using the recursive Green’s function method
[36, 37]. For example, the reflection matrix elements for
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= 15 for all the figures. (a)
The di↵erential conductance dI/dV of the N/TS junction as
a function of voltage bias V . The parameters are chosen as:
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= 2, V
z

= 2. (b) The angle ✓ of the polarization vector
~n as a function of V
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, for di↵erent ↵
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and voltage bias. The
zeroth order result from ~n0, which is a good approximation
for the numerical results for small ↵
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, is also presented. (c)-
(f) The polarization vector ~n for di↵erent parameters at zero
voltage bias. The coordinates ✓ and � denote the coordinates
of the dashed vector. (c) ~n with ↵
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In this work, we find that Majorana fermions induce selective equal spin Andreev reflections
(SESARs), in which incoming electrons with certain spin polarization in the lead are reflected as
counter propagating holes with the same spin. The spin polarization direction of the electrons of this
Andreev reflected channel is selected by the Majorana fermions. Moreover, electrons with opposite
spin polarization are always reflected as electrons with unchanged spin. As a result, the charge
current in the lead is spin-polarized. Therefore, a topological superconductor which supports Majo-
rana fermions can be used as a novel device to create fully spin-polarized currents in paramagnetic
leads. We point out that SESARs can also be used to detect Majorana fermions in topological
superconductors.

Introduction— A Majorana fermion (MF) [1, 2] is
an anti-particle of itself. Due to this self-Hermitian
property, a MF has only half the degrees of freedom of
a Dirac fermion and two spatially separated MFs can
form a non-local Dirac fermion. This special property
of MFs leads to several interesting phenomena such as
fractional Josephson e↵ects [2–6], resonant Andreev re-
flections [7, 8], electron teleportations [9, 10], enhanced
[11] and even resonant [12] crossed Andreev reflections.
Moreover, MFs in condensed matter systems obey non-
Abelian statistics [13–17] and have potential applications
in fault-tolerant quantum computations [18, 19]. Due
to these remarkable properties of MFs, the search for
topological superconductors which host MFs has become
one of the most important subjects in condensed matter
physics in recent years.

In this work, we point out another intriguing phe-
nomenon due to MFs, namely, MF-induced selective

equal spin Andreev reflections (SESARs). As depicted in
Fig.1, when a spinful paramagnetic normal lead is cou-
pled to a topological superconductor through its MF end
state, electrons with spin pointing to a certain direction ~

n

are reflected as holes with the same spin (Fig.1a), where
~
n is determined by the properties of the topological su-
perconductor. Importantly, electrons with opposite spin
are completely decoupled from the MF and they are re-
flected as electrons with unchanged spin (Fig.1b). As
a result, ordinary Andreev reflection processes [20], in
which electrons with certain spin are reflected as holes
with opposite spin, cannot take place if the Andreev re-
flections are induced by MFs.

Pure equal spin Andreev reflections can take place at
a half-metal/superconductor interface if spin is not con-
served at the interface [21–28]. This is because conduct-
ing electrons in a half-metal are fully spin-polarized and
usual Andreev reflection processes cannot occur. Nev-
ertheless, as we show below, inducing SESARs in para-
magnetic leads is a special property of MFs due to their
self-Hermitian characteristic. Importantly, as in the half-
metal case and depicted in Fig.1a, the charge current
in the normal lead is fully spin-polarized since the cur-

FIG. 1: A paramagnetic normal lead (N) is coupled to a
topological superconductor (TS) with MF end states. The
zero energy MF mode is denoted by the horizontal line inside
the bulk gap of the TS. (a) Electrons with a specific spin
polarization can undergo equal spin Andreev reflections in
which an electron is reflected as a hole with the same spin.
However, the resulting Cooper pair in the superconductor can
be a spin singlet if spin is not conserved due to spin-orbit
coupling. (b) Electrons with opposite spin are totally reflected
as electrons with unchanged spin.

rent is carried by right-moving electrons and counter-
propagating holes with the same spin. Therefore, a topo-
logical superconductor which supports MFs can be used
as a novel device for inducing fully spin-polarized cur-
rents in paramagnetic leads.

In the following sections, we first show, using an e↵ec-
tive Hamiltonian approach, that SESARs are due to the
self-Hermitian property of MFs. Second, to be more spe-
cific, we calculate the spin polarization axis ~n of a normal
lead-topological superconductor (N/TS) junction. The
topological superconductor is engineered by applying an
external magnetic field to a semi-conductor wire in prox-
imity to an s-wave superconductor [29–32]. Third, we
demonstrate how SESARs can be used to detect MFs in
topological superconductors using a spin-polarized lead.

Majorana-induced SESARs— The low energy
transport properties of a N/TS junction can be well de-
scribed by an e↵ective Hamiltonian which includes the
lead and the coupling between the lead and the MF
[6, 9, 11]. The e↵ective Hamiltonian H

T

can be writ-
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In this work, we find that Majorana fermions induce selective equal spin Andreev reflections
(SESARs), in which incoming electrons with certain spin polarization in the lead are reflected as
counter propagating holes with the same spin. The spin polarization direction of the electrons of this
Andreev reflected channel is selected by the Majorana fermions. Moreover, electrons with opposite
spin polarization are always reflected as electrons with unchanged spin. As a result, the charge
current in the lead is spin-polarized. Therefore, a topological superconductor which supports Majo-
rana fermions can be used as a novel device to create fully spin-polarized currents in paramagnetic
leads. We point out that SESARs can also be used to detect Majorana fermions in topological
superconductors.

Introduction— A Majorana fermion (MF) [1, 2] is
an anti-particle of itself. Due to this self-Hermitian
property, a MF has only half the degrees of freedom of
a Dirac fermion and two spatially separated MFs can
form a non-local Dirac fermion. This special property
of MFs leads to several interesting phenomena such as
fractional Josephson e↵ects [2–6], resonant Andreev re-
flections [7, 8], electron teleportations [9, 10], enhanced
[11] and even resonant [12] crossed Andreev reflections.
Moreover, MFs in condensed matter systems obey non-
Abelian statistics [13–17] and have potential applications
in fault-tolerant quantum computations [18, 19]. Due
to these remarkable properties of MFs, the search for
topological superconductors which host MFs has become
one of the most important subjects in condensed matter
physics in recent years.

In this work, we point out another intriguing phe-
nomenon due to MFs, namely, MF-induced selective

equal spin Andreev reflections (SESARs). As depicted in
Fig.1, when a spinful paramagnetic normal lead is cou-
pled to a topological superconductor through its MF end
state, electrons with spin pointing to a certain direction ~

n

are reflected as holes with the same spin (Fig.1a), where
~
n is determined by the properties of the topological su-
perconductor. Importantly, electrons with opposite spin
are completely decoupled from the MF and they are re-
flected as electrons with unchanged spin (Fig.1b). As
a result, ordinary Andreev reflection processes [20], in
which electrons with certain spin are reflected as holes
with opposite spin, cannot take place if the Andreev re-
flections are induced by MFs.

Pure equal spin Andreev reflections can take place at
a half-metal/superconductor interface if spin is not con-
served at the interface [21–28]. This is because conduct-
ing electrons in a half-metal are fully spin-polarized and
usual Andreev reflection processes cannot occur. Nev-
ertheless, as we show below, inducing SESARs in para-
magnetic leads is a special property of MFs due to their
self-Hermitian characteristic. Importantly, as in the half-
metal case and depicted in Fig.1a, the charge current
in the normal lead is fully spin-polarized since the cur-

FIG. 1: A paramagnetic normal lead (N) is coupled to a
topological superconductor (TS) with MF end states. The
zero energy MF mode is denoted by the horizontal line inside
the bulk gap of the TS. (a) Electrons with a specific spin
polarization can undergo equal spin Andreev reflections in
which an electron is reflected as a hole with the same spin.
However, the resulting Cooper pair in the superconductor can
be a spin singlet if spin is not conserved due to spin-orbit
coupling. (b) Electrons with opposite spin are totally reflected
as electrons with unchanged spin.

rent is carried by right-moving electrons and counter-
propagating holes with the same spin. Therefore, a topo-
logical superconductor which supports MFs can be used
as a novel device for inducing fully spin-polarized cur-
rents in paramagnetic leads.

In the following sections, we first show, using an e↵ec-
tive Hamiltonian approach, that SESARs are due to the
self-Hermitian property of MFs. Second, to be more spe-
cific, we calculate the spin polarization axis ~n of a normal
lead-topological superconductor (N/TS) junction. The
topological superconductor is engineered by applying an
external magnetic field to a semi-conductor wire in prox-
imity to an s-wave superconductor [29–32]. Third, we
demonstrate how SESARs can be used to detect MFs in
topological superconductors using a spin-polarized lead.

Majorana-induced SESARs— The low energy
transport properties of a N/TS junction can be well de-
scribed by an e↵ective Hamiltonian which includes the
lead and the coupling between the lead and the MF
[6, 9, 11]. The e↵ective Hamiltonian H

T

can be writ-
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Numerical model

• Tight-binding model
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By solving the above boundary conditions, for both spin
up and spin down incoming electrons, the scattering ma-
trix of the N/TS junction at the Fermi energy can be
found. At zeroth order in ↵

R

with ↵
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! 0, the Andreev
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, which relates the incoming elec-
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On the other hand, the normal reflection matrix which
relates the incoming electrons with outgoing electrons is
r
ee

(V
z

) = r
he

(�V
z

)ei�(k), where ei�(k) = k/m

L

�i�0/m

k/m

L

+i�0/m

is the phase acquired by the reflected electrons at
the interface. Denoting ~s0 = (cos ✓0

2 , e
i�0 sin ✓0

2 )
T =

1
N (��, V

z

+
p

V 2
z

��2)T with N the normalization fac-
tor, we have r

he

~s0 = ~s⇤0 and r
ee

~s0 = 0. Therefore,
to the zeroth order in ↵

R

, electrons in the conduct-
ing channel with spin parallel to ~

n0 = h~s0|~�|~s0i =
(sin ✓0 cos�0, sin ✓0 sin�0, cos ✓0) will be resonantly re-
flected as holes with the same spin. On the contrary,
electrons with spinor ~u0 = (� sin ✓0

2 , e
i�0 cos ✓0

2 ) and spin
anti-parallel to ~n0 are totally reflected as electrons with
unchanged spin since r

ee

~u0 = ei�~u0.
To further verify the analytic results and generalize the

results to arbitrary Rashba strength and voltage bias,
we calculate the scattering matrix of the N/TS junction
using a tight-binding model [32]:
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t

=
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 +
L0� S1� + h.c..

(9)
Here, H

S

and H
L

are the tight-binding Hamiltonians
for the superconductor and the normal lead respectively.
The electron operator  

Si�

( 
Li�

) denotes an electron
in the superconductor (lead) at site i with spin �. The
hopping amplitudes in the superconductor and the lead
are t and t0 respectively. The coupling between the su-
perconductor and the lead is described by H

t

where t
c

is
the coupling strength.

The scattering matrix of the N/TS junction can be
calculated using the recursive Green’s function method
[36, 37]. For example, the reflection matrix elements for
an incoming electron are:

r̃�
0
�

↵e

= ��
��

0�
↵e

+ i[�1/2]↵
�

0 ⇤ [Gr]�
0
�

↵e

⇤ [�1/2]e
�

. (10)

FIG. 2: � = 1, t = 25, t0 = 30, t
c

= 15 for all the figures. (a)
The di↵erential conductance dI/dV of the N/TS junction as
a function of voltage bias V . The parameters are chosen as:
↵
R

= 2, V
z

= 2. (b) The angle ✓ of the polarization vector
~n as a function of V

z

, for di↵erent ↵
R

and voltage bias. The
zeroth order result from ~n0, which is a good approximation
for the numerical results for small ↵

R

, is also presented. (c)-
(f) The polarization vector ~n for di↵erent parameters at zero
voltage bias. The coordinates ✓ and � denote the coordinates
of the dashed vector. (c) ~n with ↵

R

= 2 and di↵erent V
z

.
V
z

= �2 for the dashed vector. (d) ~n with V
z

= �2 at
di↵erent ↵

R

. ↵
R

= 2 for the dashed vector. (e) ~n with
↵
R

= 2 and di↵erent V
x

. V
x

= �2 for the dashed vector (f)
~n with V

x

= �2 and di↵erent ↵
R

. ↵
R

= 2 for the dashed
vector.

Here, r̃�
0
�

↵e

is the reflection amplitude of an incoming elec-
tron with spin � to be reflected as an ↵ particle with spin
�0 where ↵ denotes electron (e) or hole (h). [Gr]�

0
�

↵e

is a
matrix element of the retarded Green’s function Gr of
the superconductor. The broadening function is denoted
by �↵

�

= i[(⌃↵

�

)r � (⌃↵

�

)a], where (⌃↵

�

)r(a) is the retarded
(advanced) self-energy of the ↵ particle lead with spin �.

In the topological regime, there are two eigenvectors ~s
n

and ~u
n

for the normal reflection matrix r̃
ee

with r̃
ee

~s
n

=
m1~sn and r̃
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= m2~un

respectively. Moreover, r̃
he

~s
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=
m0

1~s
⇤
n

and r̃
he

~u
n

= 0. The eigenvalues are in general
complex and have the properties |m1| < 1, |m2| = 1
and |m0

1|  1. This shows that electrons with spinor ~u
n

are reflected as electrons with the same spin. On the
other hand, electrons with spinor ~s

n

can be reflected as
holes with the same spin. The corresponding Andreev
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, electrons in the conduct-
ing channel with spin parallel to ~

n0 = h~s0|~�|~s0i =
(sin ✓0 cos�0, sin ✓0 sin�0, cos ✓0) will be resonantly re-
flected as holes with the same spin. On the contrary,
electrons with spinor ~u0 = (� sin ✓0
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anti-parallel to ~n0 are totally reflected as electrons with
unchanged spin since r
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To further verify the analytic results and generalize the

results to arbitrary Rashba strength and voltage bias,
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H
S

=
P

i>0,� �t †
Si�

 
Si+1,� + (V

z

� � µ+ 2t) †
Si�

 
Si�

� 1
2↵R

� †
Si�

 
Si+1,��

+� †
Si�

 †
Si��

+ h.c.

H
L

=
P

i<0,� �t0 †
Li�

 
Li+1,� � µ †

Li�

 
Li�

+ h.c.

H
t

=
P

�

t
c

 +
L0� S1� + h.c..

(9)
Here, H

S

and H
L

are the tight-binding Hamiltonians
for the superconductor and the normal lead respectively.
The electron operator  

Si�

( 
Li�

) denotes an electron
in the superconductor (lead) at site i with spin �. The
hopping amplitudes in the superconductor and the lead
are t and t0 respectively. The coupling between the su-
perconductor and the lead is described by H

t

where t
c

is
the coupling strength.

The scattering matrix of the N/TS junction can be
calculated using the recursive Green’s function method
[36, 37]. For example, the reflection matrix elements for
an incoming electron are:

r̃�
0
�

↵e

= ��
��

0�
↵e

+ i[�1/2]↵
�

0 ⇤ [Gr]�
0
�

↵e

⇤ [�1/2]e
�

. (10)

FIG. 2: � = 1, t = 25, t0 = 30, t
c

= 15 for all the figures. (a)
The di↵erential conductance dI/dV of the N/TS junction as
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• Numerics vs.               :

•        partially reflected as hole of same spin, partially as electron of same spin

•        always reflected as electron of same spin

3

condition  
L

(x)|
x=0 =  

S

(x)|
x=0 and current conserva-

tion condition J
x

 
L

(x)|
x=0 = J

x

 
S

(x)|
x=0, where the

current operator is

J
x

=
@H1D(k)

@k
|
k!�i@

x

=

✓
�i@

x

/m �i↵
R

i↵
R

�i@
x

/m

◆
⌧
z

. (7)

By solving the above boundary conditions, for both spin
up and spin down incoming electrons, the scattering ma-
trix of the N/TS junction at the Fermi energy can be
found. At zeroth order in ↵

R

with ↵
R

! 0, the Andreev
reflection matrix r

he

, which relates the incoming elec-
trons ( 

k", k#)T with the outgoing holes ( †
�k", 

†
�k#)

T ,
is:

r
he

(V
z

) =

0

@
V

z

�
p

V

2
z

��2

2V
z

� �
2V

z

� �
2V

z

V

z

+
p

V

2
z

��2

2V
z

1

A . (8)

On the other hand, the normal reflection matrix which
relates the incoming electrons with outgoing electrons is
r
ee

(V
z

) = r
he

(�V
z

)ei�(k), where ei�(k) = k/m

L

�i�0/m

k/m

L

+i�0/m

is the phase acquired by the reflected electrons at
the interface. Denoting ~s0 = (cos ✓0

2 , e
i�0 sin ✓0

2 )
T =

1
N (��, V

z

+
p

V 2
z

��2)T with N the normalization fac-
tor, we have r

he

~s0 = ~s⇤0 and r
ee

~s0 = 0. Therefore,
to the zeroth order in ↵

R

, electrons in the conduct-
ing channel with spin parallel to ~

n0 = h~s0|~�|~s0i =
(sin ✓0 cos�0, sin ✓0 sin�0, cos ✓0) will be resonantly re-
flected as holes with the same spin. On the contrary,
electrons with spinor ~u0 = (� sin ✓0
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2 ) and spin
anti-parallel to ~n0 are totally reflected as electrons with
unchanged spin since r
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To further verify the analytic results and generalize the

results to arbitrary Rashba strength and voltage bias,
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Here, H
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and H
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are the tight-binding Hamiltonians
for the superconductor and the normal lead respectively.
The electron operator  
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) denotes an electron
in the superconductor (lead) at site i with spin �. The
hopping amplitudes in the superconductor and the lead
are t and t0 respectively. The coupling between the su-
perconductor and the lead is described by H
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where t
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is
the coupling strength.

The scattering matrix of the N/TS junction can be
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an incoming electron are:

r̃�
0
�

↵e

= ��
��

0�
↵e

+ i[�1/2]↵
�

0 ⇤ [Gr]�
0
�

↵e

⇤ [�1/2]e
�

. (10)

FIG. 2: � = 1, t = 25, t0 = 30, t
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= 2, V
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= 2. (b) The angle ✓ of the polarization vector
~n as a function of V
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, for di↵erent ↵
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and voltage bias. The
zeroth order result from ~n0, which is a good approximation
for the numerical results for small ↵
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, is also presented. (c)-
(f) The polarization vector ~n for di↵erent parameters at zero
voltage bias. The coordinates ✓ and � denote the coordinates
of the dashed vector. (c) ~n with ↵
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reflection amplitude is m0
1. This is consistent with the

e↵ective Hamiltonian results.
The di↵erential conductance dI/dV , as a function of

voltage bias V between the lead and the superconductor,
is shown in Fig.2a. As expected, the zero bias conduc-
tance is quantized to 2e2/h as the MF couples to only a
single conducting channel of the lead.

To study the spin polarization vector ~n = h~s
n

|~�|~s
n

i, we
plot the angle ✓ calculated from the tight-binding model
in Eq.9 as a function of V

z

for di↵erent incoming energy
eV and di↵erent ↵

R

. The results are shown in Fig.2b.
The zeroth order analytic result at zero bias, which is
a good approximation for the numerical results for small
↵
R

, is also shown in Fig.2b. The finite voltage bias results
are denoted by dashed lines. It is important to note that
✓ is not sensitive to the energy of the incoming electrons
so that the current at finite bias is also spin-polarized.

In Fig.2c, ~n as a function of V
z

is depicted. As ex-
pected, the projection of ~n on the z-axis increases as V

z

increases. On the other hand, � is only weakly depen-
dent on V

z

and it deviates only slightly from 2⇡ for small
Rashba strength. The ~

n dependent on ↵
R

for fixed V
z

is
shown in Fig.2d. Experimentally, it is also convenient to
apply the magnetic field along the wire so that V

x

is fi-
nite. The V

x

and ↵
R

dependence of ~n is shown in Figs.2e
and 2f.

Coupling between MFs and spin-polarized

leads— It is shown above that incoming electrons with
di↵erent spin polarizations interact with the topological
superconductor di↵erently. Electrons with spin parallel
to ~

n can undergo equal spin Andreev reflections, whereas
electrons with opposite spin polarization are totally re-
flected as electrons. Therefore, if the normal lead is spin-
polarized, we expect that the conductance of a N/TS
junction will strongly depend on the spin polarization of
the lead.

The experimental setup is depicted in Fig.3a in which
a normal lead is coupled to one end of a topological su-
perconductor. A ferromagnet is coupled to a section of
the normal lead so that electrons passing through the
magnetic section is strongly polarized by the ferromag-
net. The schematic band structure of di↵erent sections
of the system is shown in Fig.3a. By controlling the mag-
netization direction of the ferromagnet, one can control
the spin polarization direction of the incoming electrons
at the N/TS junction.

We denote the polarization angle of the ferromagnet
and the topological superconductor with respect to the
z-axis as ✓

F

and ✓
S

respectively. The conductance of the
N/TS junction for di↵erent angles �✓ = ✓

F

� ✓
S

is shown
in Fig.3b. When �✓ ⇡ 0, most of the incoming electrons
can undergo equal spin Andreev reflections. As a result,
the width of the conductance peak, which measures the
coupling strength between the lead and the topological
superconductor, is wide. As �✓ deviates from zero, the
incoming electrons can be decomposed into the Andreev

(b) (c) 
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FIG. 3: (a) A normal lead (N) is coupled to a semi-conductor
wire with Rashba spin-orbit coupling and in proximity to a
superconductor (SC). The wire can support MF end states.
A ferromagnetic (FM) section is added to the normal lead to
polarize the electrons of the wire. The schematic band struc-
ture of di↵erent sections of the wire are shown. The Fermi
energy is denoted by the yellow dashed line. The spin degen-
eracy of the spin up and spin down bands in the ferromagnetic
section of the normal lead is lifted. (b) The di↵erential con-
ductance as a function of �✓ in the topological regime with
MFs. The tight-binding parameters are the same as in Fig.2a
except that a Zeeman field ~V

F

with |~V
F

| = 10� is applied to
a section of 20 sites of the normal lead, which is 10 sites away
from the N/TS interface. (c) The di↵erential conductance as
a function of ✓

F

in the topologically trivial regime.

reflected channel and the totally reflected channel. As
�✓ increases, the weight of the totally reflected channel
becomes more important and the width of the conduc-
tance peak becomes narrower. Nevertheless, the height
of the zero bias conductance peak at zero temperature
is not changed due to resonant Andreev reflections. On
the contrary, in the topologically trivial regime, in which
two transverse subbands of the semiconductor wire are
occupied, Andreev reflections are mainly induced by or-
dinary fermionic end states and ordinary Andreev reflec-
tion processes dominate. As a result, the conductance
is only weakly dependent on ✓

F

. Therefore, the MF-
induced SESARs can be used to distinguish the topolog-
ical regime from the trivial regime of the superconductor.

Conclusion— In short, we show in this work that MFs
induce SESARs. As a result, topological superconductors
can be used as novel devices to generate spin-polarized
currents in paramagnetic leads. The SESARs can also
be used to detect MFs if spin-polarized leads are used.

Acknowledgments— We thank Chris LM Wong for
discussions. JJH and KTL thank the support from
HKRGC through Grant 605512. TKN thanks the sup-
port of HKRGC through Grant HKUST3/CRF09. PAL
acknowledges the support by DOE Grant DE-FG-02-03-
ER46076.

4

reflection amplitude is m0
1. This is consistent with the

e↵ective Hamiltonian results.
The di↵erential conductance dI/dV , as a function of

voltage bias V between the lead and the superconductor,
is shown in Fig.2a. As expected, the zero bias conduc-
tance is quantized to 2e2/h as the MF couples to only a
single conducting channel of the lead.

To study the spin polarization vector ~n = h~s
n

|~�|~s
n

i, we
plot the angle ✓ calculated from the tight-binding model
in Eq.9 as a function of V

z

for di↵erent incoming energy
eV and di↵erent ↵

R

. The results are shown in Fig.2b.
The zeroth order analytic result at zero bias, which is
a good approximation for the numerical results for small
↵
R

, is also shown in Fig.2b. The finite voltage bias results
are denoted by dashed lines. It is important to note that
✓ is not sensitive to the energy of the incoming electrons
so that the current at finite bias is also spin-polarized.

In Fig.2c, ~n as a function of V
z

is depicted. As ex-
pected, the projection of ~n on the z-axis increases as V

z

increases. On the other hand, � is only weakly depen-
dent on V

z

and it deviates only slightly from 2⇡ for small
Rashba strength. The ~

n dependent on ↵
R

for fixed V
z

is
shown in Fig.2d. Experimentally, it is also convenient to
apply the magnetic field along the wire so that V

x

is fi-
nite. The V

x

and ↵
R

dependence of ~n is shown in Figs.2e
and 2f.

Coupling between MFs and spin-polarized

leads— It is shown above that incoming electrons with
di↵erent spin polarizations interact with the topological
superconductor di↵erently. Electrons with spin parallel
to ~

n can undergo equal spin Andreev reflections, whereas
electrons with opposite spin polarization are totally re-
flected as electrons. Therefore, if the normal lead is spin-
polarized, we expect that the conductance of a N/TS
junction will strongly depend on the spin polarization of
the lead.

The experimental setup is depicted in Fig.3a in which
a normal lead is coupled to one end of a topological su-
perconductor. A ferromagnet is coupled to a section of
the normal lead so that electrons passing through the
magnetic section is strongly polarized by the ferromag-
net. The schematic band structure of di↵erent sections
of the system is shown in Fig.3a. By controlling the mag-
netization direction of the ferromagnet, one can control
the spin polarization direction of the incoming electrons
at the N/TS junction.

We denote the polarization angle of the ferromagnet
and the topological superconductor with respect to the
z-axis as ✓

F

and ✓
S

respectively. The conductance of the
N/TS junction for di↵erent angles �✓ = ✓

F

� ✓
S

is shown
in Fig.3b. When �✓ ⇡ 0, most of the incoming electrons
can undergo equal spin Andreev reflections. As a result,
the width of the conductance peak, which measures the
coupling strength between the lead and the topological
superconductor, is wide. As �✓ deviates from zero, the
incoming electrons can be decomposed into the Andreev

FIG. 3: (a) A normal lead (N) is coupled to a semi-conductor
wire with Rashba spin-orbit coupling and in proximity to a
superconductor (SC). The wire can support MF end states.
A ferromagnetic (FM) section is added to the normal lead to
polarize the electrons of the wire. The schematic band struc-
ture of di↵erent sections of the wire are shown. The Fermi
energy is denoted by the yellow dashed line. The spin degen-
eracy of the spin up and spin down bands in the ferromagnetic
section of the normal lead is lifted. (b) The di↵erential con-
ductance as a function of �✓ in the topological regime with
MFs. The tight-binding parameters are the same as in Fig.2a
except that a Zeeman field ~V

F

with |~V
F

| = 10� is applied to
a section of 20 sites of the normal lead, which is 10 sites away
from the N/TS interface. (c) The di↵erential conductance as
a function of ✓

F

in the topologically trivial regime.

reflected channel and the totally reflected channel. As
�✓ increases, the weight of the totally reflected channel
becomes more important and the width of the conduc-
tance peak becomes narrower. Nevertheless, the height
of the zero bias conductance peak at zero temperature
is not changed due to resonant Andreev reflections. On
the contrary, in the topologically trivial regime, in which
two transverse subbands of the semiconductor wire are
occupied, Andreev reflections are mainly induced by or-
dinary fermionic end states and ordinary Andreev reflec-
tion processes dominate. As a result, the conductance
is only weakly dependent on ✓

F

. Therefore, the MF-
induced SESARs can be used to distinguish the topolog-
ical regime from the trivial regime of the superconductor.

Conclusion— In short, we show in this work that MFs
induce SESARs. As a result, topological superconductors
can be used as novel devices to generate spin-polarized
currents in paramagnetic leads. The SESARs can also
be used to detect MFs if spin-polarized leads are used.

Acknowledgments— We thank Chris LM Wong for
discussions. JJH and KTL thank the support from
HKRGC through Grant 605512. TKN thanks the sup-
port of HKRGC through Grant HKUST3/CRF09. PAL
acknowledges the support by DOE Grant DE-FG-02-03-
ER46076.k �✓ ⇡ 0

most incoing electrons undergo equal spin Andreev reflection
width of conductance peak = coupling strength = large

topologial trivial

Montag, 9. September 13



Majorana and spin-polarized leads

• Setup:

• Normal leads spin    to spin mode coupling to Majorana,                :

4

reflection amplitude is m0
1. This is consistent with the

e↵ective Hamiltonian results.
The di↵erential conductance dI/dV , as a function of

voltage bias V between the lead and the superconductor,
is shown in Fig.2a. As expected, the zero bias conduc-
tance is quantized to 2e2/h as the MF couples to only a
single conducting channel of the lead.

To study the spin polarization vector ~n = h~s
n

|~�|~s
n

i, we
plot the angle ✓ calculated from the tight-binding model
in Eq.9 as a function of V

z

for di↵erent incoming energy
eV and di↵erent ↵

R

. The results are shown in Fig.2b.
The zeroth order analytic result at zero bias, which is
a good approximation for the numerical results for small
↵
R

, is also shown in Fig.2b. The finite voltage bias results
are denoted by dashed lines. It is important to note that
✓ is not sensitive to the energy of the incoming electrons
so that the current at finite bias is also spin-polarized.

In Fig.2c, ~n as a function of V
z

is depicted. As ex-
pected, the projection of ~n on the z-axis increases as V

z

increases. On the other hand, � is only weakly depen-
dent on V

z

and it deviates only slightly from 2⇡ for small
Rashba strength. The ~

n dependent on ↵
R

for fixed V
z

is
shown in Fig.2d. Experimentally, it is also convenient to
apply the magnetic field along the wire so that V

x

is fi-
nite. The V

x

and ↵
R

dependence of ~n is shown in Figs.2e
and 2f.

Coupling between MFs and spin-polarized

leads— It is shown above that incoming electrons with
di↵erent spin polarizations interact with the topological
superconductor di↵erently. Electrons with spin parallel
to ~

n can undergo equal spin Andreev reflections, whereas
electrons with opposite spin polarization are totally re-
flected as electrons. Therefore, if the normal lead is spin-
polarized, we expect that the conductance of a N/TS
junction will strongly depend on the spin polarization of
the lead.

The experimental setup is depicted in Fig.3a in which
a normal lead is coupled to one end of a topological su-
perconductor. A ferromagnet is coupled to a section of
the normal lead so that electrons passing through the
magnetic section is strongly polarized by the ferromag-
net. The schematic band structure of di↵erent sections
of the system is shown in Fig.3a. By controlling the mag-
netization direction of the ferromagnet, one can control
the spin polarization direction of the incoming electrons
at the N/TS junction.

We denote the polarization angle of the ferromagnet
and the topological superconductor with respect to the
z-axis as ✓

F

and ✓
S

respectively. The conductance of the
N/TS junction for di↵erent angles �✓ = ✓

F

� ✓
S

is shown
in Fig.3b. When �✓ ⇡ 0, most of the incoming electrons
can undergo equal spin Andreev reflections. As a result,
the width of the conductance peak, which measures the
coupling strength between the lead and the topological
superconductor, is wide. As �✓ deviates from zero, the
incoming electrons can be decomposed into the Andreev

FIG. 3: (a) A normal lead (N) is coupled to a semi-conductor
wire with Rashba spin-orbit coupling and in proximity to a
superconductor (SC). The wire can support MF end states.
A ferromagnetic (FM) section is added to the normal lead to
polarize the electrons of the wire. The schematic band struc-
ture of di↵erent sections of the wire are shown. The Fermi
energy is denoted by the yellow dashed line. The spin degen-
eracy of the spin up and spin down bands in the ferromagnetic
section of the normal lead is lifted. (b) The di↵erential con-
ductance as a function of �✓ in the topological regime with
MFs. The tight-binding parameters are the same as in Fig.2a
except that a Zeeman field ~V

F

with |~V
F

| = 10� is applied to
a section of 20 sites of the normal lead, which is 10 sites away
from the N/TS interface. (c) The di↵erential conductance as
a function of ✓

F

in the topologically trivial regime.

reflected channel and the totally reflected channel. As
�✓ increases, the weight of the totally reflected channel
becomes more important and the width of the conduc-
tance peak becomes narrower. Nevertheless, the height
of the zero bias conductance peak at zero temperature
is not changed due to resonant Andreev reflections. On
the contrary, in the topologically trivial regime, in which
two transverse subbands of the semiconductor wire are
occupied, Andreev reflections are mainly induced by or-
dinary fermionic end states and ordinary Andreev reflec-
tion processes dominate. As a result, the conductance
is only weakly dependent on ✓

F

. Therefore, the MF-
induced SESARs can be used to distinguish the topolog-
ical regime from the trivial regime of the superconductor.

Conclusion— In short, we show in this work that MFs
induce SESARs. As a result, topological superconductors
can be used as novel devices to generate spin-polarized
currents in paramagnetic leads. The SESARs can also
be used to detect MFs if spin-polarized leads are used.

Acknowledgments— We thank Chris LM Wong for
discussions. JJH and KTL thank the support from
HKRGC through Grant 605512. TKN thanks the sup-
port of HKRGC through Grant HKUST3/CRF09. PAL
acknowledges the support by DOE Grant DE-FG-02-03-
ER46076.k �✓ ⇡ 0

most incoing electrons undergo equal spin Andreev reflection
width of conductance peak = coupling strength = large

topologial trivial

4

reflection amplitude is m0
1. This is consistent with the

e↵ective Hamiltonian results.
The di↵erential conductance dI/dV , as a function of

voltage bias V between the lead and the superconductor,
is shown in Fig.2a. As expected, the zero bias conduc-
tance is quantized to 2e2/h as the MF couples to only a
single conducting channel of the lead.

To study the spin polarization vector ~n = h~s
n

|~�|~s
n

i, we
plot the angle ✓ calculated from the tight-binding model
in Eq.9 as a function of V

z

for di↵erent incoming energy
eV and di↵erent ↵

R

. The results are shown in Fig.2b.
The zeroth order analytic result at zero bias, which is
a good approximation for the numerical results for small
↵
R

, is also shown in Fig.2b. The finite voltage bias results
are denoted by dashed lines. It is important to note that
✓ is not sensitive to the energy of the incoming electrons
so that the current at finite bias is also spin-polarized.

In Fig.2c, ~n as a function of V
z

is depicted. As ex-
pected, the projection of ~n on the z-axis increases as V

z

increases. On the other hand, � is only weakly depen-
dent on V

z

and it deviates only slightly from 2⇡ for small
Rashba strength. The ~

n dependent on ↵
R

for fixed V
z

is
shown in Fig.2d. Experimentally, it is also convenient to
apply the magnetic field along the wire so that V

x

is fi-
nite. The V

x

and ↵
R

dependence of ~n is shown in Figs.2e
and 2f.

Coupling between MFs and spin-polarized
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superconductor di↵erently. Electrons with spin parallel
to ~

n can undergo equal spin Andreev reflections, whereas
electrons with opposite spin polarization are totally re-
flected as electrons. Therefore, if the normal lead is spin-
polarized, we expect that the conductance of a N/TS
junction will strongly depend on the spin polarization of
the lead.

The experimental setup is depicted in Fig.3a in which
a normal lead is coupled to one end of a topological su-
perconductor. A ferromagnet is coupled to a section of
the normal lead so that electrons passing through the
magnetic section is strongly polarized by the ferromag-
net. The schematic band structure of di↵erent sections
of the system is shown in Fig.3a. By controlling the mag-
netization direction of the ferromagnet, one can control
the spin polarization direction of the incoming electrons
at the N/TS junction.

We denote the polarization angle of the ferromagnet
and the topological superconductor with respect to the
z-axis as ✓
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FIG. 3: (a) A normal lead (N) is coupled to a semi-conductor
wire with Rashba spin-orbit coupling and in proximity to a
superconductor (SC). The wire can support MF end states.
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polarize the electrons of the wire. The schematic band struc-
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energy is denoted by the yellow dashed line. The spin degen-
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two transverse subbands of the semiconductor wire are
occupied, Andreev reflections are mainly induced by or-
dinary fermionic end states and ordinary Andreev reflec-
tion processes dominate. As a result, the conductance
is only weakly dependent on ✓
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. Therefore, the MF-
induced SESARs can be used to distinguish the topolog-
ical regime from the trivial regime of the superconductor.

Conclusion— In short, we show in this work that MFs
induce SESARs. As a result, topological superconductors
can be used as novel devices to generate spin-polarized
currents in paramagnetic leads. The SESARs can also
be used to detect MFs if spin-polarized leads are used.
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of the zero bias conductance peak at zero temperature
is not changed due to resonant Andreev reflections. On
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two transverse subbands of the semiconductor wire are
occupied, Andreev reflections are mainly induced by or-
dinary fermionic end states and ordinary Andreev reflec-
tion processes dominate. As a result, the conductance
is only weakly dependent on ✓
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. Therefore, the MF-
induced SESARs can be used to distinguish the topolog-
ical regime from the trivial regime of the superconductor.

Conclusion— In short, we show in this work that MFs
induce SESARs. As a result, topological superconductors
can be used as novel devices to generate spin-polarized
currents in paramagnetic leads. The SESARs can also
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In this work, we find that Majorana fermions induce selective equal spin Andreev reflections
(SESARs), in which incoming electrons with certain spin polarization in the lead are reflected as
counter propagating holes with the same spin. The spin polarization direction of the electrons of this
Andreev reflected channel is selected by the Majorana fermions. Moreover, electrons with opposite
spin polarization are always reflected as electrons with unchanged spin. As a result, the charge
current in the lead is spin-polarized. Therefore, a topological superconductor which supports Majo-
rana fermions can be used as a novel device to create fully spin-polarized currents in paramagnetic
leads. We point out that SESARs can also be used to detect Majorana fermions in topological
superconductors.

Introduction— A Majorana fermion (MF) [1, 2] is
an anti-particle of itself. Due to this self-Hermitian
property, a MF has only half the degrees of freedom of
a Dirac fermion and two spatially separated MFs can
form a non-local Dirac fermion. This special property
of MFs leads to several interesting phenomena such as
fractional Josephson e↵ects [2–6], resonant Andreev re-
flections [7, 8], electron teleportations [9, 10], enhanced
[11] and even resonant [12] crossed Andreev reflections.
Moreover, MFs in condensed matter systems obey non-
Abelian statistics [13–17] and have potential applications
in fault-tolerant quantum computations [18, 19]. Due
to these remarkable properties of MFs, the search for
topological superconductors which host MFs has become
one of the most important subjects in condensed matter
physics in recent years.

In this work, we point out another intriguing phe-
nomenon due to MFs, namely, MF-induced selective

equal spin Andreev reflections (SESARs). As depicted in
Fig.1, when a spinful paramagnetic normal lead is cou-
pled to a topological superconductor through its MF end
state, electrons with spin pointing to a certain direction ~

n

are reflected as holes with the same spin (Fig.1a), where
~
n is determined by the properties of the topological su-
perconductor. Importantly, electrons with opposite spin
are completely decoupled from the MF and they are re-
flected as electrons with unchanged spin (Fig.1b). As
a result, ordinary Andreev reflection processes [20], in
which electrons with certain spin are reflected as holes
with opposite spin, cannot take place if the Andreev re-
flections are induced by MFs.

Pure equal spin Andreev reflections can take place at
a half-metal/superconductor interface if spin is not con-
served at the interface [21–28]. This is because conduct-
ing electrons in a half-metal are fully spin-polarized and
usual Andreev reflection processes cannot occur. Nev-
ertheless, as we show below, inducing SESARs in para-
magnetic leads is a special property of MFs due to their
self-Hermitian characteristic. Importantly, as in the half-
metal case and depicted in Fig.1a, the charge current
in the normal lead is fully spin-polarized since the cur-

FIG. 1: A paramagnetic normal lead (N) is coupled to a
topological superconductor (TS) with MF end states. The
zero energy MF mode is denoted by the horizontal line inside
the bulk gap of the TS. (a) Electrons with a specific spin
polarization can undergo equal spin Andreev reflections in
which an electron is reflected as a hole with the same spin.
However, the resulting Cooper pair in the superconductor can
be a spin singlet if spin is not conserved due to spin-orbit
coupling. (b) Electrons with opposite spin are totally reflected
as electrons with unchanged spin.

rent is carried by right-moving electrons and counter-
propagating holes with the same spin. Therefore, a topo-
logical superconductor which supports MFs can be used
as a novel device for inducing fully spin-polarized cur-
rents in paramagnetic leads.

In the following sections, we first show, using an e↵ec-
tive Hamiltonian approach, that SESARs are due to the
self-Hermitian property of MFs. Second, to be more spe-
cific, we calculate the spin polarization axis ~n of a normal
lead-topological superconductor (N/TS) junction. The
topological superconductor is engineered by applying an
external magnetic field to a semi-conductor wire in prox-
imity to an s-wave superconductor [29–32]. Third, we
demonstrate how SESARs can be used to detect MFs in
topological superconductors using a spin-polarized lead.

Majorana-induced SESARs— The low energy
transport properties of a N/TS junction can be well de-
scribed by an e↵ective Hamiltonian which includes the
lead and the coupling between the lead and the MF
[6, 9, 11]. The e↵ective Hamiltonian H

T

can be writ-
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metal case and depicted in Fig.1a, the charge current
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logical superconductor which supports MFs can be used
as a novel device for inducing fully spin-polarized cur-
rents in paramagnetic leads.

In the following sections, we first show, using an e↵ec-
tive Hamiltonian approach, that SESARs are due to the
self-Hermitian property of MFs. Second, to be more spe-
cific, we calculate the spin polarization axis ~n of a normal
lead-topological superconductor (N/TS) junction. The
topological superconductor is engineered by applying an
external magnetic field to a semi-conductor wire in prox-
imity to an s-wave superconductor [29–32]. Third, we
demonstrate how SESARs can be used to detect MFs in
topological superconductors using a spin-polarized lead.
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reflection amplitude is m0
1. This is consistent with the

e↵ective Hamiltonian results.
The di↵erential conductance dI/dV , as a function of

voltage bias V between the lead and the superconductor,
is shown in Fig.2a. As expected, the zero bias conduc-
tance is quantized to 2e2/h as the MF couples to only a
single conducting channel of the lead.

To study the spin polarization vector ~n = h~s
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i, we
plot the angle ✓ calculated from the tight-binding model
in Eq.9 as a function of V
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for di↵erent incoming energy
eV and di↵erent ↵
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. The results are shown in Fig.2b.
The zeroth order analytic result at zero bias, which is
a good approximation for the numerical results for small
↵
R

, is also shown in Fig.2b. The finite voltage bias results
are denoted by dashed lines. It is important to note that
✓ is not sensitive to the energy of the incoming electrons
so that the current at finite bias is also spin-polarized.

In Fig.2c, ~n as a function of V
z

is depicted. As ex-
pected, the projection of ~n on the z-axis increases as V

z

increases. On the other hand, � is only weakly depen-
dent on V

z

and it deviates only slightly from 2⇡ for small
Rashba strength. The ~

n dependent on ↵
R

for fixed V
z

is
shown in Fig.2d. Experimentally, it is also convenient to
apply the magnetic field along the wire so that V

x

is fi-
nite. The V

x

and ↵
R

dependence of ~n is shown in Figs.2e
and 2f.

Coupling between MFs and spin-polarized

leads— It is shown above that incoming electrons with
di↵erent spin polarizations interact with the topological
superconductor di↵erently. Electrons with spin parallel
to ~

n can undergo equal spin Andreev reflections, whereas
electrons with opposite spin polarization are totally re-
flected as electrons. Therefore, if the normal lead is spin-
polarized, we expect that the conductance of a N/TS
junction will strongly depend on the spin polarization of
the lead.

The experimental setup is depicted in Fig.3a in which
a normal lead is coupled to one end of a topological su-
perconductor. A ferromagnet is coupled to a section of
the normal lead so that electrons passing through the
magnetic section is strongly polarized by the ferromag-
net. The schematic band structure of di↵erent sections
of the system is shown in Fig.3a. By controlling the mag-
netization direction of the ferromagnet, one can control
the spin polarization direction of the incoming electrons
at the N/TS junction.

We denote the polarization angle of the ferromagnet
and the topological superconductor with respect to the
z-axis as ✓

F

and ✓
S

respectively. The conductance of the
N/TS junction for di↵erent angles �✓ = ✓

F

� ✓
S

is shown
in Fig.3b. When �✓ ⇡ 0, most of the incoming electrons
can undergo equal spin Andreev reflections. As a result,
the width of the conductance peak, which measures the
coupling strength between the lead and the topological
superconductor, is wide. As �✓ deviates from zero, the
incoming electrons can be decomposed into the Andreev
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FIG. 3: (a) A normal lead (N) is coupled to a semi-conductor
wire with Rashba spin-orbit coupling and in proximity to a
superconductor (SC). The wire can support MF end states.
A ferromagnetic (FM) section is added to the normal lead to
polarize the electrons of the wire. The schematic band struc-
ture of di↵erent sections of the wire are shown. The Fermi
energy is denoted by the yellow dashed line. The spin degen-
eracy of the spin up and spin down bands in the ferromagnetic
section of the normal lead is lifted. (b) The di↵erential con-
ductance as a function of �✓ in the topological regime with
MFs. The tight-binding parameters are the same as in Fig.2a
except that a Zeeman field ~V

F

with |~V
F

| = 10� is applied to
a section of 20 sites of the normal lead, which is 10 sites away
from the N/TS interface. (c) The di↵erential conductance as
a function of ✓

F

in the topologically trivial regime.

reflected channel and the totally reflected channel. As
�✓ increases, the weight of the totally reflected channel
becomes more important and the width of the conduc-
tance peak becomes narrower. Nevertheless, the height
of the zero bias conductance peak at zero temperature
is not changed due to resonant Andreev reflections. On
the contrary, in the topologically trivial regime, in which
two transverse subbands of the semiconductor wire are
occupied, Andreev reflections are mainly induced by or-
dinary fermionic end states and ordinary Andreev reflec-
tion processes dominate. As a result, the conductance
is only weakly dependent on ✓

F

. Therefore, the MF-
induced SESARs can be used to distinguish the topolog-
ical regime from the trivial regime of the superconductor.

Conclusion— In short, we show in this work that MFs
induce SESARs. As a result, topological superconductors
can be used as novel devices to generate spin-polarized
currents in paramagnetic leads. The SESARs can also
be used to detect MFs if spin-polarized leads are used.
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