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An area law for entanglement from exponential
decay of correlations

Fernando G. S. L. Brandao"?* and Michat Horodecki®

Area laws for entanglement in quantum many-body systems give useful information about their low-temperature behaviour
and are tightly connected to the possibility of good numerical simulations. An intuition from quantum many-body physics
suggests that an area law should hold whenever there is exponential decay of correlations in the system, a property found,
for instance, in non-critical phases of matter. However, the existence of quantum data-hiding states—that is, states having
very small correlations, yet a volume scaling of entanglement—was believed to be a serious obstruction to such an implication.
Here we prove that notwithstanding the phenomenon of data hiding, one-dimensional quantum many-body states satisfying
exponential decay of correlations always fulfil an area law. To obtain this result we combine several recent advances in quantum
information theory, thus showing the usefulness of the field for addressing problems in other areas of physics.
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Relevance of groundstate properties

Properties of the ground state (gs) give a lot of
information about the physics of a quantum
many-body Hamiltonian at zero/low

temperature:

* Decay of correlations allows to identify the
phase of the model

* Entanglement in the gs: area laws



Relevance of gs entanglement

* Resource character of entanglement in QIP

* Signatures of criticality can be detected on the
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 Large amounts of entanglement in the gs render
its classical simulation infeasible

 Conversely: limited entanglement allows for
good methods for numerical simulation (e.g.
Matrix Product State representation)



Measure of correlations

* For a bipartite (mixed) state pxy

Cor(X:Y):= max [tr((MQ®N)(pxy —px ® py))l
IM]|=L[IN|=1

* A pure state |Y), _, has s-exponential decay
of correlations (EDC) if for any two regions X
and Y we have

Cor(X:Y)<27/¢
where |=dist(X,Y).



Exponential decay of correlations

e ...is expected to appear in non-critical phases
of matter, where there is a notion of
correlation length.

* |t has been proved that ground states of
gapped Hamiltonians have exponentially
decaying correlations, where the correlation
length is given by the inverse spectral gap.



Measure of entanglement

* For a bipartite pure state |V ) xy
E(|Y)xy) =H(px)=—tr(pxlogpx)

e States corresponding to the ground or low-
lying eigenstates of local models often satisfy

area laws

— Black holes

— Quantum spin systems

— Quantum harmonic systems



Area laws

 The entanglement of a contiguous region with
its complement is proportional to the
boundary, not its volume (as one would
expect for a generic quantum state)

* M. Hastings (2007): 1D gapped Hamiltonians
with a unique ground state always obey an
area law (i.e., the entropy of a contiguous
region is upper-bounded by a constant).



What is known and what they show

Gapped Hamiltonian

known known

Exponential decay Area law in 1D
of correlations they show



Intumon from many-body physics
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Figure1| EDC intuitlvely suggests an area law. a, The intuition is
exemplified in a simple manner by a state consisting of entangled pairs of
neighbouring particles. There the correlations are of fixed length 2, as only
neighbours are correlated. The particles connected by an edge are in the
pure state ¥ =(1/2)(JO0 +[11), and so only the pairs crossing the
boundary (dark blue) contribute to the entropy of the region inside the
boundary (shaded square). b, For 1D states an area law implies that the



Intuition from many-body physics
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boundary (shaded square). b, For 1D states an area law implies that the
entropy of an interval is constant. Again for a system of entangled pairs,
only one pair cut the boundary. ¢,d, A general intuitive argument is the



Intuition from many-body physics
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only one pair cut the boundary. ¢,d, A general intuitive argument is the
following: if the distance of two parts A and C is larger than the correlation
length, the reduced state pac should be close to a product state:
Pac = pa ® pc, then suggesting that the system B can be divided into
subsytems By and By such that the total pure state ¥agc is close to the
product state ¥ag, ® ¥4, . However, for pure bipartite states, the entropy
cannot exceed the size of any of subsystems. Therefore,
S(A) <S(By) ~ 0O(&), and we would obtain that entropy of any interval is
constant and proportional to the correlation length &.



The flaw in the argument

Data hiding: For almost all states [¥) asc with |A]
=|C|, the correlations between A and C are

vanishing but the entropies of A and C are close to

maximal.
A B C

Cor(A:C) = e™18l

Quantum data-hiding states have been thought of
being an obstruction for obtaining an area law for
entanglement entropy from EDC.



Main result

ooooo

Then for any connected region X C [n],

H(X) < cexp(c'log(§)&)

with ¢, ¢’ > 0 being universal constants.



Application to many-body physics

* Ground states of (disordered) Hamiltonians
exhibiting many-body localization (or a
mobility gap) satisfy EDC.

* These models are in general not gapped, so no
area law was known before.

e E.g., the XY model with random coefficients
exhibits many-body localization = its ground
state satisfies an area law.



Application to MPS

Matrix product state: description of quantum
states, which is efficient in many physical
contexts

|W>1 el — Z Ztr(A[l] : A[n])lzl ----- in>

where All are DxD matrices

D measures the complexity of the matrix product
representation; when D=poly(n) the quantum
state psi admits an efficient classical description
=» EV’s of local observables can be calculated
efficiently.

This is the case if psi satisfies EDC.



Application to MPS

Thus, 1D pure quantum states with EDC have a very simple
structure, admitting a classical efficient parametrization. In fact,
the most successful numerical method known for computing low-
energy properties of 1D models, the density matrix renormalization
group’’, is a variational method over the class of MPS. Corollary 2
shows that one should expect the density matrix renormalization
group to work well whenever the model is such that its ground state
has rapidly decaying correlations.



Application to QIP

* Which properties are behind the (apparent)
superiority of quantum computation over
classical compuation?

* =» Find conditions under which quantum
circuits have an efficient classical simulation.

e Most famous result: Gottesman-Knill
Theorem.



Application to QIP

Corollary 3. Consider a family of quantum circuits V =V;---V,V;
acting on n qubits arranged in a ring and composed of two qubit
gates Vi. Let |f,) :=V,---V,V1]0") be the state after the ¢ th gate
has been applied. Then if there is a constant £ independent of »
such that, for all n and t € [n], |/;) has £-EDC, one can classically
simulate the evolution of the quantum circuit in poly(#, k) time.

=>» If a quantum circuit is supposed to solve a
classically hard problem more efficiently, one must
have at |least algebraically decaying correlations
(cf. critical phases of matter).



Proof of main theorem

* Tools from Quantum Information Theory:
— Quantum state merging
— Single-shot quantum information theory



Open questions

e Linear rather than exponential bound (in s) in
main Theorem.

* Generalization to higher dimensions. In 2D, it
is not even known whether a gapped local
Hamiltonian implies an area law.



Conclusions

* EDCimplies an area law in 1D; these are

properties of the state alone, no Hamiltonian
enters the theorem.

* Applications to

— Many body physics (disordered 1D systems)
— Efficient description of quantum states (MPS)
— Quantum Information Processing

* Usefulness of quantum information theory

for addressing problems in other areas of
physics.



