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Content

e So far inducing long-distance correlations
requires sequential local operations (nearest-
neighbour couplings only).

* Here they show, that two distant sites can be
tunnel-coupled directly.

 The coupling is mediated by virtual occupation of
an intermediate site, with a strength that is
controlled via the energy detuning of this site.



The setup

* GaAs/AlGaAs heterostructure
= 2DEQG.

* Only adjacent dots are connected
through tunnel barriers.

* The left and right dots are
also tunnel-coupled to the left
and right reservoirs, respectively.
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on gates LP and RP.



Co-tunnelling between outer dots
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Two possible pathways for co-tunneling between ‘ 1 1O> and ‘01 1>



Total Tunnel Rate

The Hamiltonian describing the experiments can be expressed in the basis W%O)) —

110), [y = [011), [¢5”) = |020), [11”) = |101) as:

(—5/2 0 tll tlg\
0 5/2 trl trg
tn ta 01 O

\tm tro 0O 52)

We perform a unitary transformation of this Hamiltonian, to express it in the eigenbasis
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When detuning is zero, adding phenomenologically decoherence
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Non-monotonous dependence on detuning
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Extracted data about rate is well fitted by previously derived formula,
non-monotonous dependence indicate co-tunnelling.



PAT and PACT
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For previously derived Hamiltonian they put detuning depending
on the frequency, as it was a microwave excitation applied to LP gate.

e — &g + Aexp(iwt)

g —eq/2 — Aexp(iwt) teo
teo en/2 + Aexp(iwt)

It is exactly Landau-Zener-Schtueckelberg Hamiltonian,
so all LZS physics can be applied to PACT.
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Conclusions

 They demonstrated an effective coherent co-tunnel
coupling between the outer dots in a triple quantum

dot, which is mediated by virtual occupation of levels
on the middle dot.

* The coupling strength can be controlled via detuning
between the relevant middle and outer dot levels
and agrees well with theoretical predictions.



