
Single-Polariton Optomechanics

Juan Restrepo, Cristiano Ciuti, and Ivan Favero
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This Letter investigates a hybrid quantum system combining cavity quantum electrodynamics and

optomechanics. The Hamiltonian problem of a photon mode coupled to a two-level atom via a Jaynes-

Cummings coupling and to a mechanical mode via radiation pressure coupling is solved analytically. The

atom-cavity polariton number operator commutes with the total Hamiltonian leading to an exact

description in terms of tripartite atom-cavity-mechanics polarons. We demonstrate the possibility to

obtain cooling of mechanical motion at the single-polariton level and describe the peculiar quantum

statistics of phonons in such an unconventional regime.
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Cavity quantum electrodynamics (QED) experiments
have explored the light-matter interaction at the quantum
level in atomic physics [1,2]. Spectacular developments
have been achieved as well in circuit QED systems
based on superconducting Josephson junctions [3]. More
recently, quantum optomechanical realizations have
coupled cavity photons to mesoscopic mechanical resona-
tors [4–6]. In superconducting circuits, strong coupling and
control of the mechanical motion at the quantum level have
also been demonstrated [7]. Today, the maturity of solid-
state quantum devices appears thus promising to bridge
QED and optomechanics. The physical interaction at play
in QED results in a resonant coupling linear in the photon
field operators (Jaynes-Cummings Hamiltonian), while in
optomechanics a nonlinear radiation pressure term couples
two off-resonant photonic and mechanical modes. A rich
physics is expected in systems that would merge these
distinct physical features.

The basic principle of inserting a two-level artificial
atom in an optomechanical setting was discussed in clas-
sical terms for fine-tuning of dispersive and dissipative
optomechanical interactions [8]. The coupling of an opto-
mechanical cavity to an atom motion [9] or to collective
excitations of an ensemble of atoms [10] was also dis-
cussed, resulting in the physical situation of two linearly
coupled harmonic oscillators. In that case, the anharmonic
internal structure of a single atom and its corresponding
nonlinear dynamics, a key feature of cavity and circuit
QED, is absent. Since optomechanical systems progres-
sively move towards regimes where single-photon
coupling exceeds dissipation [11–17], a growing interest
is emerging for hybrid systems where artificial atoms,
photons, and phonons would all be strongly coupled at
the quantum level.

In this Letter, we investigate the physics of a hybrid
quantum system where a cavity photon mode is coupled to
an artificial two-level atom and to a mechanical resonator.
We describe analytically the polaron excitations of this

tripartite system and determine the dynamics in the presence
of losses and driving. We show atom-assisted cooling of
mechanical motion down to the single atom-cavity polariton
level and reveal unusual mechanical amplification. Last, we
demonstrate the emergence of both strong phonon bunching
and antibunching in such tripartite quantum systems.
As illustrated in Fig. 1, we consider a joint system where

a confined photon mode is coupled both to a two-level
artificial atom and to a mechanical resonator. Our system
combines the usual Jaynes-Cummings (JC) coupling of
cavity (circuit) QED architectures [1] and the nonlinear
coupling of optomechanics [18]. We thus consider the total
Hamiltonian (@ ¼ 1):

Ĥtot ¼ !câ
yâþ!a

2
!̂z þ igacð!̂þâ$ !̂$â

yÞ

þ!mb̂
yb̂$ gcmâ

yâðb̂þ b̂yÞ; (1)

where !̂x;y;z are Pauli matrices for the two-level system

(!̂& being the ladder operators) and â (b̂) is the

FIG. 1 (color online). Scheme of the considered hybrid sys-
tem. A photon confined mode of frequency !c couples both to a
two-level system (!a is the transition frequency) and to a
mechanical resonator of frequency !m. gac (gcm) is the coupling
strength of the Jaynes-Cummings (radiation pressure) atom-
cavity (cavity-mechanics) coupling.
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yâðb̂þ b̂yÞ; (1)

where !̂x;y;z are Pauli matrices for the two-level system

(!̂& being the ladder operators) and â (b̂) is the
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annihilation operator for the photon (mechanical) mode
of frequency !c (!m). gac and gcm are the atom-cavity
and optomechanical coupling strengths, respectively.
Replacing the radiation pressure coupling with a direct
coupling between the atom and the mechanical oscillator
of the form / !̂zðb̂þ b̂yÞ yields qualitatively a similar
physics, and this case will hence not be considered further
below.

The system evolves in a discrete but infinite Hilbert
space in which the uncoupled (gac ¼ gcm ¼ 0) eigenvec-
tors are labeled as je; gi % jki % jli: jgi (jei) describes the
ground (excited) state of the two-level system, k the Fock
state with k 2 N photons in the cavity, and l the state with
l 2 N phonons in the mechanical resonator. For gac ! 0
and gcm ¼ 0, one has the standard configuration of cavity
(circuit) QED, where atom-cavity polaritons are the new
eigenstates of the system. For gcm ! 0, there are new
eigenstates for the hybrid tripartite system, which we will
call atom-cavity-mechanics polarons.

A key feature of the above Hamiltonian is the conserva-
tion of the polariton number N̂polariton ¼ âyâþ !̂þ!̂&.
The problem can thus be diagonalized in each subspace
H n containing exactly n polaritons. In the resonant case
(!a ¼ !c), the polariton-phonon basis fj'ðnÞi % jlig diag-
onalizes the JC part of the Hamiltonian ĤJC ¼ !câ

yâþ
!a

2 !̂z þ igacð!̂þâ& !̂&â
yÞ, where j'ðnÞi ¼ ð1=

ffiffiffi
2

p
Þ(

ðjg; k ¼ ni' ije; k ¼ n& 1iÞ are the n-polariton eigen-

vectors of the JC ladder. Namely, we have ĤJCj'ðnÞi ¼
!ðnÞ

' j'ðnÞi with !ðnÞ
' ¼ ½ðn& 1=2Þ!c ' !ðnÞ

2 * and !ðnÞ ¼
2

ffiffiffi
n

p
gac. The system total Hamiltonian being block diago-

nal in this new basis, the mechanical resonator couples
independently to each polaritonic subspace associated to
H n, as illustrated in Fig. 2(a). Hence, we can express it as
follows:

Ĥtot ¼
X

n2N

"
ðn& 1=2Þ!c1ðnÞ þ!ðnÞ

2
!̂ðnÞ

z

& gcm

#
1

2
!̂ðnÞ

x þ
#
n& 1

2

$
1ðnÞ

$
ðb̂þ b̂yÞ

%
þ!mb̂

yb̂;

(2)

where 1ðnÞ is the identity in the H n Hilbert subspace and

!̂ðnÞ
x;z are Pauli matrices acting on the polaritonic doublet

j'ðnÞi. The radiation pressure coupling has two conse-
quences. First, an effective coupling appears between
each of the two cavity polariton states j'ðnÞi and the
mechanical mode. Second, each of the two states con-
tains on average n& 1=2 cavity photons that displace
statically the equilibrium position of the mechanical
resonator.

In eachH n we can absorb the static displacement of the
mechanical resonator by introducing the new displaced
operator b̂n and make a rotating wave approximation to
obtain the following Hamiltonian in H n:

ĤðnÞ ¼ !ðnÞ

2
!̂ðnÞ

z þ!mb̂
y
n b̂n &

gcm
2

ð!̂ðnÞ
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& gcm
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2
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2
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x þ
#
!ðnÞ

0 &!m

2
qðnÞ

2

0

$
1ðnÞ; (3)

where qðnÞ0 ¼
ffiffiffi
2

p
gcmðn& 1=2Þ=!m is the normalized dis-

placed mechanical equilibrium position. The term propor-

tional to !̂ðnÞ
x in Eq. (3) will be neglected hereafter in the

limit gcm + !m. Its perturbative effect could be accounted
for in an exact treatment of the Rabi model [19] but at the
expense of losing explicit expressions for the eigenstates.
Apart from the last term, which is a constant energy shift,
we have an effective Jaynes-Cummings-like Hamiltonian,

which can be diagonalized by the states j'ðn;mðnÞÞi, where
mðnÞ is the polaron number of the tripartite system and n is
the polariton number previously defined. The energy spec-
trum of Ĥn is given by the expression

ĤðnÞj'ðn;mðnÞÞi¼!ðnÞ
0 &!m

2
qðnÞ

2

0 þ
#
m&1

2

$
!m'"ðn;mÞ; (4)

where

"ðn;mÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi#
!ðnÞ &!m

2

$
2
þmðnÞ

4
g2cm

s
: (5)

Figure 2(b) shows the structure of the energy spectrum
for n ¼ 0, 1, 2. For each n-polariton state, a multiplet arises
from the mechanical resonator Fock space. As the mean

(a)

(b) (c)

FIG. 2 (color online). Structure of the polaron eigenstates
for the atom-cavity-mechanics tripartite system. (a) Each
n-polariton subspace (left) couples independently to states of
the mechanical resonator with different displacements (right).
(b) Energy spectrum for n , 2. (c) Zoom on the energy levels in
the H 1 subspace (one-polariton states).
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!ðnÞ

' j'ðnÞi with !ðnÞ
' ¼ ½ðn& 1=2Þ!c ' !ðnÞ

2 * and !ðnÞ ¼
2

ffiffiffi
n

p
gac. The system total Hamiltonian being block diago-

nal in this new basis, the mechanical resonator couples
independently to each polaritonic subspace associated to
H n, as illustrated in Fig. 2(a). Hence, we can express it as
follows:
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ĤðnÞ ¼ !ðnÞ

2
!̂ðnÞ

z þ!mb̂
y
n b̂n &

gcm
2

ð!̂ðnÞ
& b̂yn þ !̂ðnÞ

þ b̂nÞ

& gcm

ffiffiffi
2

p

2
qðnÞ0 !̂ðnÞ

x þ
#
!ðnÞ

0 &!m

2
qðnÞ

2

0

$
1ðnÞ; (3)

where qðnÞ0 ¼
ffiffiffi
2

p
gcmðn& 1=2Þ=!m is the normalized dis-

placed mechanical equilibrium position. The term propor-

tional to !̂ðnÞ
x in Eq. (3) will be neglected hereafter in the

limit gcm + !m. Its perturbative effect could be accounted
for in an exact treatment of the Rabi model [19] but at the
expense of losing explicit expressions for the eigenstates.
Apart from the last term, which is a constant energy shift,
we have an effective Jaynes-Cummings-like Hamiltonian,

which can be diagonalized by the states j'ðn;mðnÞÞi, where
mðnÞ is the polaron number of the tripartite system and n is
the polariton number previously defined. The energy spec-
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from the mechanical resonator Fock space. As the mean

(a)

(b) (c)

FIG. 2 (color online). Structure of the polaron eigenstates
for the atom-cavity-mechanics tripartite system. (a) Each
n-polariton subspace (left) couples independently to states of
the mechanical resonator with different displacements (right).
(b) Energy spectrum for n , 2. (c) Zoom on the energy levels in
the H 1 subspace (one-polariton states).
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annihilation operator for the photon (mechanical) mode
of frequency !c (!m). gac and gcm are the atom-cavity
and optomechanical coupling strengths, respectively.
Replacing the radiation pressure coupling with a direct
coupling between the atom and the mechanical oscillator
of the form / !̂zðb̂þ b̂yÞ yields qualitatively a similar
physics, and this case will hence not be considered further
below.

The system evolves in a discrete but infinite Hilbert
space in which the uncoupled (gac ¼ gcm ¼ 0) eigenvec-
tors are labeled as je; gi % jki % jli: jgi (jei) describes the
ground (excited) state of the two-level system, k the Fock
state with k 2 N photons in the cavity, and l the state with
l 2 N phonons in the mechanical resonator. For gac ! 0
and gcm ¼ 0, one has the standard configuration of cavity
(circuit) QED, where atom-cavity polaritons are the new
eigenstates of the system. For gcm ! 0, there are new
eigenstates for the hybrid tripartite system, which we will
call atom-cavity-mechanics polarons.

A key feature of the above Hamiltonian is the conserva-
tion of the polariton number N̂polariton ¼ âyâþ !̂þ!̂&.
The problem can thus be diagonalized in each subspace
H n containing exactly n polaritons. In the resonant case
(!a ¼ !c), the polariton-phonon basis fj'ðnÞi % jlig diag-
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tains on average n& 1=2 cavity photons that displace
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limit gcm + !m. Its perturbative effect could be accounted
for in an exact treatment of the Rabi model [19] but at the
expense of losing explicit expressions for the eigenstates.
Apart from the last term, which is a constant energy shift,
we have an effective Jaynes-Cummings-like Hamiltonian,

which can be diagonalized by the states j'ðn;mðnÞÞi, where
mðnÞ is the polaron number of the tripartite system and n is
the polariton number previously defined. The energy spec-
trum of Ĥn is given by the expression
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Figure 2(b) shows the structure of the energy spectrum
for n ¼ 0, 1, 2. For each n-polariton state, a multiplet arises
from the mechanical resonator Fock space. As the mean
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FIG. 2 (color online). Structure of the polaron eigenstates
for the atom-cavity-mechanics tripartite system. (a) Each
n-polariton subspace (left) couples independently to states of
the mechanical resonator with different displacements (right).
(b) Energy spectrum for n , 2. (c) Zoom on the energy levels in
the H 1 subspace (one-polariton states).
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annihilation operator for the photon (mechanical) mode
of frequency !c (!m). gac and gcm are the atom-cavity
and optomechanical coupling strengths, respectively.
Replacing the radiation pressure coupling with a direct
coupling between the atom and the mechanical oscillator
of the form / !̂zðb̂þ b̂yÞ yields qualitatively a similar
physics, and this case will hence not be considered further
below.

The system evolves in a discrete but infinite Hilbert
space in which the uncoupled (gac ¼ gcm ¼ 0) eigenvec-
tors are labeled as je; gi % jki % jli: jgi (jei) describes the
ground (excited) state of the two-level system, k the Fock
state with k 2 N photons in the cavity, and l the state with
l 2 N phonons in the mechanical resonator. For gac ! 0
and gcm ¼ 0, one has the standard configuration of cavity
(circuit) QED, where atom-cavity polaritons are the new
eigenstates of the system. For gcm ! 0, there are new
eigenstates for the hybrid tripartite system, which we will
call atom-cavity-mechanics polarons.

A key feature of the above Hamiltonian is the conserva-
tion of the polariton number N̂polariton ¼ âyâþ !̂þ!̂&.
The problem can thus be diagonalized in each subspace
H n containing exactly n polaritons. In the resonant case
(!a ¼ !c), the polariton-phonon basis fj'ðnÞi % jlig diag-
onalizes the JC part of the Hamiltonian ĤJC ¼ !câ
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where 1ðnÞ is the identity in the H n Hilbert subspace and
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x;z are Pauli matrices acting on the polaritonic doublet

j'ðnÞi. The radiation pressure coupling has two conse-
quences. First, an effective coupling appears between
each of the two cavity polariton states j'ðnÞi and the
mechanical mode. Second, each of the two states con-
tains on average n& 1=2 cavity photons that displace
statically the equilibrium position of the mechanical
resonator.

In eachH n we can absorb the static displacement of the
mechanical resonator by introducing the new displaced
operator b̂n and make a rotating wave approximation to
obtain the following Hamiltonian in H n:

ĤðnÞ ¼ !ðnÞ

2
!̂ðnÞ

z þ!mb̂
y
n b̂n &

gcm
2

ð!̂ðnÞ
& b̂yn þ !̂ðnÞ

þ b̂nÞ

& gcm

ffiffiffi
2

p

2
qðnÞ0 !̂ðnÞ

x þ
#
!ðnÞ

0 &!m

2
qðnÞ

2

0

$
1ðnÞ; (3)

where qðnÞ0 ¼
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p
gcmðn& 1=2Þ=!m is the normalized dis-

placed mechanical equilibrium position. The term propor-

tional to !̂ðnÞ
x in Eq. (3) will be neglected hereafter in the

limit gcm + !m. Its perturbative effect could be accounted
for in an exact treatment of the Rabi model [19] but at the
expense of losing explicit expressions for the eigenstates.
Apart from the last term, which is a constant energy shift,
we have an effective Jaynes-Cummings-like Hamiltonian,

which can be diagonalized by the states j'ðn;mðnÞÞi, where
mðnÞ is the polaron number of the tripartite system and n is
the polariton number previously defined. The energy spec-
trum of Ĥn is given by the expression
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Figure 2(b) shows the structure of the energy spectrum
for n ¼ 0, 1, 2. For each n-polariton state, a multiplet arises
from the mechanical resonator Fock space. As the mean
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FIG. 2 (color online). Structure of the polaron eigenstates
for the atom-cavity-mechanics tripartite system. (a) Each
n-polariton subspace (left) couples independently to states of
the mechanical resonator with different displacements (right).
(b) Energy spectrum for n , 2. (c) Zoom on the energy levels in
the H 1 subspace (one-polariton states).
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annihilation operator for the photon (mechanical) mode
of frequency !c (!m). gac and gcm are the atom-cavity
and optomechanical coupling strengths, respectively.
Replacing the radiation pressure coupling with a direct
coupling between the atom and the mechanical oscillator
of the form / !̂zðb̂þ b̂yÞ yields qualitatively a similar
physics, and this case will hence not be considered further
below.

The system evolves in a discrete but infinite Hilbert
space in which the uncoupled (gac ¼ gcm ¼ 0) eigenvec-
tors are labeled as je; gi % jki % jli: jgi (jei) describes the
ground (excited) state of the two-level system, k the Fock
state with k 2 N photons in the cavity, and l the state with
l 2 N phonons in the mechanical resonator. For gac ! 0
and gcm ¼ 0, one has the standard configuration of cavity
(circuit) QED, where atom-cavity polaritons are the new
eigenstates of the system. For gcm ! 0, there are new
eigenstates for the hybrid tripartite system, which we will
call atom-cavity-mechanics polarons.

A key feature of the above Hamiltonian is the conserva-
tion of the polariton number N̂polariton ¼ âyâþ !̂þ!̂&.
The problem can thus be diagonalized in each subspace
H n containing exactly n polaritons. In the resonant case
(!a ¼ !c), the polariton-phonon basis fj'ðnÞi % jlig diag-
onalizes the JC part of the Hamiltonian ĤJC ¼ !câ
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nal in this new basis, the mechanical resonator couples
independently to each polaritonic subspace associated to
H n, as illustrated in Fig. 2(a). Hence, we can express it as
follows:
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where 1ðnÞ is the identity in the H n Hilbert subspace and

!̂ðnÞ
x;z are Pauli matrices acting on the polaritonic doublet

j'ðnÞi. The radiation pressure coupling has two conse-
quences. First, an effective coupling appears between
each of the two cavity polariton states j'ðnÞi and the
mechanical mode. Second, each of the two states con-
tains on average n& 1=2 cavity photons that displace
statically the equilibrium position of the mechanical
resonator.

In eachH n we can absorb the static displacement of the
mechanical resonator by introducing the new displaced
operator b̂n and make a rotating wave approximation to
obtain the following Hamiltonian in H n:
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where qðnÞ0 ¼
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gcmðn& 1=2Þ=!m is the normalized dis-

placed mechanical equilibrium position. The term propor-

tional to !̂ðnÞ
x in Eq. (3) will be neglected hereafter in the

limit gcm + !m. Its perturbative effect could be accounted
for in an exact treatment of the Rabi model [19] but at the
expense of losing explicit expressions for the eigenstates.
Apart from the last term, which is a constant energy shift,
we have an effective Jaynes-Cummings-like Hamiltonian,

which can be diagonalized by the states j'ðn;mðnÞÞi, where
mðnÞ is the polaron number of the tripartite system and n is
the polariton number previously defined. The energy spec-
trum of Ĥn is given by the expression
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Figure 2(b) shows the structure of the energy spectrum
for n ¼ 0, 1, 2. For each n-polariton state, a multiplet arises
from the mechanical resonator Fock space. As the mean
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FIG. 2 (color online). Structure of the polaron eigenstates
for the atom-cavity-mechanics tripartite system. (a) Each
n-polariton subspace (left) couples independently to states of
the mechanical resonator with different displacements (right).
(b) Energy spectrum for n , 2. (c) Zoom on the energy levels in
the H 1 subspace (one-polariton states).
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annihilation operator for the photon (mechanical) mode
of frequency !c (!m). gac and gcm are the atom-cavity
and optomechanical coupling strengths, respectively.
Replacing the radiation pressure coupling with a direct
coupling between the atom and the mechanical oscillator
of the form / !̂zðb̂þ b̂yÞ yields qualitatively a similar
physics, and this case will hence not be considered further
below.

The system evolves in a discrete but infinite Hilbert
space in which the uncoupled (gac ¼ gcm ¼ 0) eigenvec-
tors are labeled as je; gi % jki % jli: jgi (jei) describes the
ground (excited) state of the two-level system, k the Fock
state with k 2 N photons in the cavity, and l the state with
l 2 N phonons in the mechanical resonator. For gac ! 0
and gcm ¼ 0, one has the standard configuration of cavity
(circuit) QED, where atom-cavity polaritons are the new
eigenstates of the system. For gcm ! 0, there are new
eigenstates for the hybrid tripartite system, which we will
call atom-cavity-mechanics polarons.

A key feature of the above Hamiltonian is the conserva-
tion of the polariton number N̂polariton ¼ âyâþ !̂þ!̂&.
The problem can thus be diagonalized in each subspace
H n containing exactly n polaritons. In the resonant case
(!a ¼ !c), the polariton-phonon basis fj'ðnÞi % jlig diag-
onalizes the JC part of the Hamiltonian ĤJC ¼ !câ
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where 1ðnÞ is the identity in the H n Hilbert subspace and
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j'ðnÞi. The radiation pressure coupling has two conse-
quences. First, an effective coupling appears between
each of the two cavity polariton states j'ðnÞi and the
mechanical mode. Second, each of the two states con-
tains on average n& 1=2 cavity photons that displace
statically the equilibrium position of the mechanical
resonator.

In eachH n we can absorb the static displacement of the
mechanical resonator by introducing the new displaced
operator b̂n and make a rotating wave approximation to
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limit gcm + !m. Its perturbative effect could be accounted
for in an exact treatment of the Rabi model [19] but at the
expense of losing explicit expressions for the eigenstates.
Apart from the last term, which is a constant energy shift,
we have an effective Jaynes-Cummings-like Hamiltonian,

which can be diagonalized by the states j'ðn;mðnÞÞi, where
mðnÞ is the polaron number of the tripartite system and n is
the polariton number previously defined. The energy spec-
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FIG. 2 (color online). Structure of the polaron eigenstates
for the atom-cavity-mechanics tripartite system. (a) Each
n-polariton subspace (left) couples independently to states of
the mechanical resonator with different displacements (right).
(b) Energy spectrum for n , 2. (c) Zoom on the energy levels in
the H 1 subspace (one-polariton states).
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annihilation operator for the photon (mechanical) mode
of frequency !c (!m). gac and gcm are the atom-cavity
and optomechanical coupling strengths, respectively.
Replacing the radiation pressure coupling with a direct
coupling between the atom and the mechanical oscillator
of the form / !̂zðb̂þ b̂yÞ yields qualitatively a similar
physics, and this case will hence not be considered further
below.

The system evolves in a discrete but infinite Hilbert
space in which the uncoupled (gac ¼ gcm ¼ 0) eigenvec-
tors are labeled as je; gi % jki % jli: jgi (jei) describes the
ground (excited) state of the two-level system, k the Fock
state with k 2 N photons in the cavity, and l the state with
l 2 N phonons in the mechanical resonator. For gac ! 0
and gcm ¼ 0, one has the standard configuration of cavity
(circuit) QED, where atom-cavity polaritons are the new
eigenstates of the system. For gcm ! 0, there are new
eigenstates for the hybrid tripartite system, which we will
call atom-cavity-mechanics polarons.

A key feature of the above Hamiltonian is the conserva-
tion of the polariton number N̂polariton ¼ âyâþ !̂þ!̂&.
The problem can thus be diagonalized in each subspace
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FIG. 2 (color online). Structure of the polaron eigenstates
for the atom-cavity-mechanics tripartite system. (a) Each
n-polariton subspace (left) couples independently to states of
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(b) Energy spectrum for n , 2. (c) Zoom on the energy levels in
the H 1 subspace (one-polariton states).
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eigenstates of the system. For gcm ! 0, there are new
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The problem can thus be diagonalized in each subspace
H n containing exactly n polaritons. In the resonant case
(!a ¼ !c), the polariton-phonon basis fj'ðnÞi % jlig diag-
onalizes the JC part of the Hamiltonian ĤJC ¼ !câ
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mðnÞ is the polaron number of the tripartite system and n is
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the mechanical resonator with different displacements (right).
(b) Energy spectrum for n , 2. (c) Zoom on the energy levels in
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and optomechanical coupling strengths, respectively.
Replacing the radiation pressure coupling with a direct
coupling between the atom and the mechanical oscillator
of the form / !̂zðb̂þ b̂yÞ yields qualitatively a similar
physics, and this case will hence not be considered further
below.
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space in which the uncoupled (gac ¼ gcm ¼ 0) eigenvec-
tors are labeled as je; gi % jki % jli: jgi (jei) describes the
ground (excited) state of the two-level system, k the Fock
state with k 2 N photons in the cavity, and l the state with
l 2 N phonons in the mechanical resonator. For gac ! 0
and gcm ¼ 0, one has the standard configuration of cavity
(circuit) QED, where atom-cavity polaritons are the new
eigenstates of the system. For gcm ! 0, there are new
eigenstates for the hybrid tripartite system, which we will
call atom-cavity-mechanics polarons.

A key feature of the above Hamiltonian is the conserva-
tion of the polariton number N̂polariton ¼ âyâþ !̂þ!̂&.
The problem can thus be diagonalized in each subspace
H n containing exactly n polaritons. In the resonant case
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j'ðnÞi. The radiation pressure coupling has two conse-
quences. First, an effective coupling appears between
each of the two cavity polariton states j'ðnÞi and the
mechanical mode. Second, each of the two states con-
tains on average n& 1=2 cavity photons that displace
statically the equilibrium position of the mechanical
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In eachH n we can absorb the static displacement of the
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operator b̂n and make a rotating wave approximation to
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limit gcm + !m. Its perturbative effect could be accounted
for in an exact treatment of the Rabi model [19] but at the
expense of losing explicit expressions for the eigenstates.
Apart from the last term, which is a constant energy shift,
we have an effective Jaynes-Cummings-like Hamiltonian,

which can be diagonalized by the states j'ðn;mðnÞÞi, where
mðnÞ is the polaron number of the tripartite system and n is
the polariton number previously defined. The energy spec-
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of frequency !c (!m). gac and gcm are the atom-cavity
and optomechanical coupling strengths, respectively.
Replacing the radiation pressure coupling with a direct
coupling between the atom and the mechanical oscillator
of the form / !̂zðb̂þ b̂yÞ yields qualitatively a similar
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below.
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tors are labeled as je; gi % jki % jli: jgi (jei) describes the
ground (excited) state of the two-level system, k the Fock
state with k 2 N photons in the cavity, and l the state with
l 2 N phonons in the mechanical resonator. For gac ! 0
and gcm ¼ 0, one has the standard configuration of cavity
(circuit) QED, where atom-cavity polaritons are the new
eigenstates of the system. For gcm ! 0, there are new
eigenstates for the hybrid tripartite system, which we will
call atom-cavity-mechanics polarons.

A key feature of the above Hamiltonian is the conserva-
tion of the polariton number N̂polariton ¼ âyâþ !̂þ!̂&.
The problem can thus be diagonalized in each subspace
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quences. First, an effective coupling appears between
each of the two cavity polariton states j'ðnÞi and the
mechanical mode. Second, each of the two states con-
tains on average n& 1=2 cavity photons that displace
statically the equilibrium position of the mechanical
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limit gcm + !m. Its perturbative effect could be accounted
for in an exact treatment of the Rabi model [19] but at the
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Apart from the last term, which is a constant energy shift,
we have an effective Jaynes-Cummings-like Hamiltonian,

which can be diagonalized by the states j'ðn;mðnÞÞi, where
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and optomechanical coupling strengths, respectively.
Replacing the radiation pressure coupling with a direct
coupling between the atom and the mechanical oscillator
of the form / !̂zðb̂þ b̂yÞ yields qualitatively a similar
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below.
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(circuit) QED, where atom-cavity polaritons are the new
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tion of the polariton number N̂polariton ¼ âyâþ !̂þ!̂&.
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Figure 2(b) shows the structure of the energy spectrum
for n ¼ 0, 1, 2. For each n-polariton state, a multiplet arises
from the mechanical resonator Fock space. As the mean
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FIG. 2 (color online). Structure of the polaron eigenstates
for the atom-cavity-mechanics tripartite system. (a) Each
n-polariton subspace (left) couples independently to states of
the mechanical resonator with different displacements (right).
(b) Energy spectrum for n , 2. (c) Zoom on the energy levels in
the H 1 subspace (one-polariton states).

PRL 112, 013601 (2014) P HY S I CA L R EV I EW LE T T E R S
week ending

10 JANUARY 2014

013601-2

!a = !cfor

Eigenstates are polaritons:

pho-bit
qu-ton



annihilation operator for the photon (mechanical) mode
of frequency !c (!m). gac and gcm are the atom-cavity
and optomechanical coupling strengths, respectively.
Replacing the radiation pressure coupling with a direct
coupling between the atom and the mechanical oscillator
of the form / !̂zðb̂þ b̂yÞ yields qualitatively a similar
physics, and this case will hence not be considered further
below.

The system evolves in a discrete but infinite Hilbert
space in which the uncoupled (gac ¼ gcm ¼ 0) eigenvec-
tors are labeled as je; gi % jki % jli: jgi (jei) describes the
ground (excited) state of the two-level system, k the Fock
state with k 2 N photons in the cavity, and l the state with
l 2 N phonons in the mechanical resonator. For gac ! 0
and gcm ¼ 0, one has the standard configuration of cavity
(circuit) QED, where atom-cavity polaritons are the new
eigenstates of the system. For gcm ! 0, there are new
eigenstates for the hybrid tripartite system, which we will
call atom-cavity-mechanics polarons.

A key feature of the above Hamiltonian is the conserva-
tion of the polariton number N̂polariton ¼ âyâþ !̂þ!̂&.
The problem can thus be diagonalized in each subspace
H n containing exactly n polaritons. In the resonant case
(!a ¼ !c), the polariton-phonon basis fj'ðnÞi % jlig diag-
onalizes the JC part of the Hamiltonian ĤJC ¼ !câ
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independently to each polaritonic subspace associated to
H n, as illustrated in Fig. 2(a). Hence, we can express it as
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where 1ðnÞ is the identity in the H n Hilbert subspace and

!̂ðnÞ
x;z are Pauli matrices acting on the polaritonic doublet

j'ðnÞi. The radiation pressure coupling has two conse-
quences. First, an effective coupling appears between
each of the two cavity polariton states j'ðnÞi and the
mechanical mode. Second, each of the two states con-
tains on average n& 1=2 cavity photons that displace
statically the equilibrium position of the mechanical
resonator.

In eachH n we can absorb the static displacement of the
mechanical resonator by introducing the new displaced
operator b̂n and make a rotating wave approximation to
obtain the following Hamiltonian in H n:
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where qðnÞ0 ¼
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gcmðn& 1=2Þ=!m is the normalized dis-

placed mechanical equilibrium position. The term propor-

tional to !̂ðnÞ
x in Eq. (3) will be neglected hereafter in the

limit gcm + !m. Its perturbative effect could be accounted
for in an exact treatment of the Rabi model [19] but at the
expense of losing explicit expressions for the eigenstates.
Apart from the last term, which is a constant energy shift,
we have an effective Jaynes-Cummings-like Hamiltonian,

which can be diagonalized by the states j'ðn;mðnÞÞi, where
mðnÞ is the polaron number of the tripartite system and n is
the polariton number previously defined. The energy spec-
trum of Ĥn is given by the expression
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Figure 2(b) shows the structure of the energy spectrum
for n ¼ 0, 1, 2. For each n-polariton state, a multiplet arises
from the mechanical resonator Fock space. As the mean
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FIG. 2 (color online). Structure of the polaron eigenstates
for the atom-cavity-mechanics tripartite system. (a) Each
n-polariton subspace (left) couples independently to states of
the mechanical resonator with different displacements (right).
(b) Energy spectrum for n , 2. (c) Zoom on the energy levels in
the H 1 subspace (one-polariton states).
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Atom-cavity-mechanics polaritons

annihilation operator for the photon (mechanical) mode
of frequency !c (!m). gac and gcm are the atom-cavity
and optomechanical coupling strengths, respectively.
Replacing the radiation pressure coupling with a direct
coupling between the atom and the mechanical oscillator
of the form / !̂zðb̂þ b̂yÞ yields qualitatively a similar
physics, and this case will hence not be considered further
below.

The system evolves in a discrete but infinite Hilbert
space in which the uncoupled (gac ¼ gcm ¼ 0) eigenvec-
tors are labeled as je; gi % jki % jli: jgi (jei) describes the
ground (excited) state of the two-level system, k the Fock
state with k 2 N photons in the cavity, and l the state with
l 2 N phonons in the mechanical resonator. For gac ! 0
and gcm ¼ 0, one has the standard configuration of cavity
(circuit) QED, where atom-cavity polaritons are the new
eigenstates of the system. For gcm ! 0, there are new
eigenstates for the hybrid tripartite system, which we will
call atom-cavity-mechanics polarons.

A key feature of the above Hamiltonian is the conserva-
tion of the polariton number N̂polariton ¼ âyâþ !̂þ!̂&.
The problem can thus be diagonalized in each subspace
H n containing exactly n polaritons. In the resonant case
(!a ¼ !c), the polariton-phonon basis fj'ðnÞi % jlig diag-
onalizes the JC part of the Hamiltonian ĤJC ¼ !câ

yâþ
!a
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nal in this new basis, the mechanical resonator couples
independently to each polaritonic subspace associated to
H n, as illustrated in Fig. 2(a). Hence, we can express it as
follows:
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where 1ðnÞ is the identity in the H n Hilbert subspace and

!̂ðnÞ
x;z are Pauli matrices acting on the polaritonic doublet

j'ðnÞi. The radiation pressure coupling has two conse-
quences. First, an effective coupling appears between
each of the two cavity polariton states j'ðnÞi and the
mechanical mode. Second, each of the two states con-
tains on average n& 1=2 cavity photons that displace
statically the equilibrium position of the mechanical
resonator.

In eachH n we can absorb the static displacement of the
mechanical resonator by introducing the new displaced
operator b̂n and make a rotating wave approximation to
obtain the following Hamiltonian in H n:
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where qðnÞ0 ¼
ffiffiffi
2

p
gcmðn& 1=2Þ=!m is the normalized dis-

placed mechanical equilibrium position. The term propor-

tional to !̂ðnÞ
x in Eq. (3) will be neglected hereafter in the

limit gcm + !m. Its perturbative effect could be accounted
for in an exact treatment of the Rabi model [19] but at the
expense of losing explicit expressions for the eigenstates.
Apart from the last term, which is a constant energy shift,
we have an effective Jaynes-Cummings-like Hamiltonian,

which can be diagonalized by the states j'ðn;mðnÞÞi, where
mðnÞ is the polaron number of the tripartite system and n is
the polariton number previously defined. The energy spec-
trum of Ĥn is given by the expression
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Figure 2(b) shows the structure of the energy spectrum
for n ¼ 0, 1, 2. For each n-polariton state, a multiplet arises
from the mechanical resonator Fock space. As the mean
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FIG. 2 (color online). Structure of the polaron eigenstates
for the atom-cavity-mechanics tripartite system. (a) Each
n-polariton subspace (left) couples independently to states of
the mechanical resonator with different displacements (right).
(b) Energy spectrum for n , 2. (c) Zoom on the energy levels in
the H 1 subspace (one-polariton states).
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annihilation operator for the photon (mechanical) mode
of frequency !c (!m). gac and gcm are the atom-cavity
and optomechanical coupling strengths, respectively.
Replacing the radiation pressure coupling with a direct
coupling between the atom and the mechanical oscillator
of the form / !̂zðb̂þ b̂yÞ yields qualitatively a similar
physics, and this case will hence not be considered further
below.

The system evolves in a discrete but infinite Hilbert
space in which the uncoupled (gac ¼ gcm ¼ 0) eigenvec-
tors are labeled as je; gi % jki % jli: jgi (jei) describes the
ground (excited) state of the two-level system, k the Fock
state with k 2 N photons in the cavity, and l the state with
l 2 N phonons in the mechanical resonator. For gac ! 0
and gcm ¼ 0, one has the standard configuration of cavity
(circuit) QED, where atom-cavity polaritons are the new
eigenstates of the system. For gcm ! 0, there are new
eigenstates for the hybrid tripartite system, which we will
call atom-cavity-mechanics polarons.

A key feature of the above Hamiltonian is the conserva-
tion of the polariton number N̂polariton ¼ âyâþ !̂þ!̂&.
The problem can thus be diagonalized in each subspace
H n containing exactly n polaritons. In the resonant case
(!a ¼ !c), the polariton-phonon basis fj'ðnÞi % jlig diag-
onalizes the JC part of the Hamiltonian ĤJC ¼ !câ

yâþ
!a

2 !̂z þ igacð!̂þâ& !̂&â
yÞ, where j'ðnÞi ¼ ð1=

ffiffiffi
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p
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ðjg; k ¼ ni' ije; k ¼ n& 1iÞ are the n-polariton eigen-

vectors of the JC ladder. Namely, we have ĤJCj'ðnÞi ¼
!ðnÞ

' j'ðnÞi with !ðnÞ
' ¼ ½ðn& 1=2Þ!c ' !ðnÞ

2 * and !ðnÞ ¼
2

ffiffiffi
n

p
gac. The system total Hamiltonian being block diago-

nal in this new basis, the mechanical resonator couples
independently to each polaritonic subspace associated to
H n, as illustrated in Fig. 2(a). Hence, we can express it as
follows:

Ĥtot ¼
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where 1ðnÞ is the identity in the H n Hilbert subspace and

!̂ðnÞ
x;z are Pauli matrices acting on the polaritonic doublet

j'ðnÞi. The radiation pressure coupling has two conse-
quences. First, an effective coupling appears between
each of the two cavity polariton states j'ðnÞi and the
mechanical mode. Second, each of the two states con-
tains on average n& 1=2 cavity photons that displace
statically the equilibrium position of the mechanical
resonator.

In eachH n we can absorb the static displacement of the
mechanical resonator by introducing the new displaced
operator b̂n and make a rotating wave approximation to
obtain the following Hamiltonian in H n:
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where qðnÞ0 ¼
ffiffiffi
2

p
gcmðn& 1=2Þ=!m is the normalized dis-

placed mechanical equilibrium position. The term propor-

tional to !̂ðnÞ
x in Eq. (3) will be neglected hereafter in the

limit gcm + !m. Its perturbative effect could be accounted
for in an exact treatment of the Rabi model [19] but at the
expense of losing explicit expressions for the eigenstates.
Apart from the last term, which is a constant energy shift,
we have an effective Jaynes-Cummings-like Hamiltonian,

which can be diagonalized by the states j'ðn;mðnÞÞi, where
mðnÞ is the polaron number of the tripartite system and n is
the polariton number previously defined. The energy spec-
trum of Ĥn is given by the expression

ĤðnÞj'ðn;mðnÞÞi¼!ðnÞ
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Figure 2(b) shows the structure of the energy spectrum
for n ¼ 0, 1, 2. For each n-polariton state, a multiplet arises
from the mechanical resonator Fock space. As the mean
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FIG. 2 (color online). Structure of the polaron eigenstates
for the atom-cavity-mechanics tripartite system. (a) Each
n-polariton subspace (left) couples independently to states of
the mechanical resonator with different displacements (right).
(b) Energy spectrum for n , 2. (c) Zoom on the energy levels in
the H 1 subspace (one-polariton states).
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effective Jaynes-Cummings model

annihilation operator for the photon (mechanical) mode
of frequency !c (!m). gac and gcm are the atom-cavity
and optomechanical coupling strengths, respectively.
Replacing the radiation pressure coupling with a direct
coupling between the atom and the mechanical oscillator
of the form / !̂zðb̂þ b̂yÞ yields qualitatively a similar
physics, and this case will hence not be considered further
below.

The system evolves in a discrete but infinite Hilbert
space in which the uncoupled (gac ¼ gcm ¼ 0) eigenvec-
tors are labeled as je; gi % jki % jli: jgi (jei) describes the
ground (excited) state of the two-level system, k the Fock
state with k 2 N photons in the cavity, and l the state with
l 2 N phonons in the mechanical resonator. For gac ! 0
and gcm ¼ 0, one has the standard configuration of cavity
(circuit) QED, where atom-cavity polaritons are the new
eigenstates of the system. For gcm ! 0, there are new
eigenstates for the hybrid tripartite system, which we will
call atom-cavity-mechanics polarons.

A key feature of the above Hamiltonian is the conserva-
tion of the polariton number N̂polariton ¼ âyâþ !̂þ!̂&.
The problem can thus be diagonalized in each subspace
H n containing exactly n polaritons. In the resonant case
(!a ¼ !c), the polariton-phonon basis fj'ðnÞi % jlig diag-
onalizes the JC part of the Hamiltonian ĤJC ¼ !câ

yâþ
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2 !̂z þ igacð!̂þâ& !̂&â
yÞ, where j'ðnÞi ¼ ð1=
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p
gac. The system total Hamiltonian being block diago-

nal in this new basis, the mechanical resonator couples
independently to each polaritonic subspace associated to
H n, as illustrated in Fig. 2(a). Hence, we can express it as
follows:
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where 1ðnÞ is the identity in the H n Hilbert subspace and

!̂ðnÞ
x;z are Pauli matrices acting on the polaritonic doublet

j'ðnÞi. The radiation pressure coupling has two conse-
quences. First, an effective coupling appears between
each of the two cavity polariton states j'ðnÞi and the
mechanical mode. Second, each of the two states con-
tains on average n& 1=2 cavity photons that displace
statically the equilibrium position of the mechanical
resonator.

In eachH n we can absorb the static displacement of the
mechanical resonator by introducing the new displaced
operator b̂n and make a rotating wave approximation to
obtain the following Hamiltonian in H n:
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where qðnÞ0 ¼
ffiffiffi
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p
gcmðn& 1=2Þ=!m is the normalized dis-

placed mechanical equilibrium position. The term propor-

tional to !̂ðnÞ
x in Eq. (3) will be neglected hereafter in the

limit gcm + !m. Its perturbative effect could be accounted
for in an exact treatment of the Rabi model [19] but at the
expense of losing explicit expressions for the eigenstates.
Apart from the last term, which is a constant energy shift,
we have an effective Jaynes-Cummings-like Hamiltonian,

which can be diagonalized by the states j'ðn;mðnÞÞi, where
mðnÞ is the polaron number of the tripartite system and n is
the polariton number previously defined. The energy spec-
trum of Ĥn is given by the expression
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Figure 2(b) shows the structure of the energy spectrum
for n ¼ 0, 1, 2. For each n-polariton state, a multiplet arises
from the mechanical resonator Fock space. As the mean
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FIG. 2 (color online). Structure of the polaron eigenstates
for the atom-cavity-mechanics tripartite system. (a) Each
n-polariton subspace (left) couples independently to states of
the mechanical resonator with different displacements (right).
(b) Energy spectrum for n , 2. (c) Zoom on the energy levels in
the H 1 subspace (one-polariton states).
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annihilation operator for the photon (mechanical) mode
of frequency !c (!m). gac and gcm are the atom-cavity
and optomechanical coupling strengths, respectively.
Replacing the radiation pressure coupling with a direct
coupling between the atom and the mechanical oscillator
of the form / !̂zðb̂þ b̂yÞ yields qualitatively a similar
physics, and this case will hence not be considered further
below.

The system evolves in a discrete but infinite Hilbert
space in which the uncoupled (gac ¼ gcm ¼ 0) eigenvec-
tors are labeled as je; gi % jki % jli: jgi (jei) describes the
ground (excited) state of the two-level system, k the Fock
state with k 2 N photons in the cavity, and l the state with
l 2 N phonons in the mechanical resonator. For gac ! 0
and gcm ¼ 0, one has the standard configuration of cavity
(circuit) QED, where atom-cavity polaritons are the new
eigenstates of the system. For gcm ! 0, there are new
eigenstates for the hybrid tripartite system, which we will
call atom-cavity-mechanics polarons.

A key feature of the above Hamiltonian is the conserva-
tion of the polariton number N̂polariton ¼ âyâþ !̂þ!̂&.
The problem can thus be diagonalized in each subspace
H n containing exactly n polaritons. In the resonant case
(!a ¼ !c), the polariton-phonon basis fj'ðnÞi % jlig diag-
onalizes the JC part of the Hamiltonian ĤJC ¼ !câ

yâþ
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2 !̂z þ igacð!̂þâ& !̂&â
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gac. The system total Hamiltonian being block diago-

nal in this new basis, the mechanical resonator couples
independently to each polaritonic subspace associated to
H n, as illustrated in Fig. 2(a). Hence, we can express it as
follows:
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where 1ðnÞ is the identity in the H n Hilbert subspace and

!̂ðnÞ
x;z are Pauli matrices acting on the polaritonic doublet

j'ðnÞi. The radiation pressure coupling has two conse-
quences. First, an effective coupling appears between
each of the two cavity polariton states j'ðnÞi and the
mechanical mode. Second, each of the two states con-
tains on average n& 1=2 cavity photons that displace
statically the equilibrium position of the mechanical
resonator.

In eachH n we can absorb the static displacement of the
mechanical resonator by introducing the new displaced
operator b̂n and make a rotating wave approximation to
obtain the following Hamiltonian in H n:
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where qðnÞ0 ¼
ffiffiffi
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p
gcmðn& 1=2Þ=!m is the normalized dis-

placed mechanical equilibrium position. The term propor-

tional to !̂ðnÞ
x in Eq. (3) will be neglected hereafter in the

limit gcm + !m. Its perturbative effect could be accounted
for in an exact treatment of the Rabi model [19] but at the
expense of losing explicit expressions for the eigenstates.
Apart from the last term, which is a constant energy shift,
we have an effective Jaynes-Cummings-like Hamiltonian,

which can be diagonalized by the states j'ðn;mðnÞÞi, where
mðnÞ is the polaron number of the tripartite system and n is
the polariton number previously defined. The energy spec-
trum of Ĥn is given by the expression
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Figure 2(b) shows the structure of the energy spectrum
for n ¼ 0, 1, 2. For each n-polariton state, a multiplet arises
from the mechanical resonator Fock space. As the mean
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FIG. 2 (color online). Structure of the polaron eigenstates
for the atom-cavity-mechanics tripartite system. (a) Each
n-polariton subspace (left) couples independently to states of
the mechanical resonator with different displacements (right).
(b) Energy spectrum for n , 2. (c) Zoom on the energy levels in
the H 1 subspace (one-polariton states).
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annihilation operator for the photon (mechanical) mode
of frequency !c (!m). gac and gcm are the atom-cavity
and optomechanical coupling strengths, respectively.
Replacing the radiation pressure coupling with a direct
coupling between the atom and the mechanical oscillator
of the form / !̂zðb̂þ b̂yÞ yields qualitatively a similar
physics, and this case will hence not be considered further
below.

The system evolves in a discrete but infinite Hilbert
space in which the uncoupled (gac ¼ gcm ¼ 0) eigenvec-
tors are labeled as je; gi % jki % jli: jgi (jei) describes the
ground (excited) state of the two-level system, k the Fock
state with k 2 N photons in the cavity, and l the state with
l 2 N phonons in the mechanical resonator. For gac ! 0
and gcm ¼ 0, one has the standard configuration of cavity
(circuit) QED, where atom-cavity polaritons are the new
eigenstates of the system. For gcm ! 0, there are new
eigenstates for the hybrid tripartite system, which we will
call atom-cavity-mechanics polarons.

A key feature of the above Hamiltonian is the conserva-
tion of the polariton number N̂polariton ¼ âyâþ !̂þ!̂&.
The problem can thus be diagonalized in each subspace
H n containing exactly n polaritons. In the resonant case
(!a ¼ !c), the polariton-phonon basis fj'ðnÞi % jlig diag-
onalizes the JC part of the Hamiltonian ĤJC ¼ !câ
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yÞ, where j'ðnÞi ¼ ð1=

ffiffiffi
2

p
Þ(

ðjg; k ¼ ni' ije; k ¼ n& 1iÞ are the n-polariton eigen-

vectors of the JC ladder. Namely, we have ĤJCj'ðnÞi ¼
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independently to each polaritonic subspace associated to
H n, as illustrated in Fig. 2(a). Hence, we can express it as
follows:
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where 1ðnÞ is the identity in the H n Hilbert subspace and

!̂ðnÞ
x;z are Pauli matrices acting on the polaritonic doublet

j'ðnÞi. The radiation pressure coupling has two conse-
quences. First, an effective coupling appears between
each of the two cavity polariton states j'ðnÞi and the
mechanical mode. Second, each of the two states con-
tains on average n& 1=2 cavity photons that displace
statically the equilibrium position of the mechanical
resonator.

In eachH n we can absorb the static displacement of the
mechanical resonator by introducing the new displaced
operator b̂n and make a rotating wave approximation to
obtain the following Hamiltonian in H n:
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where qðnÞ0 ¼
ffiffiffi
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p
gcmðn& 1=2Þ=!m is the normalized dis-

placed mechanical equilibrium position. The term propor-

tional to !̂ðnÞ
x in Eq. (3) will be neglected hereafter in the

limit gcm + !m. Its perturbative effect could be accounted
for in an exact treatment of the Rabi model [19] but at the
expense of losing explicit expressions for the eigenstates.
Apart from the last term, which is a constant energy shift,
we have an effective Jaynes-Cummings-like Hamiltonian,

which can be diagonalized by the states j'ðn;mðnÞÞi, where
mðnÞ is the polaron number of the tripartite system and n is
the polariton number previously defined. The energy spec-
trum of Ĥn is given by the expression
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Figure 2(b) shows the structure of the energy spectrum
for n ¼ 0, 1, 2. For each n-polariton state, a multiplet arises
from the mechanical resonator Fock space. As the mean
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FIG. 2 (color online). Structure of the polaron eigenstates
for the atom-cavity-mechanics tripartite system. (a) Each
n-polariton subspace (left) couples independently to states of
the mechanical resonator with different displacements (right).
(b) Energy spectrum for n , 2. (c) Zoom on the energy levels in
the H 1 subspace (one-polariton states).
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annihilation operator for the photon (mechanical) mode
of frequency !c (!m). gac and gcm are the atom-cavity
and optomechanical coupling strengths, respectively.
Replacing the radiation pressure coupling with a direct
coupling between the atom and the mechanical oscillator
of the form / !̂zðb̂þ b̂yÞ yields qualitatively a similar
physics, and this case will hence not be considered further
below.

The system evolves in a discrete but infinite Hilbert
space in which the uncoupled (gac ¼ gcm ¼ 0) eigenvec-
tors are labeled as je; gi % jki % jli: jgi (jei) describes the
ground (excited) state of the two-level system, k the Fock
state with k 2 N photons in the cavity, and l the state with
l 2 N phonons in the mechanical resonator. For gac ! 0
and gcm ¼ 0, one has the standard configuration of cavity
(circuit) QED, where atom-cavity polaritons are the new
eigenstates of the system. For gcm ! 0, there are new
eigenstates for the hybrid tripartite system, which we will
call atom-cavity-mechanics polarons.

A key feature of the above Hamiltonian is the conserva-
tion of the polariton number N̂polariton ¼ âyâþ !̂þ!̂&.
The problem can thus be diagonalized in each subspace
H n containing exactly n polaritons. In the resonant case
(!a ¼ !c), the polariton-phonon basis fj'ðnÞi % jlig diag-
onalizes the JC part of the Hamiltonian ĤJC ¼ !câ
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nal in this new basis, the mechanical resonator couples
independently to each polaritonic subspace associated to
H n, as illustrated in Fig. 2(a). Hence, we can express it as
follows:
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where 1ðnÞ is the identity in the H n Hilbert subspace and

!̂ðnÞ
x;z are Pauli matrices acting on the polaritonic doublet

j'ðnÞi. The radiation pressure coupling has two conse-
quences. First, an effective coupling appears between
each of the two cavity polariton states j'ðnÞi and the
mechanical mode. Second, each of the two states con-
tains on average n& 1=2 cavity photons that displace
statically the equilibrium position of the mechanical
resonator.

In eachH n we can absorb the static displacement of the
mechanical resonator by introducing the new displaced
operator b̂n and make a rotating wave approximation to
obtain the following Hamiltonian in H n:
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where qðnÞ0 ¼
ffiffiffi
2

p
gcmðn& 1=2Þ=!m is the normalized dis-

placed mechanical equilibrium position. The term propor-

tional to !̂ðnÞ
x in Eq. (3) will be neglected hereafter in the

limit gcm + !m. Its perturbative effect could be accounted
for in an exact treatment of the Rabi model [19] but at the
expense of losing explicit expressions for the eigenstates.
Apart from the last term, which is a constant energy shift,
we have an effective Jaynes-Cummings-like Hamiltonian,

which can be diagonalized by the states j'ðn;mðnÞÞi, where
mðnÞ is the polaron number of the tripartite system and n is
the polariton number previously defined. The energy spec-
trum of Ĥn is given by the expression
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Figure 2(b) shows the structure of the energy spectrum
for n ¼ 0, 1, 2. For each n-polariton state, a multiplet arises
from the mechanical resonator Fock space. As the mean
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FIG. 2 (color online). Structure of the polaron eigenstates
for the atom-cavity-mechanics tripartite system. (a) Each
n-polariton subspace (left) couples independently to states of
the mechanical resonator with different displacements (right).
(b) Energy spectrum for n , 2. (c) Zoom on the energy levels in
the H 1 subspace (one-polariton states).
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Atom-cavity-mechanics polaritons

annihilation operator for the photon (mechanical) mode
of frequency !c (!m). gac and gcm are the atom-cavity
and optomechanical coupling strengths, respectively.
Replacing the radiation pressure coupling with a direct
coupling between the atom and the mechanical oscillator
of the form / !̂zðb̂þ b̂yÞ yields qualitatively a similar
physics, and this case will hence not be considered further
below.

The system evolves in a discrete but infinite Hilbert
space in which the uncoupled (gac ¼ gcm ¼ 0) eigenvec-
tors are labeled as je; gi % jki % jli: jgi (jei) describes the
ground (excited) state of the two-level system, k the Fock
state with k 2 N photons in the cavity, and l the state with
l 2 N phonons in the mechanical resonator. For gac ! 0
and gcm ¼ 0, one has the standard configuration of cavity
(circuit) QED, where atom-cavity polaritons are the new
eigenstates of the system. For gcm ! 0, there are new
eigenstates for the hybrid tripartite system, which we will
call atom-cavity-mechanics polarons.

A key feature of the above Hamiltonian is the conserva-
tion of the polariton number N̂polariton ¼ âyâþ !̂þ!̂&.
The problem can thus be diagonalized in each subspace
H n containing exactly n polaritons. In the resonant case
(!a ¼ !c), the polariton-phonon basis fj'ðnÞi % jlig diag-
onalizes the JC part of the Hamiltonian ĤJC ¼ !câ
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2 !̂z þ igacð!̂þâ& !̂&â
yÞ, where j'ðnÞi ¼ ð1=
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nal in this new basis, the mechanical resonator couples
independently to each polaritonic subspace associated to
H n, as illustrated in Fig. 2(a). Hence, we can express it as
follows:
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where 1ðnÞ is the identity in the H n Hilbert subspace and

!̂ðnÞ
x;z are Pauli matrices acting on the polaritonic doublet

j'ðnÞi. The radiation pressure coupling has two conse-
quences. First, an effective coupling appears between
each of the two cavity polariton states j'ðnÞi and the
mechanical mode. Second, each of the two states con-
tains on average n& 1=2 cavity photons that displace
statically the equilibrium position of the mechanical
resonator.

In eachH n we can absorb the static displacement of the
mechanical resonator by introducing the new displaced
operator b̂n and make a rotating wave approximation to
obtain the following Hamiltonian in H n:
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where qðnÞ0 ¼
ffiffiffi
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gcmðn& 1=2Þ=!m is the normalized dis-

placed mechanical equilibrium position. The term propor-

tional to !̂ðnÞ
x in Eq. (3) will be neglected hereafter in the

limit gcm + !m. Its perturbative effect could be accounted
for in an exact treatment of the Rabi model [19] but at the
expense of losing explicit expressions for the eigenstates.
Apart from the last term, which is a constant energy shift,
we have an effective Jaynes-Cummings-like Hamiltonian,

which can be diagonalized by the states j'ðn;mðnÞÞi, where
mðnÞ is the polaron number of the tripartite system and n is
the polariton number previously defined. The energy spec-
trum of Ĥn is given by the expression
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Figure 2(b) shows the structure of the energy spectrum
for n ¼ 0, 1, 2. For each n-polariton state, a multiplet arises
from the mechanical resonator Fock space. As the mean
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FIG. 2 (color online). Structure of the polaron eigenstates
for the atom-cavity-mechanics tripartite system. (a) Each
n-polariton subspace (left) couples independently to states of
the mechanical resonator with different displacements (right).
(b) Energy spectrum for n , 2. (c) Zoom on the energy levels in
the H 1 subspace (one-polariton states).
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effective Jaynes-Cummings model

annihilation operator for the photon (mechanical) mode
of frequency !c (!m). gac and gcm are the atom-cavity
and optomechanical coupling strengths, respectively.
Replacing the radiation pressure coupling with a direct
coupling between the atom and the mechanical oscillator
of the form / !̂zðb̂þ b̂yÞ yields qualitatively a similar
physics, and this case will hence not be considered further
below.

The system evolves in a discrete but infinite Hilbert
space in which the uncoupled (gac ¼ gcm ¼ 0) eigenvec-
tors are labeled as je; gi % jki % jli: jgi (jei) describes the
ground (excited) state of the two-level system, k the Fock
state with k 2 N photons in the cavity, and l the state with
l 2 N phonons in the mechanical resonator. For gac ! 0
and gcm ¼ 0, one has the standard configuration of cavity
(circuit) QED, where atom-cavity polaritons are the new
eigenstates of the system. For gcm ! 0, there are new
eigenstates for the hybrid tripartite system, which we will
call atom-cavity-mechanics polarons.

A key feature of the above Hamiltonian is the conserva-
tion of the polariton number N̂polariton ¼ âyâþ !̂þ!̂&.
The problem can thus be diagonalized in each subspace
H n containing exactly n polaritons. In the resonant case
(!a ¼ !c), the polariton-phonon basis fj'ðnÞi % jlig diag-
onalizes the JC part of the Hamiltonian ĤJC ¼ !câ
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2 !̂z þ igacð!̂þâ& !̂&â
yÞ, where j'ðnÞi ¼ ð1=
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!ðnÞ

' j'ðnÞi with !ðnÞ
' ¼ ½ðn& 1=2Þ!c ' !ðnÞ

2 * and !ðnÞ ¼
2

ffiffiffi
n

p
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independently to each polaritonic subspace associated to
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follows:
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where 1ðnÞ is the identity in the H n Hilbert subspace and
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x;z are Pauli matrices acting on the polaritonic doublet

j'ðnÞi. The radiation pressure coupling has two conse-
quences. First, an effective coupling appears between
each of the two cavity polariton states j'ðnÞi and the
mechanical mode. Second, each of the two states con-
tains on average n& 1=2 cavity photons that displace
statically the equilibrium position of the mechanical
resonator.

In eachH n we can absorb the static displacement of the
mechanical resonator by introducing the new displaced
operator b̂n and make a rotating wave approximation to
obtain the following Hamiltonian in H n:
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where qðnÞ0 ¼
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gcmðn& 1=2Þ=!m is the normalized dis-

placed mechanical equilibrium position. The term propor-

tional to !̂ðnÞ
x in Eq. (3) will be neglected hereafter in the

limit gcm + !m. Its perturbative effect could be accounted
for in an exact treatment of the Rabi model [19] but at the
expense of losing explicit expressions for the eigenstates.
Apart from the last term, which is a constant energy shift,
we have an effective Jaynes-Cummings-like Hamiltonian,

which can be diagonalized by the states j'ðn;mðnÞÞi, where
mðnÞ is the polaron number of the tripartite system and n is
the polariton number previously defined. The energy spec-
trum of Ĥn is given by the expression
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Figure 2(b) shows the structure of the energy spectrum
for n ¼ 0, 1, 2. For each n-polariton state, a multiplet arises
from the mechanical resonator Fock space. As the mean
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FIG. 2 (color online). Structure of the polaron eigenstates
for the atom-cavity-mechanics tripartite system. (a) Each
n-polariton subspace (left) couples independently to states of
the mechanical resonator with different displacements (right).
(b) Energy spectrum for n , 2. (c) Zoom on the energy levels in
the H 1 subspace (one-polariton states).
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annihilation operator for the photon (mechanical) mode
of frequency !c (!m). gac and gcm are the atom-cavity
and optomechanical coupling strengths, respectively.
Replacing the radiation pressure coupling with a direct
coupling between the atom and the mechanical oscillator
of the form / !̂zðb̂þ b̂yÞ yields qualitatively a similar
physics, and this case will hence not be considered further
below.

The system evolves in a discrete but infinite Hilbert
space in which the uncoupled (gac ¼ gcm ¼ 0) eigenvec-
tors are labeled as je; gi % jki % jli: jgi (jei) describes the
ground (excited) state of the two-level system, k the Fock
state with k 2 N photons in the cavity, and l the state with
l 2 N phonons in the mechanical resonator. For gac ! 0
and gcm ¼ 0, one has the standard configuration of cavity
(circuit) QED, where atom-cavity polaritons are the new
eigenstates of the system. For gcm ! 0, there are new
eigenstates for the hybrid tripartite system, which we will
call atom-cavity-mechanics polarons.

A key feature of the above Hamiltonian is the conserva-
tion of the polariton number N̂polariton ¼ âyâþ !̂þ!̂&.
The problem can thus be diagonalized in each subspace
H n containing exactly n polaritons. In the resonant case
(!a ¼ !c), the polariton-phonon basis fj'ðnÞi % jlig diag-
onalizes the JC part of the Hamiltonian ĤJC ¼ !câ

yâþ
!a

2 !̂z þ igacð!̂þâ& !̂&â
yÞ, where j'ðnÞi ¼ ð1=
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vectors of the JC ladder. Namely, we have ĤJCj'ðnÞi ¼
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p
gac. The system total Hamiltonian being block diago-

nal in this new basis, the mechanical resonator couples
independently to each polaritonic subspace associated to
H n, as illustrated in Fig. 2(a). Hence, we can express it as
follows:

Ĥtot ¼
X

n2N

"
ðn& 1=2Þ!c1ðnÞ þ!ðnÞ

2
!̂ðnÞ

z

& gcm

#
1

2
!̂ðnÞ

x þ
#
n& 1

2

$
1ðnÞ

$
ðb̂þ b̂yÞ

%
þ!mb̂

yb̂;

(2)

where 1ðnÞ is the identity in the H n Hilbert subspace and

!̂ðnÞ
x;z are Pauli matrices acting on the polaritonic doublet

j'ðnÞi. The radiation pressure coupling has two conse-
quences. First, an effective coupling appears between
each of the two cavity polariton states j'ðnÞi and the
mechanical mode. Second, each of the two states con-
tains on average n& 1=2 cavity photons that displace
statically the equilibrium position of the mechanical
resonator.

In eachH n we can absorb the static displacement of the
mechanical resonator by introducing the new displaced
operator b̂n and make a rotating wave approximation to
obtain the following Hamiltonian in H n:
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where qðnÞ0 ¼
ffiffiffi
2

p
gcmðn& 1=2Þ=!m is the normalized dis-

placed mechanical equilibrium position. The term propor-

tional to !̂ðnÞ
x in Eq. (3) will be neglected hereafter in the

limit gcm + !m. Its perturbative effect could be accounted
for in an exact treatment of the Rabi model [19] but at the
expense of losing explicit expressions for the eigenstates.
Apart from the last term, which is a constant energy shift,
we have an effective Jaynes-Cummings-like Hamiltonian,

which can be diagonalized by the states j'ðn;mðnÞÞi, where
mðnÞ is the polaron number of the tripartite system and n is
the polariton number previously defined. The energy spec-
trum of Ĥn is given by the expression
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s
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Figure 2(b) shows the structure of the energy spectrum
for n ¼ 0, 1, 2. For each n-polariton state, a multiplet arises
from the mechanical resonator Fock space. As the mean

(a)

(b) (c)

FIG. 2 (color online). Structure of the polaron eigenstates
for the atom-cavity-mechanics tripartite system. (a) Each
n-polariton subspace (left) couples independently to states of
the mechanical resonator with different displacements (right).
(b) Energy spectrum for n , 2. (c) Zoom on the energy levels in
the H 1 subspace (one-polariton states).
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Master equation

number of photons n! 1=2 increases, the anharmonicity
of the system becomes more pronounced within each
multiplet. For illustrative purposes, Fig. 2(c) depicts in
detail the anharmonic spectrum of the n ¼ 1 multiplet.

Having understood the nature of the dressed polaron states,
we can consider the dynamics of the open system in the
presence of losses and when coupled to a bath at temperature
T. Within a Lindblad approach for the dissipation, the density
matrix !̂ of the system follows the master equation

d!̂ðtÞ
dt

¼ !i½Ĥtot þ V̂pðtÞ; !̂' þ "acL½â'!̂þ "acL½#̂!'!̂

þ nth"mL½b̂y'!̂þ ðnth þ 1Þ"mL½b̂'!̂; (6)

where "m ("ac) is the phonon (polariton) loss rate, nth
is the thermal mean phononic occupancy, V̂pðtÞ ¼
iFpðâyei!pt ! âe!i!ptÞ is a coherent pump term with
frequency !p, and L½ô'!̂ ¼ ô !̂ ôy ! 1

2 ðôyô !̂þ!̂ôyôÞ
for any given jump operator ô.

For strong enough light-matter coupling, the anharmo-
nicity of the polaritonic energies is known to give rise to
photon blockade effects [20]. In the following, we consider
only a moderate pumping regime in which one cavity
photon and hence one single polariton is excited at most.
This allows us to understand the physics in terms of the
subspaces H n with n ( 1 and hence to consider only

transitions within the set of states fj)ðn;mðnÞÞign2½0;1' (note:
the numerical solutions actually include states with a
higher number n; the validity of such an approximation
has been carefully checked). In the figures of this Letter,
unless otherwise stated, we will always consider the fol-
lowing parameters: !c=!m ¼ 102, !a ¼ !c, gac=!m ¼
1=2, gcm=!m¼10!1, Qm¼!m="m¼104, Qac ¼
!a;c="ac ¼ 104, Fp="ac ¼ 1, and nth ¼ 3:45.

We initially prepare the system in the state jg; k ¼ 0i*
hg; k ¼ 0j + !̂m (no photons in the cavity, the atom in the
ground state and an arbitrary mechanical state) and pump it
with photons having an energy close to the energy differ-
ence between the one-polariton and zero-polariton states,
as can be seen in Fig. 2(b). In the single-polariton regime
considered here, the polaritonic splitting !ð1Þ is tuned to
about the mechanical frequency !m in order to make
resonant the processes in which a phonon is annihilated
(created), thus giving rise to cooling (amplification) of
mechanical motion. These processes can be selected opti-
cally by a proper tuning of the pump frequency !p.
Figure 3 presents the joint spectral density of polaronic
states defined as follows:

D½!' ¼
X

s0 ;s¼)
m0 ;m2N

jhs0ð1;m0ÞjV̂pjsð0;mÞij2$ð!! ð!s0ð1;m
0Þ !!sð0;mÞ ÞÞ:

(7)

For clarity in Fig. 3, we have convoluted the spectral
joint density with a Lorentzian of width "ac both for the

main panel and for the inset. D½!' shows a series of
resonances corresponding to polaronic transitions where
the number of phonons is either conserved, reduced, or
increased. The main panel shows D½!' for gcm=!m ¼
10!1 displaying two spectral structures centered on the

lower (upper) polariton energy !ð1Þ
! (!ð1Þ

þ ). Each structure
is itself split into a doublet with a splitting,gcm. The inset
in Fig. 3 shows D½!' for a weaker optomechanical cou-
pling gcm=!m ¼ 10!3. In this case the polaronic fine
structure splitting ,gcm is no longer visible at a scale

,!m, and D½!' presents only two resonances at !ð1Þ
) .

The resonances around !ð1Þ
! correspond to transitions for

which the number of phonons decreases (blue peaks) or is

conserved (green peak), and those around !ð1Þ
þ correspond

to processes increasing the number of phonons (red peaks).
Figure 4(a) presents the dynamical behavior of the

mechanical mode coupled to the polaritonic atom-cavity
system under optical pumping close to !ð1Þ

! (cooling con-
dition), for the set of parameters of Fig. 3, main panel. It
presents the number of phonons and photons as a function
of time (pump switched on abruptly at t > 0, inducing an
early transient regime). As the number of photons in the
cavity approaches a stationary state, the number of
phonons steadily decreases with an effective dissipation
constant "eff ’ 18"m towards an asymptotic value nmin ,
1=10. The dependence of "eff and nmin on the pump
frequency !p shows a good fit with the transitions
described by D½!' (not shown here). By numerically find-
ing the stationary solution of Eq. (6), it is possible to study
the system statistics in the stationary regime (t ! þ1).
Figure 4(b) presents the stationary second-order autocor-
relation function G2 ¼ hb̂yb̂yb̂ b̂i=hb̂yb̂i2 as a function of
the pump frequency. When the transitions around the lower
polariton energy are excited (here!ð1Þ

! ¼ !c !!m=2), the
mean phonon occupancy is reduced as previously men-
tioned and the statistics of the mechanical oscillator is
drastically changed, leading to strong phonon bunching

FIG. 3 (color online). Optical joint spectral density of polar-
onic states describing transitions between the states with 0 and 1
polaritons. Main panel: gcm=!m ¼ 10!1, Qac ¼ 104. Inset:
gcm=!m ¼ 10!3, Qac ¼ 106. For clarity, we present only tran-
sitions between states with mðnÞ ( 5 polarons. Blue, green, and
red peaks represent transitions reducing, conserving, and in-
creasing the number of phonons, respectively.
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number of photons n! 1=2 increases, the anharmonicity
of the system becomes more pronounced within each
multiplet. For illustrative purposes, Fig. 2(c) depicts in
detail the anharmonic spectrum of the n ¼ 1 multiplet.

Having understood the nature of the dressed polaron states,
we can consider the dynamics of the open system in the
presence of losses and when coupled to a bath at temperature
T. Within a Lindblad approach for the dissipation, the density
matrix !̂ of the system follows the master equation

d!̂ðtÞ
dt

¼ !i½Ĥtot þ V̂pðtÞ; !̂' þ "acL½â'!̂þ "acL½#̂!'!̂

þ nth"mL½b̂y'!̂þ ðnth þ 1Þ"mL½b̂'!̂; (6)

where "m ("ac) is the phonon (polariton) loss rate, nth
is the thermal mean phononic occupancy, V̂pðtÞ ¼
iFpðâyei!pt ! âe!i!ptÞ is a coherent pump term with
frequency !p, and L½ô'!̂ ¼ ô !̂ ôy ! 1

2 ðôyô !̂þ!̂ôyôÞ
for any given jump operator ô.

For strong enough light-matter coupling, the anharmo-
nicity of the polaritonic energies is known to give rise to
photon blockade effects [20]. In the following, we consider
only a moderate pumping regime in which one cavity
photon and hence one single polariton is excited at most.
This allows us to understand the physics in terms of the
subspaces H n with n ( 1 and hence to consider only

transitions within the set of states fj)ðn;mðnÞÞign2½0;1' (note:
the numerical solutions actually include states with a
higher number n; the validity of such an approximation
has been carefully checked). In the figures of this Letter,
unless otherwise stated, we will always consider the fol-
lowing parameters: !c=!m ¼ 102, !a ¼ !c, gac=!m ¼
1=2, gcm=!m¼10!1, Qm¼!m="m¼104, Qac ¼
!a;c="ac ¼ 104, Fp="ac ¼ 1, and nth ¼ 3:45.

We initially prepare the system in the state jg; k ¼ 0i*
hg; k ¼ 0j + !̂m (no photons in the cavity, the atom in the
ground state and an arbitrary mechanical state) and pump it
with photons having an energy close to the energy differ-
ence between the one-polariton and zero-polariton states,
as can be seen in Fig. 2(b). In the single-polariton regime
considered here, the polaritonic splitting !ð1Þ is tuned to
about the mechanical frequency !m in order to make
resonant the processes in which a phonon is annihilated
(created), thus giving rise to cooling (amplification) of
mechanical motion. These processes can be selected opti-
cally by a proper tuning of the pump frequency !p.
Figure 3 presents the joint spectral density of polaronic
states defined as follows:

D½!' ¼
X

s0 ;s¼)
m0 ;m2N

jhs0ð1;m0ÞjV̂pjsð0;mÞij2$ð!! ð!s0ð1;m
0Þ !!sð0;mÞ ÞÞ:

(7)

For clarity in Fig. 3, we have convoluted the spectral
joint density with a Lorentzian of width "ac both for the

main panel and for the inset. D½!' shows a series of
resonances corresponding to polaronic transitions where
the number of phonons is either conserved, reduced, or
increased. The main panel shows D½!' for gcm=!m ¼
10!1 displaying two spectral structures centered on the

lower (upper) polariton energy !ð1Þ
! (!ð1Þ

þ ). Each structure
is itself split into a doublet with a splitting,gcm. The inset
in Fig. 3 shows D½!' for a weaker optomechanical cou-
pling gcm=!m ¼ 10!3. In this case the polaronic fine
structure splitting ,gcm is no longer visible at a scale

,!m, and D½!' presents only two resonances at !ð1Þ
) .

The resonances around !ð1Þ
! correspond to transitions for

which the number of phonons decreases (blue peaks) or is

conserved (green peak), and those around !ð1Þ
þ correspond

to processes increasing the number of phonons (red peaks).
Figure 4(a) presents the dynamical behavior of the

mechanical mode coupled to the polaritonic atom-cavity
system under optical pumping close to !ð1Þ

! (cooling con-
dition), for the set of parameters of Fig. 3, main panel. It
presents the number of phonons and photons as a function
of time (pump switched on abruptly at t > 0, inducing an
early transient regime). As the number of photons in the
cavity approaches a stationary state, the number of
phonons steadily decreases with an effective dissipation
constant "eff ’ 18"m towards an asymptotic value nmin ,
1=10. The dependence of "eff and nmin on the pump
frequency !p shows a good fit with the transitions
described by D½!' (not shown here). By numerically find-
ing the stationary solution of Eq. (6), it is possible to study
the system statistics in the stationary regime (t ! þ1).
Figure 4(b) presents the stationary second-order autocor-
relation function G2 ¼ hb̂yb̂yb̂ b̂i=hb̂yb̂i2 as a function of
the pump frequency. When the transitions around the lower
polariton energy are excited (here!ð1Þ

! ¼ !c !!m=2), the
mean phonon occupancy is reduced as previously men-
tioned and the statistics of the mechanical oscillator is
drastically changed, leading to strong phonon bunching

FIG. 3 (color online). Optical joint spectral density of polar-
onic states describing transitions between the states with 0 and 1
polaritons. Main panel: gcm=!m ¼ 10!1, Qac ¼ 104. Inset:
gcm=!m ¼ 10!3, Qac ¼ 106. For clarity, we present only tran-
sitions between states with mðnÞ ( 5 polarons. Blue, green, and
red peaks represent transitions reducing, conserving, and in-
creasing the number of phonons, respectively.
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number of photons n! 1=2 increases, the anharmonicity
of the system becomes more pronounced within each
multiplet. For illustrative purposes, Fig. 2(c) depicts in
detail the anharmonic spectrum of the n ¼ 1 multiplet.

Having understood the nature of the dressed polaron states,
we can consider the dynamics of the open system in the
presence of losses and when coupled to a bath at temperature
T. Within a Lindblad approach for the dissipation, the density
matrix !̂ of the system follows the master equation

d!̂ðtÞ
dt

¼ !i½Ĥtot þ V̂pðtÞ; !̂' þ "acL½â'!̂þ "acL½#̂!'!̂

þ nth"mL½b̂y'!̂þ ðnth þ 1Þ"mL½b̂'!̂; (6)

where "m ("ac) is the phonon (polariton) loss rate, nth
is the thermal mean phononic occupancy, V̂pðtÞ ¼
iFpðâyei!pt ! âe!i!ptÞ is a coherent pump term with
frequency !p, and L½ô'!̂ ¼ ô !̂ ôy ! 1

2 ðôyô !̂þ!̂ôyôÞ
for any given jump operator ô.

For strong enough light-matter coupling, the anharmo-
nicity of the polaritonic energies is known to give rise to
photon blockade effects [20]. In the following, we consider
only a moderate pumping regime in which one cavity
photon and hence one single polariton is excited at most.
This allows us to understand the physics in terms of the
subspaces H n with n ( 1 and hence to consider only

transitions within the set of states fj)ðn;mðnÞÞign2½0;1' (note:
the numerical solutions actually include states with a
higher number n; the validity of such an approximation
has been carefully checked). In the figures of this Letter,
unless otherwise stated, we will always consider the fol-
lowing parameters: !c=!m ¼ 102, !a ¼ !c, gac=!m ¼
1=2, gcm=!m¼10!1, Qm¼!m="m¼104, Qac ¼
!a;c="ac ¼ 104, Fp="ac ¼ 1, and nth ¼ 3:45.

We initially prepare the system in the state jg; k ¼ 0i*
hg; k ¼ 0j + !̂m (no photons in the cavity, the atom in the
ground state and an arbitrary mechanical state) and pump it
with photons having an energy close to the energy differ-
ence between the one-polariton and zero-polariton states,
as can be seen in Fig. 2(b). In the single-polariton regime
considered here, the polaritonic splitting !ð1Þ is tuned to
about the mechanical frequency !m in order to make
resonant the processes in which a phonon is annihilated
(created), thus giving rise to cooling (amplification) of
mechanical motion. These processes can be selected opti-
cally by a proper tuning of the pump frequency !p.
Figure 3 presents the joint spectral density of polaronic
states defined as follows:

D½!' ¼
X

s0 ;s¼)
m0 ;m2N

jhs0ð1;m0ÞjV̂pjsð0;mÞij2$ð!! ð!s0ð1;m
0Þ !!sð0;mÞ ÞÞ:

(7)

For clarity in Fig. 3, we have convoluted the spectral
joint density with a Lorentzian of width "ac both for the

main panel and for the inset. D½!' shows a series of
resonances corresponding to polaronic transitions where
the number of phonons is either conserved, reduced, or
increased. The main panel shows D½!' for gcm=!m ¼
10!1 displaying two spectral structures centered on the

lower (upper) polariton energy !ð1Þ
! (!ð1Þ

þ ). Each structure
is itself split into a doublet with a splitting,gcm. The inset
in Fig. 3 shows D½!' for a weaker optomechanical cou-
pling gcm=!m ¼ 10!3. In this case the polaronic fine
structure splitting ,gcm is no longer visible at a scale

,!m, and D½!' presents only two resonances at !ð1Þ
) .

The resonances around !ð1Þ
! correspond to transitions for

which the number of phonons decreases (blue peaks) or is

conserved (green peak), and those around !ð1Þ
þ correspond

to processes increasing the number of phonons (red peaks).
Figure 4(a) presents the dynamical behavior of the

mechanical mode coupled to the polaritonic atom-cavity
system under optical pumping close to !ð1Þ

! (cooling con-
dition), for the set of parameters of Fig. 3, main panel. It
presents the number of phonons and photons as a function
of time (pump switched on abruptly at t > 0, inducing an
early transient regime). As the number of photons in the
cavity approaches a stationary state, the number of
phonons steadily decreases with an effective dissipation
constant "eff ’ 18"m towards an asymptotic value nmin ,
1=10. The dependence of "eff and nmin on the pump
frequency !p shows a good fit with the transitions
described by D½!' (not shown here). By numerically find-
ing the stationary solution of Eq. (6), it is possible to study
the system statistics in the stationary regime (t ! þ1).
Figure 4(b) presents the stationary second-order autocor-
relation function G2 ¼ hb̂yb̂yb̂ b̂i=hb̂yb̂i2 as a function of
the pump frequency. When the transitions around the lower
polariton energy are excited (here!ð1Þ

! ¼ !c !!m=2), the
mean phonon occupancy is reduced as previously men-
tioned and the statistics of the mechanical oscillator is
drastically changed, leading to strong phonon bunching

FIG. 3 (color online). Optical joint spectral density of polar-
onic states describing transitions between the states with 0 and 1
polaritons. Main panel: gcm=!m ¼ 10!1, Qac ¼ 104. Inset:
gcm=!m ¼ 10!3, Qac ¼ 106. For clarity, we present only tran-
sitions between states with mðnÞ ( 5 polarons. Blue, green, and
red peaks represent transitions reducing, conserving, and in-
creasing the number of phonons, respectively.

PRL 112, 013601 (2014) P HY S I CA L R EV I EW LE T T E R S
week ending

10 JANUARY 2014

013601-3

number of photons n! 1=2 increases, the anharmonicity
of the system becomes more pronounced within each
multiplet. For illustrative purposes, Fig. 2(c) depicts in
detail the anharmonic spectrum of the n ¼ 1 multiplet.

Having understood the nature of the dressed polaron states,
we can consider the dynamics of the open system in the
presence of losses and when coupled to a bath at temperature
T. Within a Lindblad approach for the dissipation, the density
matrix !̂ of the system follows the master equation

d!̂ðtÞ
dt

¼ !i½Ĥtot þ V̂pðtÞ; !̂' þ "acL½â'!̂þ "acL½#̂!'!̂

þ nth"mL½b̂y'!̂þ ðnth þ 1Þ"mL½b̂'!̂; (6)

where "m ("ac) is the phonon (polariton) loss rate, nth
is the thermal mean phononic occupancy, V̂pðtÞ ¼
iFpðâyei!pt ! âe!i!ptÞ is a coherent pump term with
frequency !p, and L½ô'!̂ ¼ ô !̂ ôy ! 1

2 ðôyô !̂þ!̂ôyôÞ
for any given jump operator ô.

For strong enough light-matter coupling, the anharmo-
nicity of the polaritonic energies is known to give rise to
photon blockade effects [20]. In the following, we consider
only a moderate pumping regime in which one cavity
photon and hence one single polariton is excited at most.
This allows us to understand the physics in terms of the
subspaces H n with n ( 1 and hence to consider only

transitions within the set of states fj)ðn;mðnÞÞign2½0;1' (note:
the numerical solutions actually include states with a
higher number n; the validity of such an approximation
has been carefully checked). In the figures of this Letter,
unless otherwise stated, we will always consider the fol-
lowing parameters: !c=!m ¼ 102, !a ¼ !c, gac=!m ¼
1=2, gcm=!m¼10!1, Qm¼!m="m¼104, Qac ¼
!a;c="ac ¼ 104, Fp="ac ¼ 1, and nth ¼ 3:45.

We initially prepare the system in the state jg; k ¼ 0i*
hg; k ¼ 0j + !̂m (no photons in the cavity, the atom in the
ground state and an arbitrary mechanical state) and pump it
with photons having an energy close to the energy differ-
ence between the one-polariton and zero-polariton states,
as can be seen in Fig. 2(b). In the single-polariton regime
considered here, the polaritonic splitting !ð1Þ is tuned to
about the mechanical frequency !m in order to make
resonant the processes in which a phonon is annihilated
(created), thus giving rise to cooling (amplification) of
mechanical motion. These processes can be selected opti-
cally by a proper tuning of the pump frequency !p.
Figure 3 presents the joint spectral density of polaronic
states defined as follows:

D½!' ¼
X

s0 ;s¼)
m0 ;m2N

jhs0ð1;m0ÞjV̂pjsð0;mÞij2$ð!! ð!s0ð1;m
0Þ !!sð0;mÞ ÞÞ:

(7)

For clarity in Fig. 3, we have convoluted the spectral
joint density with a Lorentzian of width "ac both for the

main panel and for the inset. D½!' shows a series of
resonances corresponding to polaronic transitions where
the number of phonons is either conserved, reduced, or
increased. The main panel shows D½!' for gcm=!m ¼
10!1 displaying two spectral structures centered on the

lower (upper) polariton energy !ð1Þ
! (!ð1Þ

þ ). Each structure
is itself split into a doublet with a splitting,gcm. The inset
in Fig. 3 shows D½!' for a weaker optomechanical cou-
pling gcm=!m ¼ 10!3. In this case the polaronic fine
structure splitting ,gcm is no longer visible at a scale

,!m, and D½!' presents only two resonances at !ð1Þ
) .

The resonances around !ð1Þ
! correspond to transitions for

which the number of phonons decreases (blue peaks) or is

conserved (green peak), and those around !ð1Þ
þ correspond

to processes increasing the number of phonons (red peaks).
Figure 4(a) presents the dynamical behavior of the

mechanical mode coupled to the polaritonic atom-cavity
system under optical pumping close to !ð1Þ

! (cooling con-
dition), for the set of parameters of Fig. 3, main panel. It
presents the number of phonons and photons as a function
of time (pump switched on abruptly at t > 0, inducing an
early transient regime). As the number of photons in the
cavity approaches a stationary state, the number of
phonons steadily decreases with an effective dissipation
constant "eff ’ 18"m towards an asymptotic value nmin ,
1=10. The dependence of "eff and nmin on the pump
frequency !p shows a good fit with the transitions
described by D½!' (not shown here). By numerically find-
ing the stationary solution of Eq. (6), it is possible to study
the system statistics in the stationary regime (t ! þ1).
Figure 4(b) presents the stationary second-order autocor-
relation function G2 ¼ hb̂yb̂yb̂ b̂i=hb̂yb̂i2 as a function of
the pump frequency. When the transitions around the lower
polariton energy are excited (here!ð1Þ

! ¼ !c !!m=2), the
mean phonon occupancy is reduced as previously men-
tioned and the statistics of the mechanical oscillator is
drastically changed, leading to strong phonon bunching

FIG. 3 (color online). Optical joint spectral density of polar-
onic states describing transitions between the states with 0 and 1
polaritons. Main panel: gcm=!m ¼ 10!1, Qac ¼ 104. Inset:
gcm=!m ¼ 10!3, Qac ¼ 106. For clarity, we present only tran-
sitions between states with mðnÞ ( 5 polarons. Blue, green, and
red peaks represent transitions reducing, conserving, and in-
creasing the number of phonons, respectively.
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coherent drive

number of photons n! 1=2 increases, the anharmonicity
of the system becomes more pronounced within each
multiplet. For illustrative purposes, Fig. 2(c) depicts in
detail the anharmonic spectrum of the n ¼ 1 multiplet.

Having understood the nature of the dressed polaron states,
we can consider the dynamics of the open system in the
presence of losses and when coupled to a bath at temperature
T. Within a Lindblad approach for the dissipation, the density
matrix !̂ of the system follows the master equation

d!̂ðtÞ
dt

¼ !i½Ĥtot þ V̂pðtÞ; !̂' þ "acL½â'!̂þ "acL½#̂!'!̂

þ nth"mL½b̂y'!̂þ ðnth þ 1Þ"mL½b̂'!̂; (6)

where "m ("ac) is the phonon (polariton) loss rate, nth
is the thermal mean phononic occupancy, V̂pðtÞ ¼
iFpðâyei!pt ! âe!i!ptÞ is a coherent pump term with
frequency !p, and L½ô'!̂ ¼ ô !̂ ôy ! 1

2 ðôyô !̂þ!̂ôyôÞ
for any given jump operator ô.

For strong enough light-matter coupling, the anharmo-
nicity of the polaritonic energies is known to give rise to
photon blockade effects [20]. In the following, we consider
only a moderate pumping regime in which one cavity
photon and hence one single polariton is excited at most.
This allows us to understand the physics in terms of the
subspaces H n with n ( 1 and hence to consider only

transitions within the set of states fj)ðn;mðnÞÞign2½0;1' (note:
the numerical solutions actually include states with a
higher number n; the validity of such an approximation
has been carefully checked). In the figures of this Letter,
unless otherwise stated, we will always consider the fol-
lowing parameters: !c=!m ¼ 102, !a ¼ !c, gac=!m ¼
1=2, gcm=!m¼10!1, Qm¼!m="m¼104, Qac ¼
!a;c="ac ¼ 104, Fp="ac ¼ 1, and nth ¼ 3:45.

We initially prepare the system in the state jg; k ¼ 0i*
hg; k ¼ 0j + !̂m (no photons in the cavity, the atom in the
ground state and an arbitrary mechanical state) and pump it
with photons having an energy close to the energy differ-
ence between the one-polariton and zero-polariton states,
as can be seen in Fig. 2(b). In the single-polariton regime
considered here, the polaritonic splitting !ð1Þ is tuned to
about the mechanical frequency !m in order to make
resonant the processes in which a phonon is annihilated
(created), thus giving rise to cooling (amplification) of
mechanical motion. These processes can be selected opti-
cally by a proper tuning of the pump frequency !p.
Figure 3 presents the joint spectral density of polaronic
states defined as follows:

D½!' ¼
X

s0 ;s¼)
m0 ;m2N

jhs0ð1;m0ÞjV̂pjsð0;mÞij2$ð!! ð!s0ð1;m
0Þ !!sð0;mÞ ÞÞ:

(7)

For clarity in Fig. 3, we have convoluted the spectral
joint density with a Lorentzian of width "ac both for the

main panel and for the inset. D½!' shows a series of
resonances corresponding to polaronic transitions where
the number of phonons is either conserved, reduced, or
increased. The main panel shows D½!' for gcm=!m ¼
10!1 displaying two spectral structures centered on the

lower (upper) polariton energy !ð1Þ
! (!ð1Þ

þ ). Each structure
is itself split into a doublet with a splitting,gcm. The inset
in Fig. 3 shows D½!' for a weaker optomechanical cou-
pling gcm=!m ¼ 10!3. In this case the polaronic fine
structure splitting ,gcm is no longer visible at a scale

,!m, and D½!' presents only two resonances at !ð1Þ
) .

The resonances around !ð1Þ
! correspond to transitions for

which the number of phonons decreases (blue peaks) or is

conserved (green peak), and those around !ð1Þ
þ correspond

to processes increasing the number of phonons (red peaks).
Figure 4(a) presents the dynamical behavior of the

mechanical mode coupled to the polaritonic atom-cavity
system under optical pumping close to !ð1Þ

! (cooling con-
dition), for the set of parameters of Fig. 3, main panel. It
presents the number of phonons and photons as a function
of time (pump switched on abruptly at t > 0, inducing an
early transient regime). As the number of photons in the
cavity approaches a stationary state, the number of
phonons steadily decreases with an effective dissipation
constant "eff ’ 18"m towards an asymptotic value nmin ,
1=10. The dependence of "eff and nmin on the pump
frequency !p shows a good fit with the transitions
described by D½!' (not shown here). By numerically find-
ing the stationary solution of Eq. (6), it is possible to study
the system statistics in the stationary regime (t ! þ1).
Figure 4(b) presents the stationary second-order autocor-
relation function G2 ¼ hb̂yb̂yb̂ b̂i=hb̂yb̂i2 as a function of
the pump frequency. When the transitions around the lower
polariton energy are excited (here!ð1Þ

! ¼ !c !!m=2), the
mean phonon occupancy is reduced as previously men-
tioned and the statistics of the mechanical oscillator is
drastically changed, leading to strong phonon bunching

FIG. 3 (color online). Optical joint spectral density of polar-
onic states describing transitions between the states with 0 and 1
polaritons. Main panel: gcm=!m ¼ 10!1, Qac ¼ 104. Inset:
gcm=!m ¼ 10!3, Qac ¼ 106. For clarity, we present only tran-
sitions between states with mðnÞ ( 5 polarons. Blue, green, and
red peaks represent transitions reducing, conserving, and in-
creasing the number of phonons, respectively.
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number of photons n! 1=2 increases, the anharmonicity
of the system becomes more pronounced within each
multiplet. For illustrative purposes, Fig. 2(c) depicts in
detail the anharmonic spectrum of the n ¼ 1 multiplet.

Having understood the nature of the dressed polaron states,
we can consider the dynamics of the open system in the
presence of losses and when coupled to a bath at temperature
T. Within a Lindblad approach for the dissipation, the density
matrix !̂ of the system follows the master equation

d!̂ðtÞ
dt

¼ !i½Ĥtot þ V̂pðtÞ; !̂' þ "acL½â'!̂þ "acL½#̂!'!̂

þ nth"mL½b̂y'!̂þ ðnth þ 1Þ"mL½b̂'!̂; (6)

where "m ("ac) is the phonon (polariton) loss rate, nth
is the thermal mean phononic occupancy, V̂pðtÞ ¼
iFpðâyei!pt ! âe!i!ptÞ is a coherent pump term with
frequency !p, and L½ô'!̂ ¼ ô !̂ ôy ! 1

2 ðôyô !̂þ!̂ôyôÞ
for any given jump operator ô.

For strong enough light-matter coupling, the anharmo-
nicity of the polaritonic energies is known to give rise to
photon blockade effects [20]. In the following, we consider
only a moderate pumping regime in which one cavity
photon and hence one single polariton is excited at most.
This allows us to understand the physics in terms of the
subspaces H n with n ( 1 and hence to consider only

transitions within the set of states fj)ðn;mðnÞÞign2½0;1' (note:
the numerical solutions actually include states with a
higher number n; the validity of such an approximation
has been carefully checked). In the figures of this Letter,
unless otherwise stated, we will always consider the fol-
lowing parameters: !c=!m ¼ 102, !a ¼ !c, gac=!m ¼
1=2, gcm=!m¼10!1, Qm¼!m="m¼104, Qac ¼
!a;c="ac ¼ 104, Fp="ac ¼ 1, and nth ¼ 3:45.

We initially prepare the system in the state jg; k ¼ 0i*
hg; k ¼ 0j + !̂m (no photons in the cavity, the atom in the
ground state and an arbitrary mechanical state) and pump it
with photons having an energy close to the energy differ-
ence between the one-polariton and zero-polariton states,
as can be seen in Fig. 2(b). In the single-polariton regime
considered here, the polaritonic splitting !ð1Þ is tuned to
about the mechanical frequency !m in order to make
resonant the processes in which a phonon is annihilated
(created), thus giving rise to cooling (amplification) of
mechanical motion. These processes can be selected opti-
cally by a proper tuning of the pump frequency !p.
Figure 3 presents the joint spectral density of polaronic
states defined as follows:

D½!' ¼
X

s0 ;s¼)
m0 ;m2N

jhs0ð1;m0ÞjV̂pjsð0;mÞij2$ð!! ð!s0ð1;m
0Þ !!sð0;mÞ ÞÞ:

(7)

For clarity in Fig. 3, we have convoluted the spectral
joint density with a Lorentzian of width "ac both for the

main panel and for the inset. D½!' shows a series of
resonances corresponding to polaronic transitions where
the number of phonons is either conserved, reduced, or
increased. The main panel shows D½!' for gcm=!m ¼
10!1 displaying two spectral structures centered on the

lower (upper) polariton energy !ð1Þ
! (!ð1Þ

þ ). Each structure
is itself split into a doublet with a splitting,gcm. The inset
in Fig. 3 shows D½!' for a weaker optomechanical cou-
pling gcm=!m ¼ 10!3. In this case the polaronic fine
structure splitting ,gcm is no longer visible at a scale

,!m, and D½!' presents only two resonances at !ð1Þ
) .

The resonances around !ð1Þ
! correspond to transitions for

which the number of phonons decreases (blue peaks) or is

conserved (green peak), and those around !ð1Þ
þ correspond

to processes increasing the number of phonons (red peaks).
Figure 4(a) presents the dynamical behavior of the

mechanical mode coupled to the polaritonic atom-cavity
system under optical pumping close to !ð1Þ

! (cooling con-
dition), for the set of parameters of Fig. 3, main panel. It
presents the number of phonons and photons as a function
of time (pump switched on abruptly at t > 0, inducing an
early transient regime). As the number of photons in the
cavity approaches a stationary state, the number of
phonons steadily decreases with an effective dissipation
constant "eff ’ 18"m towards an asymptotic value nmin ,
1=10. The dependence of "eff and nmin on the pump
frequency !p shows a good fit with the transitions
described by D½!' (not shown here). By numerically find-
ing the stationary solution of Eq. (6), it is possible to study
the system statistics in the stationary regime (t ! þ1).
Figure 4(b) presents the stationary second-order autocor-
relation function G2 ¼ hb̂yb̂yb̂ b̂i=hb̂yb̂i2 as a function of
the pump frequency. When the transitions around the lower
polariton energy are excited (here!ð1Þ

! ¼ !c !!m=2), the
mean phonon occupancy is reduced as previously men-
tioned and the statistics of the mechanical oscillator is
drastically changed, leading to strong phonon bunching

FIG. 3 (color online). Optical joint spectral density of polar-
onic states describing transitions between the states with 0 and 1
polaritons. Main panel: gcm=!m ¼ 10!1, Qac ¼ 104. Inset:
gcm=!m ¼ 10!3, Qac ¼ 106. For clarity, we present only tran-
sitions between states with mðnÞ ( 5 polarons. Blue, green, and
red peaks represent transitions reducing, conserving, and in-
creasing the number of phonons, respectively.
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Simulation parameters (photon blockade regime):

number of photons n! 1=2 increases, the anharmonicity
of the system becomes more pronounced within each
multiplet. For illustrative purposes, Fig. 2(c) depicts in
detail the anharmonic spectrum of the n ¼ 1 multiplet.

Having understood the nature of the dressed polaron states,
we can consider the dynamics of the open system in the
presence of losses and when coupled to a bath at temperature
T. Within a Lindblad approach for the dissipation, the density
matrix !̂ of the system follows the master equation

d!̂ðtÞ
dt

¼ !i½Ĥtot þ V̂pðtÞ; !̂' þ "acL½â'!̂þ "acL½#̂!'!̂

þ nth"mL½b̂y'!̂þ ðnth þ 1Þ"mL½b̂'!̂; (6)

where "m ("ac) is the phonon (polariton) loss rate, nth
is the thermal mean phononic occupancy, V̂pðtÞ ¼
iFpðâyei!pt ! âe!i!ptÞ is a coherent pump term with
frequency !p, and L½ô'!̂ ¼ ô !̂ ôy ! 1

2 ðôyô !̂þ!̂ôyôÞ
for any given jump operator ô.

For strong enough light-matter coupling, the anharmo-
nicity of the polaritonic energies is known to give rise to
photon blockade effects [20]. In the following, we consider
only a moderate pumping regime in which one cavity
photon and hence one single polariton is excited at most.
This allows us to understand the physics in terms of the
subspaces H n with n ( 1 and hence to consider only

transitions within the set of states fj)ðn;mðnÞÞign2½0;1' (note:
the numerical solutions actually include states with a
higher number n; the validity of such an approximation
has been carefully checked). In the figures of this Letter,
unless otherwise stated, we will always consider the fol-
lowing parameters: !c=!m ¼ 102, !a ¼ !c, gac=!m ¼
1=2, gcm=!m¼10!1, Qm¼!m="m¼104, Qac ¼
!a;c="ac ¼ 104, Fp="ac ¼ 1, and nth ¼ 3:45.

We initially prepare the system in the state jg; k ¼ 0i*
hg; k ¼ 0j + !̂m (no photons in the cavity, the atom in the
ground state and an arbitrary mechanical state) and pump it
with photons having an energy close to the energy differ-
ence between the one-polariton and zero-polariton states,
as can be seen in Fig. 2(b). In the single-polariton regime
considered here, the polaritonic splitting !ð1Þ is tuned to
about the mechanical frequency !m in order to make
resonant the processes in which a phonon is annihilated
(created), thus giving rise to cooling (amplification) of
mechanical motion. These processes can be selected opti-
cally by a proper tuning of the pump frequency !p.
Figure 3 presents the joint spectral density of polaronic
states defined as follows:

D½!' ¼
X

s0 ;s¼)
m0 ;m2N

jhs0ð1;m0ÞjV̂pjsð0;mÞij2$ð!! ð!s0ð1;m
0Þ !!sð0;mÞ ÞÞ:

(7)

For clarity in Fig. 3, we have convoluted the spectral
joint density with a Lorentzian of width "ac both for the

main panel and for the inset. D½!' shows a series of
resonances corresponding to polaronic transitions where
the number of phonons is either conserved, reduced, or
increased. The main panel shows D½!' for gcm=!m ¼
10!1 displaying two spectral structures centered on the

lower (upper) polariton energy !ð1Þ
! (!ð1Þ

þ ). Each structure
is itself split into a doublet with a splitting,gcm. The inset
in Fig. 3 shows D½!' for a weaker optomechanical cou-
pling gcm=!m ¼ 10!3. In this case the polaronic fine
structure splitting ,gcm is no longer visible at a scale

,!m, and D½!' presents only two resonances at !ð1Þ
) .

The resonances around !ð1Þ
! correspond to transitions for

which the number of phonons decreases (blue peaks) or is

conserved (green peak), and those around !ð1Þ
þ correspond

to processes increasing the number of phonons (red peaks).
Figure 4(a) presents the dynamical behavior of the

mechanical mode coupled to the polaritonic atom-cavity
system under optical pumping close to !ð1Þ

! (cooling con-
dition), for the set of parameters of Fig. 3, main panel. It
presents the number of phonons and photons as a function
of time (pump switched on abruptly at t > 0, inducing an
early transient regime). As the number of photons in the
cavity approaches a stationary state, the number of
phonons steadily decreases with an effective dissipation
constant "eff ’ 18"m towards an asymptotic value nmin ,
1=10. The dependence of "eff and nmin on the pump
frequency !p shows a good fit with the transitions
described by D½!' (not shown here). By numerically find-
ing the stationary solution of Eq. (6), it is possible to study
the system statistics in the stationary regime (t ! þ1).
Figure 4(b) presents the stationary second-order autocor-
relation function G2 ¼ hb̂yb̂yb̂ b̂i=hb̂yb̂i2 as a function of
the pump frequency. When the transitions around the lower
polariton energy are excited (here!ð1Þ

! ¼ !c !!m=2), the
mean phonon occupancy is reduced as previously men-
tioned and the statistics of the mechanical oscillator is
drastically changed, leading to strong phonon bunching

FIG. 3 (color online). Optical joint spectral density of polar-
onic states describing transitions between the states with 0 and 1
polaritons. Main panel: gcm=!m ¼ 10!1, Qac ¼ 104. Inset:
gcm=!m ¼ 10!3, Qac ¼ 106. For clarity, we present only tran-
sitions between states with mðnÞ ( 5 polarons. Blue, green, and
red peaks represent transitions reducing, conserving, and in-
creasing the number of phonons, respectively.
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number of photons n! 1=2 increases, the anharmonicity
of the system becomes more pronounced within each
multiplet. For illustrative purposes, Fig. 2(c) depicts in
detail the anharmonic spectrum of the n ¼ 1 multiplet.

Having understood the nature of the dressed polaron states,
we can consider the dynamics of the open system in the
presence of losses and when coupled to a bath at temperature
T. Within a Lindblad approach for the dissipation, the density
matrix !̂ of the system follows the master equation

d!̂ðtÞ
dt

¼ !i½Ĥtot þ V̂pðtÞ; !̂' þ "acL½â'!̂þ "acL½#̂!'!̂

þ nth"mL½b̂y'!̂þ ðnth þ 1Þ"mL½b̂'!̂; (6)

where "m ("ac) is the phonon (polariton) loss rate, nth
is the thermal mean phononic occupancy, V̂pðtÞ ¼
iFpðâyei!pt ! âe!i!ptÞ is a coherent pump term with
frequency !p, and L½ô'!̂ ¼ ô !̂ ôy ! 1

2 ðôyô !̂þ!̂ôyôÞ
for any given jump operator ô.

For strong enough light-matter coupling, the anharmo-
nicity of the polaritonic energies is known to give rise to
photon blockade effects [20]. In the following, we consider
only a moderate pumping regime in which one cavity
photon and hence one single polariton is excited at most.
This allows us to understand the physics in terms of the
subspaces H n with n ( 1 and hence to consider only

transitions within the set of states fj)ðn;mðnÞÞign2½0;1' (note:
the numerical solutions actually include states with a
higher number n; the validity of such an approximation
has been carefully checked). In the figures of this Letter,
unless otherwise stated, we will always consider the fol-
lowing parameters: !c=!m ¼ 102, !a ¼ !c, gac=!m ¼
1=2, gcm=!m¼10!1, Qm¼!m="m¼104, Qac ¼
!a;c="ac ¼ 104, Fp="ac ¼ 1, and nth ¼ 3:45.

We initially prepare the system in the state jg; k ¼ 0i*
hg; k ¼ 0j + !̂m (no photons in the cavity, the atom in the
ground state and an arbitrary mechanical state) and pump it
with photons having an energy close to the energy differ-
ence between the one-polariton and zero-polariton states,
as can be seen in Fig. 2(b). In the single-polariton regime
considered here, the polaritonic splitting !ð1Þ is tuned to
about the mechanical frequency !m in order to make
resonant the processes in which a phonon is annihilated
(created), thus giving rise to cooling (amplification) of
mechanical motion. These processes can be selected opti-
cally by a proper tuning of the pump frequency !p.
Figure 3 presents the joint spectral density of polaronic
states defined as follows:

D½!' ¼
X

s0 ;s¼)
m0 ;m2N

jhs0ð1;m0ÞjV̂pjsð0;mÞij2$ð!! ð!s0ð1;m
0Þ !!sð0;mÞ ÞÞ:

(7)

For clarity in Fig. 3, we have convoluted the spectral
joint density with a Lorentzian of width "ac both for the

main panel and for the inset. D½!' shows a series of
resonances corresponding to polaronic transitions where
the number of phonons is either conserved, reduced, or
increased. The main panel shows D½!' for gcm=!m ¼
10!1 displaying two spectral structures centered on the

lower (upper) polariton energy !ð1Þ
! (!ð1Þ

þ ). Each structure
is itself split into a doublet with a splitting,gcm. The inset
in Fig. 3 shows D½!' for a weaker optomechanical cou-
pling gcm=!m ¼ 10!3. In this case the polaronic fine
structure splitting ,gcm is no longer visible at a scale

,!m, and D½!' presents only two resonances at !ð1Þ
) .

The resonances around !ð1Þ
! correspond to transitions for

which the number of phonons decreases (blue peaks) or is

conserved (green peak), and those around !ð1Þ
þ correspond

to processes increasing the number of phonons (red peaks).
Figure 4(a) presents the dynamical behavior of the

mechanical mode coupled to the polaritonic atom-cavity
system under optical pumping close to !ð1Þ

! (cooling con-
dition), for the set of parameters of Fig. 3, main panel. It
presents the number of phonons and photons as a function
of time (pump switched on abruptly at t > 0, inducing an
early transient regime). As the number of photons in the
cavity approaches a stationary state, the number of
phonons steadily decreases with an effective dissipation
constant "eff ’ 18"m towards an asymptotic value nmin ,
1=10. The dependence of "eff and nmin on the pump
frequency !p shows a good fit with the transitions
described by D½!' (not shown here). By numerically find-
ing the stationary solution of Eq. (6), it is possible to study
the system statistics in the stationary regime (t ! þ1).
Figure 4(b) presents the stationary second-order autocor-
relation function G2 ¼ hb̂yb̂yb̂ b̂i=hb̂yb̂i2 as a function of
the pump frequency. When the transitions around the lower
polariton energy are excited (here!ð1Þ

! ¼ !c !!m=2), the
mean phonon occupancy is reduced as previously men-
tioned and the statistics of the mechanical oscillator is
drastically changed, leading to strong phonon bunching

FIG. 3 (color online). Optical joint spectral density of polar-
onic states describing transitions between the states with 0 and 1
polaritons. Main panel: gcm=!m ¼ 10!1, Qac ¼ 104. Inset:
gcm=!m ¼ 10!3, Qac ¼ 106. For clarity, we present only tran-
sitions between states with mðnÞ ( 5 polarons. Blue, green, and
red peaks represent transitions reducing, conserving, and in-
creasing the number of phonons, respectively.
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number of photons n! 1=2 increases, the anharmonicity
of the system becomes more pronounced within each
multiplet. For illustrative purposes, Fig. 2(c) depicts in
detail the anharmonic spectrum of the n ¼ 1 multiplet.

Having understood the nature of the dressed polaron states,
we can consider the dynamics of the open system in the
presence of losses and when coupled to a bath at temperature
T. Within a Lindblad approach for the dissipation, the density
matrix !̂ of the system follows the master equation

d!̂ðtÞ
dt

¼ !i½Ĥtot þ V̂pðtÞ; !̂' þ "acL½â'!̂þ "acL½#̂!'!̂

þ nth"mL½b̂y'!̂þ ðnth þ 1Þ"mL½b̂'!̂; (6)

where "m ("ac) is the phonon (polariton) loss rate, nth
is the thermal mean phononic occupancy, V̂pðtÞ ¼
iFpðâyei!pt ! âe!i!ptÞ is a coherent pump term with
frequency !p, and L½ô'!̂ ¼ ô !̂ ôy ! 1

2 ðôyô !̂þ!̂ôyôÞ
for any given jump operator ô.

For strong enough light-matter coupling, the anharmo-
nicity of the polaritonic energies is known to give rise to
photon blockade effects [20]. In the following, we consider
only a moderate pumping regime in which one cavity
photon and hence one single polariton is excited at most.
This allows us to understand the physics in terms of the
subspaces H n with n ( 1 and hence to consider only

transitions within the set of states fj)ðn;mðnÞÞign2½0;1' (note:
the numerical solutions actually include states with a
higher number n; the validity of such an approximation
has been carefully checked). In the figures of this Letter,
unless otherwise stated, we will always consider the fol-
lowing parameters: !c=!m ¼ 102, !a ¼ !c, gac=!m ¼
1=2, gcm=!m¼10!1, Qm¼!m="m¼104, Qac ¼
!a;c="ac ¼ 104, Fp="ac ¼ 1, and nth ¼ 3:45.

We initially prepare the system in the state jg; k ¼ 0i*
hg; k ¼ 0j + !̂m (no photons in the cavity, the atom in the
ground state and an arbitrary mechanical state) and pump it
with photons having an energy close to the energy differ-
ence between the one-polariton and zero-polariton states,
as can be seen in Fig. 2(b). In the single-polariton regime
considered here, the polaritonic splitting !ð1Þ is tuned to
about the mechanical frequency !m in order to make
resonant the processes in which a phonon is annihilated
(created), thus giving rise to cooling (amplification) of
mechanical motion. These processes can be selected opti-
cally by a proper tuning of the pump frequency !p.
Figure 3 presents the joint spectral density of polaronic
states defined as follows:

D½!' ¼
X

s0 ;s¼)
m0 ;m2N

jhs0ð1;m0ÞjV̂pjsð0;mÞij2$ð!! ð!s0ð1;m
0Þ !!sð0;mÞ ÞÞ:

(7)

For clarity in Fig. 3, we have convoluted the spectral
joint density with a Lorentzian of width "ac both for the

main panel and for the inset. D½!' shows a series of
resonances corresponding to polaronic transitions where
the number of phonons is either conserved, reduced, or
increased. The main panel shows D½!' for gcm=!m ¼
10!1 displaying two spectral structures centered on the

lower (upper) polariton energy !ð1Þ
! (!ð1Þ

þ ). Each structure
is itself split into a doublet with a splitting,gcm. The inset
in Fig. 3 shows D½!' for a weaker optomechanical cou-
pling gcm=!m ¼ 10!3. In this case the polaronic fine
structure splitting ,gcm is no longer visible at a scale

,!m, and D½!' presents only two resonances at !ð1Þ
) .

The resonances around !ð1Þ
! correspond to transitions for

which the number of phonons decreases (blue peaks) or is

conserved (green peak), and those around !ð1Þ
þ correspond

to processes increasing the number of phonons (red peaks).
Figure 4(a) presents the dynamical behavior of the

mechanical mode coupled to the polaritonic atom-cavity
system under optical pumping close to !ð1Þ

! (cooling con-
dition), for the set of parameters of Fig. 3, main panel. It
presents the number of phonons and photons as a function
of time (pump switched on abruptly at t > 0, inducing an
early transient regime). As the number of photons in the
cavity approaches a stationary state, the number of
phonons steadily decreases with an effective dissipation
constant "eff ’ 18"m towards an asymptotic value nmin ,
1=10. The dependence of "eff and nmin on the pump
frequency !p shows a good fit with the transitions
described by D½!' (not shown here). By numerically find-
ing the stationary solution of Eq. (6), it is possible to study
the system statistics in the stationary regime (t ! þ1).
Figure 4(b) presents the stationary second-order autocor-
relation function G2 ¼ hb̂yb̂yb̂ b̂i=hb̂yb̂i2 as a function of
the pump frequency. When the transitions around the lower
polariton energy are excited (here!ð1Þ

! ¼ !c !!m=2), the
mean phonon occupancy is reduced as previously men-
tioned and the statistics of the mechanical oscillator is
drastically changed, leading to strong phonon bunching

FIG. 3 (color online). Optical joint spectral density of polar-
onic states describing transitions between the states with 0 and 1
polaritons. Main panel: gcm=!m ¼ 10!1, Qac ¼ 104. Inset:
gcm=!m ¼ 10!3, Qac ¼ 106. For clarity, we present only tran-
sitions between states with mðnÞ ( 5 polarons. Blue, green, and
red peaks represent transitions reducing, conserving, and in-
creasing the number of phonons, respectively.
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number of photons n! 1=2 increases, the anharmonicity
of the system becomes more pronounced within each
multiplet. For illustrative purposes, Fig. 2(c) depicts in
detail the anharmonic spectrum of the n ¼ 1 multiplet.

Having understood the nature of the dressed polaron states,
we can consider the dynamics of the open system in the
presence of losses and when coupled to a bath at temperature
T. Within a Lindblad approach for the dissipation, the density
matrix !̂ of the system follows the master equation

d!̂ðtÞ
dt

¼ !i½Ĥtot þ V̂pðtÞ; !̂' þ "acL½â'!̂þ "acL½#̂!'!̂

þ nth"mL½b̂y'!̂þ ðnth þ 1Þ"mL½b̂'!̂; (6)

where "m ("ac) is the phonon (polariton) loss rate, nth
is the thermal mean phononic occupancy, V̂pðtÞ ¼
iFpðâyei!pt ! âe!i!ptÞ is a coherent pump term with
frequency !p, and L½ô'!̂ ¼ ô !̂ ôy ! 1

2 ðôyô !̂þ!̂ôyôÞ
for any given jump operator ô.

For strong enough light-matter coupling, the anharmo-
nicity of the polaritonic energies is known to give rise to
photon blockade effects [20]. In the following, we consider
only a moderate pumping regime in which one cavity
photon and hence one single polariton is excited at most.
This allows us to understand the physics in terms of the
subspaces H n with n ( 1 and hence to consider only

transitions within the set of states fj)ðn;mðnÞÞign2½0;1' (note:
the numerical solutions actually include states with a
higher number n; the validity of such an approximation
has been carefully checked). In the figures of this Letter,
unless otherwise stated, we will always consider the fol-
lowing parameters: !c=!m ¼ 102, !a ¼ !c, gac=!m ¼
1=2, gcm=!m¼10!1, Qm¼!m="m¼104, Qac ¼
!a;c="ac ¼ 104, Fp="ac ¼ 1, and nth ¼ 3:45.

We initially prepare the system in the state jg; k ¼ 0i*
hg; k ¼ 0j + !̂m (no photons in the cavity, the atom in the
ground state and an arbitrary mechanical state) and pump it
with photons having an energy close to the energy differ-
ence between the one-polariton and zero-polariton states,
as can be seen in Fig. 2(b). In the single-polariton regime
considered here, the polaritonic splitting !ð1Þ is tuned to
about the mechanical frequency !m in order to make
resonant the processes in which a phonon is annihilated
(created), thus giving rise to cooling (amplification) of
mechanical motion. These processes can be selected opti-
cally by a proper tuning of the pump frequency !p.
Figure 3 presents the joint spectral density of polaronic
states defined as follows:

D½!' ¼
X

s0 ;s¼)
m0 ;m2N

jhs0ð1;m0ÞjV̂pjsð0;mÞij2$ð!! ð!s0ð1;m
0Þ !!sð0;mÞ ÞÞ:

(7)

For clarity in Fig. 3, we have convoluted the spectral
joint density with a Lorentzian of width "ac both for the

main panel and for the inset. D½!' shows a series of
resonances corresponding to polaronic transitions where
the number of phonons is either conserved, reduced, or
increased. The main panel shows D½!' for gcm=!m ¼
10!1 displaying two spectral structures centered on the

lower (upper) polariton energy !ð1Þ
! (!ð1Þ

þ ). Each structure
is itself split into a doublet with a splitting,gcm. The inset
in Fig. 3 shows D½!' for a weaker optomechanical cou-
pling gcm=!m ¼ 10!3. In this case the polaronic fine
structure splitting ,gcm is no longer visible at a scale

,!m, and D½!' presents only two resonances at !ð1Þ
) .

The resonances around !ð1Þ
! correspond to transitions for

which the number of phonons decreases (blue peaks) or is

conserved (green peak), and those around !ð1Þ
þ correspond

to processes increasing the number of phonons (red peaks).
Figure 4(a) presents the dynamical behavior of the

mechanical mode coupled to the polaritonic atom-cavity
system under optical pumping close to !ð1Þ

! (cooling con-
dition), for the set of parameters of Fig. 3, main panel. It
presents the number of phonons and photons as a function
of time (pump switched on abruptly at t > 0, inducing an
early transient regime). As the number of photons in the
cavity approaches a stationary state, the number of
phonons steadily decreases with an effective dissipation
constant "eff ’ 18"m towards an asymptotic value nmin ,
1=10. The dependence of "eff and nmin on the pump
frequency !p shows a good fit with the transitions
described by D½!' (not shown here). By numerically find-
ing the stationary solution of Eq. (6), it is possible to study
the system statistics in the stationary regime (t ! þ1).
Figure 4(b) presents the stationary second-order autocor-
relation function G2 ¼ hb̂yb̂yb̂ b̂i=hb̂yb̂i2 as a function of
the pump frequency. When the transitions around the lower
polariton energy are excited (here!ð1Þ

! ¼ !c !!m=2), the
mean phonon occupancy is reduced as previously men-
tioned and the statistics of the mechanical oscillator is
drastically changed, leading to strong phonon bunching

FIG. 3 (color online). Optical joint spectral density of polar-
onic states describing transitions between the states with 0 and 1
polaritons. Main panel: gcm=!m ¼ 10!1, Qac ¼ 104. Inset:
gcm=!m ¼ 10!3, Qac ¼ 106. For clarity, we present only tran-
sitions between states with mðnÞ ( 5 polarons. Blue, green, and
red peaks represent transitions reducing, conserving, and in-
creasing the number of phonons, respectively.
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number of photons n! 1=2 increases, the anharmonicity
of the system becomes more pronounced within each
multiplet. For illustrative purposes, Fig. 2(c) depicts in
detail the anharmonic spectrum of the n ¼ 1 multiplet.

Having understood the nature of the dressed polaron states,
we can consider the dynamics of the open system in the
presence of losses and when coupled to a bath at temperature
T. Within a Lindblad approach for the dissipation, the density
matrix !̂ of the system follows the master equation

d!̂ðtÞ
dt

¼ !i½Ĥtot þ V̂pðtÞ; !̂' þ "acL½â'!̂þ "acL½#̂!'!̂

þ nth"mL½b̂y'!̂þ ðnth þ 1Þ"mL½b̂'!̂; (6)

where "m ("ac) is the phonon (polariton) loss rate, nth
is the thermal mean phononic occupancy, V̂pðtÞ ¼
iFpðâyei!pt ! âe!i!ptÞ is a coherent pump term with
frequency !p, and L½ô'!̂ ¼ ô !̂ ôy ! 1

2 ðôyô !̂þ!̂ôyôÞ
for any given jump operator ô.

For strong enough light-matter coupling, the anharmo-
nicity of the polaritonic energies is known to give rise to
photon blockade effects [20]. In the following, we consider
only a moderate pumping regime in which one cavity
photon and hence one single polariton is excited at most.
This allows us to understand the physics in terms of the
subspaces H n with n ( 1 and hence to consider only

transitions within the set of states fj)ðn;mðnÞÞign2½0;1' (note:
the numerical solutions actually include states with a
higher number n; the validity of such an approximation
has been carefully checked). In the figures of this Letter,
unless otherwise stated, we will always consider the fol-
lowing parameters: !c=!m ¼ 102, !a ¼ !c, gac=!m ¼
1=2, gcm=!m¼10!1, Qm¼!m="m¼104, Qac ¼
!a;c="ac ¼ 104, Fp="ac ¼ 1, and nth ¼ 3:45.

We initially prepare the system in the state jg; k ¼ 0i*
hg; k ¼ 0j + !̂m (no photons in the cavity, the atom in the
ground state and an arbitrary mechanical state) and pump it
with photons having an energy close to the energy differ-
ence between the one-polariton and zero-polariton states,
as can be seen in Fig. 2(b). In the single-polariton regime
considered here, the polaritonic splitting !ð1Þ is tuned to
about the mechanical frequency !m in order to make
resonant the processes in which a phonon is annihilated
(created), thus giving rise to cooling (amplification) of
mechanical motion. These processes can be selected opti-
cally by a proper tuning of the pump frequency !p.
Figure 3 presents the joint spectral density of polaronic
states defined as follows:

D½!' ¼
X

s0 ;s¼)
m0 ;m2N

jhs0ð1;m0ÞjV̂pjsð0;mÞij2$ð!! ð!s0ð1;m
0Þ !!sð0;mÞ ÞÞ:

(7)

For clarity in Fig. 3, we have convoluted the spectral
joint density with a Lorentzian of width "ac both for the

main panel and for the inset. D½!' shows a series of
resonances corresponding to polaronic transitions where
the number of phonons is either conserved, reduced, or
increased. The main panel shows D½!' for gcm=!m ¼
10!1 displaying two spectral structures centered on the

lower (upper) polariton energy !ð1Þ
! (!ð1Þ

þ ). Each structure
is itself split into a doublet with a splitting,gcm. The inset
in Fig. 3 shows D½!' for a weaker optomechanical cou-
pling gcm=!m ¼ 10!3. In this case the polaronic fine
structure splitting ,gcm is no longer visible at a scale

,!m, and D½!' presents only two resonances at !ð1Þ
) .

The resonances around !ð1Þ
! correspond to transitions for

which the number of phonons decreases (blue peaks) or is

conserved (green peak), and those around !ð1Þ
þ correspond

to processes increasing the number of phonons (red peaks).
Figure 4(a) presents the dynamical behavior of the

mechanical mode coupled to the polaritonic atom-cavity
system under optical pumping close to !ð1Þ

! (cooling con-
dition), for the set of parameters of Fig. 3, main panel. It
presents the number of phonons and photons as a function
of time (pump switched on abruptly at t > 0, inducing an
early transient regime). As the number of photons in the
cavity approaches a stationary state, the number of
phonons steadily decreases with an effective dissipation
constant "eff ’ 18"m towards an asymptotic value nmin ,
1=10. The dependence of "eff and nmin on the pump
frequency !p shows a good fit with the transitions
described by D½!' (not shown here). By numerically find-
ing the stationary solution of Eq. (6), it is possible to study
the system statistics in the stationary regime (t ! þ1).
Figure 4(b) presents the stationary second-order autocor-
relation function G2 ¼ hb̂yb̂yb̂ b̂i=hb̂yb̂i2 as a function of
the pump frequency. When the transitions around the lower
polariton energy are excited (here!ð1Þ

! ¼ !c !!m=2), the
mean phonon occupancy is reduced as previously men-
tioned and the statistics of the mechanical oscillator is
drastically changed, leading to strong phonon bunching

FIG. 3 (color online). Optical joint spectral density of polar-
onic states describing transitions between the states with 0 and 1
polaritons. Main panel: gcm=!m ¼ 10!1, Qac ¼ 104. Inset:
gcm=!m ¼ 10!3, Qac ¼ 106. For clarity, we present only tran-
sitions between states with mðnÞ ( 5 polarons. Blue, green, and
red peaks represent transitions reducing, conserving, and in-
creasing the number of phonons, respectively.
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number of photons n! 1=2 increases, the anharmonicity
of the system becomes more pronounced within each
multiplet. For illustrative purposes, Fig. 2(c) depicts in
detail the anharmonic spectrum of the n ¼ 1 multiplet.

Having understood the nature of the dressed polaron states,
we can consider the dynamics of the open system in the
presence of losses and when coupled to a bath at temperature
T. Within a Lindblad approach for the dissipation, the density
matrix !̂ of the system follows the master equation

d!̂ðtÞ
dt

¼ !i½Ĥtot þ V̂pðtÞ; !̂' þ "acL½â'!̂þ "acL½#̂!'!̂

þ nth"mL½b̂y'!̂þ ðnth þ 1Þ"mL½b̂'!̂; (6)

where "m ("ac) is the phonon (polariton) loss rate, nth
is the thermal mean phononic occupancy, V̂pðtÞ ¼
iFpðâyei!pt ! âe!i!ptÞ is a coherent pump term with
frequency !p, and L½ô'!̂ ¼ ô !̂ ôy ! 1

2 ðôyô !̂þ!̂ôyôÞ
for any given jump operator ô.

For strong enough light-matter coupling, the anharmo-
nicity of the polaritonic energies is known to give rise to
photon blockade effects [20]. In the following, we consider
only a moderate pumping regime in which one cavity
photon and hence one single polariton is excited at most.
This allows us to understand the physics in terms of the
subspaces H n with n ( 1 and hence to consider only

transitions within the set of states fj)ðn;mðnÞÞign2½0;1' (note:
the numerical solutions actually include states with a
higher number n; the validity of such an approximation
has been carefully checked). In the figures of this Letter,
unless otherwise stated, we will always consider the fol-
lowing parameters: !c=!m ¼ 102, !a ¼ !c, gac=!m ¼
1=2, gcm=!m¼10!1, Qm¼!m="m¼104, Qac ¼
!a;c="ac ¼ 104, Fp="ac ¼ 1, and nth ¼ 3:45.

We initially prepare the system in the state jg; k ¼ 0i*
hg; k ¼ 0j + !̂m (no photons in the cavity, the atom in the
ground state and an arbitrary mechanical state) and pump it
with photons having an energy close to the energy differ-
ence between the one-polariton and zero-polariton states,
as can be seen in Fig. 2(b). In the single-polariton regime
considered here, the polaritonic splitting !ð1Þ is tuned to
about the mechanical frequency !m in order to make
resonant the processes in which a phonon is annihilated
(created), thus giving rise to cooling (amplification) of
mechanical motion. These processes can be selected opti-
cally by a proper tuning of the pump frequency !p.
Figure 3 presents the joint spectral density of polaronic
states defined as follows:

D½!' ¼
X

s0 ;s¼)
m0 ;m2N

jhs0ð1;m0ÞjV̂pjsð0;mÞij2$ð!! ð!s0ð1;m
0Þ !!sð0;mÞ ÞÞ:

(7)

For clarity in Fig. 3, we have convoluted the spectral
joint density with a Lorentzian of width "ac both for the

main panel and for the inset. D½!' shows a series of
resonances corresponding to polaronic transitions where
the number of phonons is either conserved, reduced, or
increased. The main panel shows D½!' for gcm=!m ¼
10!1 displaying two spectral structures centered on the

lower (upper) polariton energy !ð1Þ
! (!ð1Þ

þ ). Each structure
is itself split into a doublet with a splitting,gcm. The inset
in Fig. 3 shows D½!' for a weaker optomechanical cou-
pling gcm=!m ¼ 10!3. In this case the polaronic fine
structure splitting ,gcm is no longer visible at a scale

,!m, and D½!' presents only two resonances at !ð1Þ
) .

The resonances around !ð1Þ
! correspond to transitions for

which the number of phonons decreases (blue peaks) or is

conserved (green peak), and those around !ð1Þ
þ correspond

to processes increasing the number of phonons (red peaks).
Figure 4(a) presents the dynamical behavior of the

mechanical mode coupled to the polaritonic atom-cavity
system under optical pumping close to !ð1Þ

! (cooling con-
dition), for the set of parameters of Fig. 3, main panel. It
presents the number of phonons and photons as a function
of time (pump switched on abruptly at t > 0, inducing an
early transient regime). As the number of photons in the
cavity approaches a stationary state, the number of
phonons steadily decreases with an effective dissipation
constant "eff ’ 18"m towards an asymptotic value nmin ,
1=10. The dependence of "eff and nmin on the pump
frequency !p shows a good fit with the transitions
described by D½!' (not shown here). By numerically find-
ing the stationary solution of Eq. (6), it is possible to study
the system statistics in the stationary regime (t ! þ1).
Figure 4(b) presents the stationary second-order autocor-
relation function G2 ¼ hb̂yb̂yb̂ b̂i=hb̂yb̂i2 as a function of
the pump frequency. When the transitions around the lower
polariton energy are excited (here!ð1Þ

! ¼ !c !!m=2), the
mean phonon occupancy is reduced as previously men-
tioned and the statistics of the mechanical oscillator is
drastically changed, leading to strong phonon bunching

FIG. 3 (color online). Optical joint spectral density of polar-
onic states describing transitions between the states with 0 and 1
polaritons. Main panel: gcm=!m ¼ 10!1, Qac ¼ 104. Inset:
gcm=!m ¼ 10!3, Qac ¼ 106. For clarity, we present only tran-
sitions between states with mðnÞ ( 5 polarons. Blue, green, and
red peaks represent transitions reducing, conserving, and in-
creasing the number of phonons, respectively.
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annihilation operator for the photon (mechanical) mode
of frequency !c (!m). gac and gcm are the atom-cavity
and optomechanical coupling strengths, respectively.
Replacing the radiation pressure coupling with a direct
coupling between the atom and the mechanical oscillator
of the form / !̂zðb̂þ b̂yÞ yields qualitatively a similar
physics, and this case will hence not be considered further
below.

The system evolves in a discrete but infinite Hilbert
space in which the uncoupled (gac ¼ gcm ¼ 0) eigenvec-
tors are labeled as je; gi % jki % jli: jgi (jei) describes the
ground (excited) state of the two-level system, k the Fock
state with k 2 N photons in the cavity, and l the state with
l 2 N phonons in the mechanical resonator. For gac ! 0
and gcm ¼ 0, one has the standard configuration of cavity
(circuit) QED, where atom-cavity polaritons are the new
eigenstates of the system. For gcm ! 0, there are new
eigenstates for the hybrid tripartite system, which we will
call atom-cavity-mechanics polarons.

A key feature of the above Hamiltonian is the conserva-
tion of the polariton number N̂polariton ¼ âyâþ !̂þ!̂&.
The problem can thus be diagonalized in each subspace
H n containing exactly n polaritons. In the resonant case
(!a ¼ !c), the polariton-phonon basis fj'ðnÞi % jlig diag-
onalizes the JC part of the Hamiltonian ĤJC ¼ !câ

yâþ
!a

2 !̂z þ igacð!̂þâ& !̂&â
yÞ, where j'ðnÞi ¼ ð1=

ffiffiffi
2

p
Þ(

ðjg; k ¼ ni' ije; k ¼ n& 1iÞ are the n-polariton eigen-

vectors of the JC ladder. Namely, we have ĤJCj'ðnÞi ¼
!ðnÞ

' j'ðnÞi with !ðnÞ
' ¼ ½ðn& 1=2Þ!c ' !ðnÞ

2 * and !ðnÞ ¼
2

ffiffiffi
n

p
gac. The system total Hamiltonian being block diago-

nal in this new basis, the mechanical resonator couples
independently to each polaritonic subspace associated to
H n, as illustrated in Fig. 2(a). Hence, we can express it as
follows:

Ĥtot ¼
X

n2N

"
ðn& 1=2Þ!c1ðnÞ þ!ðnÞ

2
!̂ðnÞ

z

& gcm

#
1

2
!̂ðnÞ

x þ
#
n& 1

2

$
1ðnÞ

$
ðb̂þ b̂yÞ

%
þ!mb̂

yb̂;

(2)

where 1ðnÞ is the identity in the H n Hilbert subspace and

!̂ðnÞ
x;z are Pauli matrices acting on the polaritonic doublet

j'ðnÞi. The radiation pressure coupling has two conse-
quences. First, an effective coupling appears between
each of the two cavity polariton states j'ðnÞi and the
mechanical mode. Second, each of the two states con-
tains on average n& 1=2 cavity photons that displace
statically the equilibrium position of the mechanical
resonator.

In eachH n we can absorb the static displacement of the
mechanical resonator by introducing the new displaced
operator b̂n and make a rotating wave approximation to
obtain the following Hamiltonian in H n:

ĤðnÞ ¼ !ðnÞ

2
!̂ðnÞ

z þ!mb̂
y
n b̂n &

gcm
2

ð!̂ðnÞ
& b̂yn þ !̂ðnÞ

þ b̂nÞ

& gcm

ffiffiffi
2

p

2
qðnÞ0 !̂ðnÞ

x þ
#
!ðnÞ

0 &!m

2
qðnÞ

2

0

$
1ðnÞ; (3)

where qðnÞ0 ¼
ffiffiffi
2

p
gcmðn& 1=2Þ=!m is the normalized dis-

placed mechanical equilibrium position. The term propor-

tional to !̂ðnÞ
x in Eq. (3) will be neglected hereafter in the

limit gcm + !m. Its perturbative effect could be accounted
for in an exact treatment of the Rabi model [19] but at the
expense of losing explicit expressions for the eigenstates.
Apart from the last term, which is a constant energy shift,
we have an effective Jaynes-Cummings-like Hamiltonian,

which can be diagonalized by the states j'ðn;mðnÞÞi, where
mðnÞ is the polaron number of the tripartite system and n is
the polariton number previously defined. The energy spec-
trum of Ĥn is given by the expression

ĤðnÞj'ðn;mðnÞÞi¼!ðnÞ
0 &!m

2
qðnÞ

2

0 þ
#
m&1

2

$
!m'"ðn;mÞ; (4)

where

"ðn;mÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi#
!ðnÞ &!m

2

$
2
þmðnÞ

4
g2cm

s
: (5)

Figure 2(b) shows the structure of the energy spectrum
for n ¼ 0, 1, 2. For each n-polariton state, a multiplet arises
from the mechanical resonator Fock space. As the mean

(a)

(b) (c)

FIG. 2 (color online). Structure of the polaron eigenstates
for the atom-cavity-mechanics tripartite system. (a) Each
n-polariton subspace (left) couples independently to states of
the mechanical resonator with different displacements (right).
(b) Energy spectrum for n , 2. (c) Zoom on the energy levels in
the H 1 subspace (one-polariton states).
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Atom-assisted cooling

G2 ! 5. The solid line represents the values of G2 for the
equivalent atomless system (gac ¼ 0). The changes on G2

in this scenario are much weaker (!10#2), showing that
the presence of the two-level atom is crucial for entering
this strong phonon bunching regime. Figure 4(c) reports
the stationary number of phonons as a function of !p for
the set of parameters of the inset in Fig. 3, showing both
cooling and amplification as the optical pump resonates
with the polaritonic levels. The solid line represents the
evolution of hb̂yb̂iðþ1Þ for the corresponding atomless
scenario (gac ¼ 0), the other parameters remaining the
same. In this case, the cooling mechanism is hindered by
the nonresonant pumping, and no phonon population
change is in practice visible. In the case considered in
Fig. 4(c), the insertion of the two-level atom in the opto-
mechanical cavity strongly boosts the cooling of mechani-
cal motion through a doubly resonant process.

We nowmove to situations where phonon amplification or
emission can occur under pumping of the hybrid atom-
optomechanical system. Figure 5 exhibits the phonon statis-
tics (with a zero-temperature bath) for different polariton
pumping regimes. Figures 5(a) and 5(b) correspond to a
coherent pump whose frequency has been set close to the
upper-polariton energy. This pump detuning leads to the
appearance of nonclassical statistics for the mechanical

motion as shown in Fig. 5(b), where the mechanical Wigner
function acquires negativevalues (represented by a black ring
in the density plot) [21]. Describing this behavior analytically
appears quite involved. We checked, however, that the pres-
ence of the atom is mandatory to obtain this nonclassicity for
the considered set of parameters (see Supplemental Material
[22]). We also checked that a finite temperature for the
phonon bath progressively destroys the negativity of the
Wigner function. In some cases, interesting analogies can
be drawn between this polariton-assisted amplification of
motion and the situation of a single-atom laser [23]. These
analogies are addressed in Supplemental Material [22].
If we now consider the case of an incoherent pumping

of the one-polariton states [described by adding

FincðL½jþð1Þihg; 0j(!̂þ L½j#ð1Þihg; 0j(!̂Þ and setting Fp ¼
0 in Eq. (6)], the phonon statistics can be described through
an analytical approach [22,23]. As shown in Fig. 5(c), the
incoherent pump populates the excited polaritonic states
which, in the eigenbasis of the Hamiltonian, leads to excita-
tion of polarons and then emission of phonons. Figure 5(d)
shows that forweak incoherent pumping the anharmonicity of
the polaronic states yields sub-Poissonian statistics (G2 ) 1)
for the emitted phonons. The analytical results (circles) are in
excellent agreement with the numerical results.

(a) (b)

(c)

FIG. 4 (color online). Atom-assisted optomechanical cooling.
(a) Time evolution of the number of photons (red) and phonons
(blue) for an initial mechanical state jl ¼ 2i. (b) Phonon second-
order correlation function G2 of the stationary state.
(c) Stationary number of phonons as a function of !p for Qm ¼
106,Qac ¼ 106, gcm=!m ¼ 10#3, and Fp="ac ¼ 100. In (b) and
(c), the dashed blue lines represent the hybrid QED-
optomechanics case with an atom (gac ! 0), while the black
solid lines correspond to the usual atomless scenario (gac ¼ 0).
The inset in (c) depicts schematically the doubly resonant polar-
iton cooling of motion.

(a) (b)

(c) (d)

FIG. 5 (color online). Steady-state mechanical resonator sta-
tistics (bath at zero temperature). (a) Real part of the mechanical
reduced density matrix and (b) the corresponding Wigner func-

tion for an optical coherent pump tuned to ð!p #!ð1Þ
þ Þ=!m ¼

10#1. (c) Phonon occupation number and (d) second-order
correlation function G2 under incoherent pumping as a function
of the polariton quality factor Qac. The incoherent pump rate is
set to Finc ¼ "ac. Black solid, blue dashed, and red dotted lines
correspond to numerical results for Qm ¼ 101, 102, and 103,
respectively. The analytical solutions of the master equation are
represented by circles.
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number of photons n! 1=2 increases, the anharmonicity
of the system becomes more pronounced within each
multiplet. For illustrative purposes, Fig. 2(c) depicts in
detail the anharmonic spectrum of the n ¼ 1 multiplet.

Having understood the nature of the dressed polaron states,
we can consider the dynamics of the open system in the
presence of losses and when coupled to a bath at temperature
T. Within a Lindblad approach for the dissipation, the density
matrix !̂ of the system follows the master equation

d!̂ðtÞ
dt

¼ !i½Ĥtot þ V̂pðtÞ; !̂' þ "acL½â'!̂þ "acL½#̂!'!̂

þ nth"mL½b̂y'!̂þ ðnth þ 1Þ"mL½b̂'!̂; (6)

where "m ("ac) is the phonon (polariton) loss rate, nth
is the thermal mean phononic occupancy, V̂pðtÞ ¼
iFpðâyei!pt ! âe!i!ptÞ is a coherent pump term with
frequency !p, and L½ô'!̂ ¼ ô !̂ ôy ! 1

2 ðôyô !̂þ!̂ôyôÞ
for any given jump operator ô.

For strong enough light-matter coupling, the anharmo-
nicity of the polaritonic energies is known to give rise to
photon blockade effects [20]. In the following, we consider
only a moderate pumping regime in which one cavity
photon and hence one single polariton is excited at most.
This allows us to understand the physics in terms of the
subspaces H n with n ( 1 and hence to consider only

transitions within the set of states fj)ðn;mðnÞÞign2½0;1' (note:
the numerical solutions actually include states with a
higher number n; the validity of such an approximation
has been carefully checked). In the figures of this Letter,
unless otherwise stated, we will always consider the fol-
lowing parameters: !c=!m ¼ 102, !a ¼ !c, gac=!m ¼
1=2, gcm=!m¼10!1, Qm¼!m="m¼104, Qac ¼
!a;c="ac ¼ 104, Fp="ac ¼ 1, and nth ¼ 3:45.

We initially prepare the system in the state jg; k ¼ 0i*
hg; k ¼ 0j + !̂m (no photons in the cavity, the atom in the
ground state and an arbitrary mechanical state) and pump it
with photons having an energy close to the energy differ-
ence between the one-polariton and zero-polariton states,
as can be seen in Fig. 2(b). In the single-polariton regime
considered here, the polaritonic splitting !ð1Þ is tuned to
about the mechanical frequency !m in order to make
resonant the processes in which a phonon is annihilated
(created), thus giving rise to cooling (amplification) of
mechanical motion. These processes can be selected opti-
cally by a proper tuning of the pump frequency !p.
Figure 3 presents the joint spectral density of polaronic
states defined as follows:

D½!' ¼
X

s0 ;s¼)
m0 ;m2N

jhs0ð1;m0ÞjV̂pjsð0;mÞij2$ð!! ð!s0ð1;m
0Þ !!sð0;mÞ ÞÞ:

(7)

For clarity in Fig. 3, we have convoluted the spectral
joint density with a Lorentzian of width "ac both for the

main panel and for the inset. D½!' shows a series of
resonances corresponding to polaronic transitions where
the number of phonons is either conserved, reduced, or
increased. The main panel shows D½!' for gcm=!m ¼
10!1 displaying two spectral structures centered on the

lower (upper) polariton energy !ð1Þ
! (!ð1Þ

þ ). Each structure
is itself split into a doublet with a splitting,gcm. The inset
in Fig. 3 shows D½!' for a weaker optomechanical cou-
pling gcm=!m ¼ 10!3. In this case the polaronic fine
structure splitting ,gcm is no longer visible at a scale

,!m, and D½!' presents only two resonances at !ð1Þ
) .

The resonances around !ð1Þ
! correspond to transitions for

which the number of phonons decreases (blue peaks) or is

conserved (green peak), and those around !ð1Þ
þ correspond

to processes increasing the number of phonons (red peaks).
Figure 4(a) presents the dynamical behavior of the

mechanical mode coupled to the polaritonic atom-cavity
system under optical pumping close to !ð1Þ

! (cooling con-
dition), for the set of parameters of Fig. 3, main panel. It
presents the number of phonons and photons as a function
of time (pump switched on abruptly at t > 0, inducing an
early transient regime). As the number of photons in the
cavity approaches a stationary state, the number of
phonons steadily decreases with an effective dissipation
constant "eff ’ 18"m towards an asymptotic value nmin ,
1=10. The dependence of "eff and nmin on the pump
frequency !p shows a good fit with the transitions
described by D½!' (not shown here). By numerically find-
ing the stationary solution of Eq. (6), it is possible to study
the system statistics in the stationary regime (t ! þ1).
Figure 4(b) presents the stationary second-order autocor-
relation function G2 ¼ hb̂yb̂yb̂ b̂i=hb̂yb̂i2 as a function of
the pump frequency. When the transitions around the lower
polariton energy are excited (here!ð1Þ

! ¼ !c !!m=2), the
mean phonon occupancy is reduced as previously men-
tioned and the statistics of the mechanical oscillator is
drastically changed, leading to strong phonon bunching

FIG. 3 (color online). Optical joint spectral density of polar-
onic states describing transitions between the states with 0 and 1
polaritons. Main panel: gcm=!m ¼ 10!1, Qac ¼ 104. Inset:
gcm=!m ¼ 10!3, Qac ¼ 106. For clarity, we present only tran-
sitions between states with mðnÞ ( 5 polarons. Blue, green, and
red peaks represent transitions reducing, conserving, and in-
creasing the number of phonons, respectively.
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number of photons n! 1=2 increases, the anharmonicity
of the system becomes more pronounced within each
multiplet. For illustrative purposes, Fig. 2(c) depicts in
detail the anharmonic spectrum of the n ¼ 1 multiplet.

Having understood the nature of the dressed polaron states,
we can consider the dynamics of the open system in the
presence of losses and when coupled to a bath at temperature
T. Within a Lindblad approach for the dissipation, the density
matrix !̂ of the system follows the master equation

d!̂ðtÞ
dt

¼ !i½Ĥtot þ V̂pðtÞ; !̂' þ "acL½â'!̂þ "acL½#̂!'!̂

þ nth"mL½b̂y'!̂þ ðnth þ 1Þ"mL½b̂'!̂; (6)

where "m ("ac) is the phonon (polariton) loss rate, nth
is the thermal mean phononic occupancy, V̂pðtÞ ¼
iFpðâyei!pt ! âe!i!ptÞ is a coherent pump term with
frequency !p, and L½ô'!̂ ¼ ô !̂ ôy ! 1

2 ðôyô !̂þ!̂ôyôÞ
for any given jump operator ô.

For strong enough light-matter coupling, the anharmo-
nicity of the polaritonic energies is known to give rise to
photon blockade effects [20]. In the following, we consider
only a moderate pumping regime in which one cavity
photon and hence one single polariton is excited at most.
This allows us to understand the physics in terms of the
subspaces H n with n ( 1 and hence to consider only

transitions within the set of states fj)ðn;mðnÞÞign2½0;1' (note:
the numerical solutions actually include states with a
higher number n; the validity of such an approximation
has been carefully checked). In the figures of this Letter,
unless otherwise stated, we will always consider the fol-
lowing parameters: !c=!m ¼ 102, !a ¼ !c, gac=!m ¼
1=2, gcm=!m¼10!1, Qm¼!m="m¼104, Qac ¼
!a;c="ac ¼ 104, Fp="ac ¼ 1, and nth ¼ 3:45.

We initially prepare the system in the state jg; k ¼ 0i*
hg; k ¼ 0j + !̂m (no photons in the cavity, the atom in the
ground state and an arbitrary mechanical state) and pump it
with photons having an energy close to the energy differ-
ence between the one-polariton and zero-polariton states,
as can be seen in Fig. 2(b). In the single-polariton regime
considered here, the polaritonic splitting !ð1Þ is tuned to
about the mechanical frequency !m in order to make
resonant the processes in which a phonon is annihilated
(created), thus giving rise to cooling (amplification) of
mechanical motion. These processes can be selected opti-
cally by a proper tuning of the pump frequency !p.
Figure 3 presents the joint spectral density of polaronic
states defined as follows:

D½!' ¼
X

s0 ;s¼)
m0 ;m2N

jhs0ð1;m0ÞjV̂pjsð0;mÞij2$ð!! ð!s0ð1;m
0Þ !!sð0;mÞ ÞÞ:

(7)

For clarity in Fig. 3, we have convoluted the spectral
joint density with a Lorentzian of width "ac both for the

main panel and for the inset. D½!' shows a series of
resonances corresponding to polaronic transitions where
the number of phonons is either conserved, reduced, or
increased. The main panel shows D½!' for gcm=!m ¼
10!1 displaying two spectral structures centered on the

lower (upper) polariton energy !ð1Þ
! (!ð1Þ

þ ). Each structure
is itself split into a doublet with a splitting,gcm. The inset
in Fig. 3 shows D½!' for a weaker optomechanical cou-
pling gcm=!m ¼ 10!3. In this case the polaronic fine
structure splitting ,gcm is no longer visible at a scale

,!m, and D½!' presents only two resonances at !ð1Þ
) .

The resonances around !ð1Þ
! correspond to transitions for

which the number of phonons decreases (blue peaks) or is

conserved (green peak), and those around !ð1Þ
þ correspond

to processes increasing the number of phonons (red peaks).
Figure 4(a) presents the dynamical behavior of the

mechanical mode coupled to the polaritonic atom-cavity
system under optical pumping close to !ð1Þ

! (cooling con-
dition), for the set of parameters of Fig. 3, main panel. It
presents the number of phonons and photons as a function
of time (pump switched on abruptly at t > 0, inducing an
early transient regime). As the number of photons in the
cavity approaches a stationary state, the number of
phonons steadily decreases with an effective dissipation
constant "eff ’ 18"m towards an asymptotic value nmin ,
1=10. The dependence of "eff and nmin on the pump
frequency !p shows a good fit with the transitions
described by D½!' (not shown here). By numerically find-
ing the stationary solution of Eq. (6), it is possible to study
the system statistics in the stationary regime (t ! þ1).
Figure 4(b) presents the stationary second-order autocor-
relation function G2 ¼ hb̂yb̂yb̂ b̂i=hb̂yb̂i2 as a function of
the pump frequency. When the transitions around the lower
polariton energy are excited (here!ð1Þ

! ¼ !c !!m=2), the
mean phonon occupancy is reduced as previously men-
tioned and the statistics of the mechanical oscillator is
drastically changed, leading to strong phonon bunching

FIG. 3 (color online). Optical joint spectral density of polar-
onic states describing transitions between the states with 0 and 1
polaritons. Main panel: gcm=!m ¼ 10!1, Qac ¼ 104. Inset:
gcm=!m ¼ 10!3, Qac ¼ 106. For clarity, we present only tran-
sitions between states with mðnÞ ( 5 polarons. Blue, green, and
red peaks represent transitions reducing, conserving, and in-
creasing the number of phonons, respectively.
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number of photons n! 1=2 increases, the anharmonicity
of the system becomes more pronounced within each
multiplet. For illustrative purposes, Fig. 2(c) depicts in
detail the anharmonic spectrum of the n ¼ 1 multiplet.

Having understood the nature of the dressed polaron states,
we can consider the dynamics of the open system in the
presence of losses and when coupled to a bath at temperature
T. Within a Lindblad approach for the dissipation, the density
matrix !̂ of the system follows the master equation

d!̂ðtÞ
dt

¼ !i½Ĥtot þ V̂pðtÞ; !̂' þ "acL½â'!̂þ "acL½#̂!'!̂

þ nth"mL½b̂y'!̂þ ðnth þ 1Þ"mL½b̂'!̂; (6)

where "m ("ac) is the phonon (polariton) loss rate, nth
is the thermal mean phononic occupancy, V̂pðtÞ ¼
iFpðâyei!pt ! âe!i!ptÞ is a coherent pump term with
frequency !p, and L½ô'!̂ ¼ ô !̂ ôy ! 1

2 ðôyô !̂þ!̂ôyôÞ
for any given jump operator ô.

For strong enough light-matter coupling, the anharmo-
nicity of the polaritonic energies is known to give rise to
photon blockade effects [20]. In the following, we consider
only a moderate pumping regime in which one cavity
photon and hence one single polariton is excited at most.
This allows us to understand the physics in terms of the
subspaces H n with n ( 1 and hence to consider only

transitions within the set of states fj)ðn;mðnÞÞign2½0;1' (note:
the numerical solutions actually include states with a
higher number n; the validity of such an approximation
has been carefully checked). In the figures of this Letter,
unless otherwise stated, we will always consider the fol-
lowing parameters: !c=!m ¼ 102, !a ¼ !c, gac=!m ¼
1=2, gcm=!m¼10!1, Qm¼!m="m¼104, Qac ¼
!a;c="ac ¼ 104, Fp="ac ¼ 1, and nth ¼ 3:45.

We initially prepare the system in the state jg; k ¼ 0i*
hg; k ¼ 0j + !̂m (no photons in the cavity, the atom in the
ground state and an arbitrary mechanical state) and pump it
with photons having an energy close to the energy differ-
ence between the one-polariton and zero-polariton states,
as can be seen in Fig. 2(b). In the single-polariton regime
considered here, the polaritonic splitting !ð1Þ is tuned to
about the mechanical frequency !m in order to make
resonant the processes in which a phonon is annihilated
(created), thus giving rise to cooling (amplification) of
mechanical motion. These processes can be selected opti-
cally by a proper tuning of the pump frequency !p.
Figure 3 presents the joint spectral density of polaronic
states defined as follows:

D½!' ¼
X

s0 ;s¼)
m0 ;m2N

jhs0ð1;m0ÞjV̂pjsð0;mÞij2$ð!! ð!s0ð1;m
0Þ !!sð0;mÞ ÞÞ:

(7)

For clarity in Fig. 3, we have convoluted the spectral
joint density with a Lorentzian of width "ac both for the

main panel and for the inset. D½!' shows a series of
resonances corresponding to polaronic transitions where
the number of phonons is either conserved, reduced, or
increased. The main panel shows D½!' for gcm=!m ¼
10!1 displaying two spectral structures centered on the

lower (upper) polariton energy !ð1Þ
! (!ð1Þ

þ ). Each structure
is itself split into a doublet with a splitting,gcm. The inset
in Fig. 3 shows D½!' for a weaker optomechanical cou-
pling gcm=!m ¼ 10!3. In this case the polaronic fine
structure splitting ,gcm is no longer visible at a scale

,!m, and D½!' presents only two resonances at !ð1Þ
) .

The resonances around !ð1Þ
! correspond to transitions for

which the number of phonons decreases (blue peaks) or is

conserved (green peak), and those around !ð1Þ
þ correspond

to processes increasing the number of phonons (red peaks).
Figure 4(a) presents the dynamical behavior of the

mechanical mode coupled to the polaritonic atom-cavity
system under optical pumping close to !ð1Þ

! (cooling con-
dition), for the set of parameters of Fig. 3, main panel. It
presents the number of phonons and photons as a function
of time (pump switched on abruptly at t > 0, inducing an
early transient regime). As the number of photons in the
cavity approaches a stationary state, the number of
phonons steadily decreases with an effective dissipation
constant "eff ’ 18"m towards an asymptotic value nmin ,
1=10. The dependence of "eff and nmin on the pump
frequency !p shows a good fit with the transitions
described by D½!' (not shown here). By numerically find-
ing the stationary solution of Eq. (6), it is possible to study
the system statistics in the stationary regime (t ! þ1).
Figure 4(b) presents the stationary second-order autocor-
relation function G2 ¼ hb̂yb̂yb̂ b̂i=hb̂yb̂i2 as a function of
the pump frequency. When the transitions around the lower
polariton energy are excited (here!ð1Þ

! ¼ !c !!m=2), the
mean phonon occupancy is reduced as previously men-
tioned and the statistics of the mechanical oscillator is
drastically changed, leading to strong phonon bunching

FIG. 3 (color online). Optical joint spectral density of polar-
onic states describing transitions between the states with 0 and 1
polaritons. Main panel: gcm=!m ¼ 10!1, Qac ¼ 104. Inset:
gcm=!m ¼ 10!3, Qac ¼ 106. For clarity, we present only tran-
sitions between states with mðnÞ ( 5 polarons. Blue, green, and
red peaks represent transitions reducing, conserving, and in-
creasing the number of phonons, respectively.
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cooling

number of photons n! 1=2 increases, the anharmonicity
of the system becomes more pronounced within each
multiplet. For illustrative purposes, Fig. 2(c) depicts in
detail the anharmonic spectrum of the n ¼ 1 multiplet.

Having understood the nature of the dressed polaron states,
we can consider the dynamics of the open system in the
presence of losses and when coupled to a bath at temperature
T. Within a Lindblad approach for the dissipation, the density
matrix !̂ of the system follows the master equation

d!̂ðtÞ
dt

¼ !i½Ĥtot þ V̂pðtÞ; !̂' þ "acL½â'!̂þ "acL½#̂!'!̂

þ nth"mL½b̂y'!̂þ ðnth þ 1Þ"mL½b̂'!̂; (6)

where "m ("ac) is the phonon (polariton) loss rate, nth
is the thermal mean phononic occupancy, V̂pðtÞ ¼
iFpðâyei!pt ! âe!i!ptÞ is a coherent pump term with
frequency !p, and L½ô'!̂ ¼ ô !̂ ôy ! 1

2 ðôyô !̂þ!̂ôyôÞ
for any given jump operator ô.

For strong enough light-matter coupling, the anharmo-
nicity of the polaritonic energies is known to give rise to
photon blockade effects [20]. In the following, we consider
only a moderate pumping regime in which one cavity
photon and hence one single polariton is excited at most.
This allows us to understand the physics in terms of the
subspaces H n with n ( 1 and hence to consider only

transitions within the set of states fj)ðn;mðnÞÞign2½0;1' (note:
the numerical solutions actually include states with a
higher number n; the validity of such an approximation
has been carefully checked). In the figures of this Letter,
unless otherwise stated, we will always consider the fol-
lowing parameters: !c=!m ¼ 102, !a ¼ !c, gac=!m ¼
1=2, gcm=!m¼10!1, Qm¼!m="m¼104, Qac ¼
!a;c="ac ¼ 104, Fp="ac ¼ 1, and nth ¼ 3:45.

We initially prepare the system in the state jg; k ¼ 0i*
hg; k ¼ 0j + !̂m (no photons in the cavity, the atom in the
ground state and an arbitrary mechanical state) and pump it
with photons having an energy close to the energy differ-
ence between the one-polariton and zero-polariton states,
as can be seen in Fig. 2(b). In the single-polariton regime
considered here, the polaritonic splitting !ð1Þ is tuned to
about the mechanical frequency !m in order to make
resonant the processes in which a phonon is annihilated
(created), thus giving rise to cooling (amplification) of
mechanical motion. These processes can be selected opti-
cally by a proper tuning of the pump frequency !p.
Figure 3 presents the joint spectral density of polaronic
states defined as follows:

D½!' ¼
X

s0 ;s¼)
m0 ;m2N

jhs0ð1;m0ÞjV̂pjsð0;mÞij2$ð!! ð!s0ð1;m
0Þ !!sð0;mÞ ÞÞ:

(7)

For clarity in Fig. 3, we have convoluted the spectral
joint density with a Lorentzian of width "ac both for the

main panel and for the inset. D½!' shows a series of
resonances corresponding to polaronic transitions where
the number of phonons is either conserved, reduced, or
increased. The main panel shows D½!' for gcm=!m ¼
10!1 displaying two spectral structures centered on the

lower (upper) polariton energy !ð1Þ
! (!ð1Þ

þ ). Each structure
is itself split into a doublet with a splitting,gcm. The inset
in Fig. 3 shows D½!' for a weaker optomechanical cou-
pling gcm=!m ¼ 10!3. In this case the polaronic fine
structure splitting ,gcm is no longer visible at a scale

,!m, and D½!' presents only two resonances at !ð1Þ
) .

The resonances around !ð1Þ
! correspond to transitions for

which the number of phonons decreases (blue peaks) or is

conserved (green peak), and those around !ð1Þ
þ correspond

to processes increasing the number of phonons (red peaks).
Figure 4(a) presents the dynamical behavior of the

mechanical mode coupled to the polaritonic atom-cavity
system under optical pumping close to !ð1Þ

! (cooling con-
dition), for the set of parameters of Fig. 3, main panel. It
presents the number of phonons and photons as a function
of time (pump switched on abruptly at t > 0, inducing an
early transient regime). As the number of photons in the
cavity approaches a stationary state, the number of
phonons steadily decreases with an effective dissipation
constant "eff ’ 18"m towards an asymptotic value nmin ,
1=10. The dependence of "eff and nmin on the pump
frequency !p shows a good fit with the transitions
described by D½!' (not shown here). By numerically find-
ing the stationary solution of Eq. (6), it is possible to study
the system statistics in the stationary regime (t ! þ1).
Figure 4(b) presents the stationary second-order autocor-
relation function G2 ¼ hb̂yb̂yb̂ b̂i=hb̂yb̂i2 as a function of
the pump frequency. When the transitions around the lower
polariton energy are excited (here!ð1Þ

! ¼ !c !!m=2), the
mean phonon occupancy is reduced as previously men-
tioned and the statistics of the mechanical oscillator is
drastically changed, leading to strong phonon bunching

FIG. 3 (color online). Optical joint spectral density of polar-
onic states describing transitions between the states with 0 and 1
polaritons. Main panel: gcm=!m ¼ 10!1, Qac ¼ 104. Inset:
gcm=!m ¼ 10!3, Qac ¼ 106. For clarity, we present only tran-
sitions between states with mðnÞ ( 5 polarons. Blue, green, and
red peaks represent transitions reducing, conserving, and in-
creasing the number of phonons, respectively.
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Mechanical steady-state

G2 ! 5. The solid line represents the values of G2 for the
equivalent atomless system (gac ¼ 0). The changes on G2

in this scenario are much weaker (!10#2), showing that
the presence of the two-level atom is crucial for entering
this strong phonon bunching regime. Figure 4(c) reports
the stationary number of phonons as a function of !p for
the set of parameters of the inset in Fig. 3, showing both
cooling and amplification as the optical pump resonates
with the polaritonic levels. The solid line represents the
evolution of hb̂yb̂iðþ1Þ for the corresponding atomless
scenario (gac ¼ 0), the other parameters remaining the
same. In this case, the cooling mechanism is hindered by
the nonresonant pumping, and no phonon population
change is in practice visible. In the case considered in
Fig. 4(c), the insertion of the two-level atom in the opto-
mechanical cavity strongly boosts the cooling of mechani-
cal motion through a doubly resonant process.

We nowmove to situations where phonon amplification or
emission can occur under pumping of the hybrid atom-
optomechanical system. Figure 5 exhibits the phonon statis-
tics (with a zero-temperature bath) for different polariton
pumping regimes. Figures 5(a) and 5(b) correspond to a
coherent pump whose frequency has been set close to the
upper-polariton energy. This pump detuning leads to the
appearance of nonclassical statistics for the mechanical

motion as shown in Fig. 5(b), where the mechanical Wigner
function acquires negativevalues (represented by a black ring
in the density plot) [21]. Describing this behavior analytically
appears quite involved. We checked, however, that the pres-
ence of the atom is mandatory to obtain this nonclassicity for
the considered set of parameters (see Supplemental Material
[22]). We also checked that a finite temperature for the
phonon bath progressively destroys the negativity of the
Wigner function. In some cases, interesting analogies can
be drawn between this polariton-assisted amplification of
motion and the situation of a single-atom laser [23]. These
analogies are addressed in Supplemental Material [22].
If we now consider the case of an incoherent pumping

of the one-polariton states [described by adding

FincðL½jþð1Þihg; 0j(!̂þ L½j#ð1Þihg; 0j(!̂Þ and setting Fp ¼
0 in Eq. (6)], the phonon statistics can be described through
an analytical approach [22,23]. As shown in Fig. 5(c), the
incoherent pump populates the excited polaritonic states
which, in the eigenbasis of the Hamiltonian, leads to excita-
tion of polarons and then emission of phonons. Figure 5(d)
shows that forweak incoherent pumping the anharmonicity of
the polaronic states yields sub-Poissonian statistics (G2 ) 1)
for the emitted phonons. The analytical results (circles) are in
excellent agreement with the numerical results.

(a) (b)

(c)

FIG. 4 (color online). Atom-assisted optomechanical cooling.
(a) Time evolution of the number of photons (red) and phonons
(blue) for an initial mechanical state jl ¼ 2i. (b) Phonon second-
order correlation function G2 of the stationary state.
(c) Stationary number of phonons as a function of !p for Qm ¼
106,Qac ¼ 106, gcm=!m ¼ 10#3, and Fp="ac ¼ 100. In (b) and
(c), the dashed blue lines represent the hybrid QED-
optomechanics case with an atom (gac ! 0), while the black
solid lines correspond to the usual atomless scenario (gac ¼ 0).
The inset in (c) depicts schematically the doubly resonant polar-
iton cooling of motion.

(a) (b)

(c) (d)

FIG. 5 (color online). Steady-state mechanical resonator sta-
tistics (bath at zero temperature). (a) Real part of the mechanical
reduced density matrix and (b) the corresponding Wigner func-

tion for an optical coherent pump tuned to ð!p #!ð1Þ
þ Þ=!m ¼

10#1. (c) Phonon occupation number and (d) second-order
correlation function G2 under incoherent pumping as a function
of the polariton quality factor Qac. The incoherent pump rate is
set to Finc ¼ "ac. Black solid, blue dashed, and red dotted lines
correspond to numerical results for Qm ¼ 101, 102, and 103,
respectively. The analytical solutions of the master equation are
represented by circles.
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number of photons n! 1=2 increases, the anharmonicity
of the system becomes more pronounced within each
multiplet. For illustrative purposes, Fig. 2(c) depicts in
detail the anharmonic spectrum of the n ¼ 1 multiplet.

Having understood the nature of the dressed polaron states,
we can consider the dynamics of the open system in the
presence of losses and when coupled to a bath at temperature
T. Within a Lindblad approach for the dissipation, the density
matrix !̂ of the system follows the master equation

d!̂ðtÞ
dt

¼ !i½Ĥtot þ V̂pðtÞ; !̂' þ "acL½â'!̂þ "acL½#̂!'!̂

þ nth"mL½b̂y'!̂þ ðnth þ 1Þ"mL½b̂'!̂; (6)

where "m ("ac) is the phonon (polariton) loss rate, nth
is the thermal mean phononic occupancy, V̂pðtÞ ¼
iFpðâyei!pt ! âe!i!ptÞ is a coherent pump term with
frequency !p, and L½ô'!̂ ¼ ô !̂ ôy ! 1

2 ðôyô !̂þ!̂ôyôÞ
for any given jump operator ô.

For strong enough light-matter coupling, the anharmo-
nicity of the polaritonic energies is known to give rise to
photon blockade effects [20]. In the following, we consider
only a moderate pumping regime in which one cavity
photon and hence one single polariton is excited at most.
This allows us to understand the physics in terms of the
subspaces H n with n ( 1 and hence to consider only

transitions within the set of states fj)ðn;mðnÞÞign2½0;1' (note:
the numerical solutions actually include states with a
higher number n; the validity of such an approximation
has been carefully checked). In the figures of this Letter,
unless otherwise stated, we will always consider the fol-
lowing parameters: !c=!m ¼ 102, !a ¼ !c, gac=!m ¼
1=2, gcm=!m¼10!1, Qm¼!m="m¼104, Qac ¼
!a;c="ac ¼ 104, Fp="ac ¼ 1, and nth ¼ 3:45.

We initially prepare the system in the state jg; k ¼ 0i*
hg; k ¼ 0j + !̂m (no photons in the cavity, the atom in the
ground state and an arbitrary mechanical state) and pump it
with photons having an energy close to the energy differ-
ence between the one-polariton and zero-polariton states,
as can be seen in Fig. 2(b). In the single-polariton regime
considered here, the polaritonic splitting !ð1Þ is tuned to
about the mechanical frequency !m in order to make
resonant the processes in which a phonon is annihilated
(created), thus giving rise to cooling (amplification) of
mechanical motion. These processes can be selected opti-
cally by a proper tuning of the pump frequency !p.
Figure 3 presents the joint spectral density of polaronic
states defined as follows:

D½!' ¼
X

s0 ;s¼)
m0 ;m2N

jhs0ð1;m0ÞjV̂pjsð0;mÞij2$ð!! ð!s0ð1;m
0Þ !!sð0;mÞ ÞÞ:

(7)

For clarity in Fig. 3, we have convoluted the spectral
joint density with a Lorentzian of width "ac both for the

main panel and for the inset. D½!' shows a series of
resonances corresponding to polaronic transitions where
the number of phonons is either conserved, reduced, or
increased. The main panel shows D½!' for gcm=!m ¼
10!1 displaying two spectral structures centered on the

lower (upper) polariton energy !ð1Þ
! (!ð1Þ

þ ). Each structure
is itself split into a doublet with a splitting,gcm. The inset
in Fig. 3 shows D½!' for a weaker optomechanical cou-
pling gcm=!m ¼ 10!3. In this case the polaronic fine
structure splitting ,gcm is no longer visible at a scale

,!m, and D½!' presents only two resonances at !ð1Þ
) .

The resonances around !ð1Þ
! correspond to transitions for

which the number of phonons decreases (blue peaks) or is

conserved (green peak), and those around !ð1Þ
þ correspond

to processes increasing the number of phonons (red peaks).
Figure 4(a) presents the dynamical behavior of the

mechanical mode coupled to the polaritonic atom-cavity
system under optical pumping close to !ð1Þ

! (cooling con-
dition), for the set of parameters of Fig. 3, main panel. It
presents the number of phonons and photons as a function
of time (pump switched on abruptly at t > 0, inducing an
early transient regime). As the number of photons in the
cavity approaches a stationary state, the number of
phonons steadily decreases with an effective dissipation
constant "eff ’ 18"m towards an asymptotic value nmin ,
1=10. The dependence of "eff and nmin on the pump
frequency !p shows a good fit with the transitions
described by D½!' (not shown here). By numerically find-
ing the stationary solution of Eq. (6), it is possible to study
the system statistics in the stationary regime (t ! þ1).
Figure 4(b) presents the stationary second-order autocor-
relation function G2 ¼ hb̂yb̂yb̂ b̂i=hb̂yb̂i2 as a function of
the pump frequency. When the transitions around the lower
polariton energy are excited (here!ð1Þ

! ¼ !c !!m=2), the
mean phonon occupancy is reduced as previously men-
tioned and the statistics of the mechanical oscillator is
drastically changed, leading to strong phonon bunching

FIG. 3 (color online). Optical joint spectral density of polar-
onic states describing transitions between the states with 0 and 1
polaritons. Main panel: gcm=!m ¼ 10!1, Qac ¼ 104. Inset:
gcm=!m ¼ 10!3, Qac ¼ 106. For clarity, we present only tran-
sitions between states with mðnÞ ( 5 polarons. Blue, green, and
red peaks represent transitions reducing, conserving, and in-
creasing the number of phonons, respectively.
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number of photons n! 1=2 increases, the anharmonicity
of the system becomes more pronounced within each
multiplet. For illustrative purposes, Fig. 2(c) depicts in
detail the anharmonic spectrum of the n ¼ 1 multiplet.

Having understood the nature of the dressed polaron states,
we can consider the dynamics of the open system in the
presence of losses and when coupled to a bath at temperature
T. Within a Lindblad approach for the dissipation, the density
matrix !̂ of the system follows the master equation

d!̂ðtÞ
dt

¼ !i½Ĥtot þ V̂pðtÞ; !̂' þ "acL½â'!̂þ "acL½#̂!'!̂

þ nth"mL½b̂y'!̂þ ðnth þ 1Þ"mL½b̂'!̂; (6)

where "m ("ac) is the phonon (polariton) loss rate, nth
is the thermal mean phononic occupancy, V̂pðtÞ ¼
iFpðâyei!pt ! âe!i!ptÞ is a coherent pump term with
frequency !p, and L½ô'!̂ ¼ ô !̂ ôy ! 1

2 ðôyô !̂þ!̂ôyôÞ
for any given jump operator ô.

For strong enough light-matter coupling, the anharmo-
nicity of the polaritonic energies is known to give rise to
photon blockade effects [20]. In the following, we consider
only a moderate pumping regime in which one cavity
photon and hence one single polariton is excited at most.
This allows us to understand the physics in terms of the
subspaces H n with n ( 1 and hence to consider only

transitions within the set of states fj)ðn;mðnÞÞign2½0;1' (note:
the numerical solutions actually include states with a
higher number n; the validity of such an approximation
has been carefully checked). In the figures of this Letter,
unless otherwise stated, we will always consider the fol-
lowing parameters: !c=!m ¼ 102, !a ¼ !c, gac=!m ¼
1=2, gcm=!m¼10!1, Qm¼!m="m¼104, Qac ¼
!a;c="ac ¼ 104, Fp="ac ¼ 1, and nth ¼ 3:45.

We initially prepare the system in the state jg; k ¼ 0i*
hg; k ¼ 0j + !̂m (no photons in the cavity, the atom in the
ground state and an arbitrary mechanical state) and pump it
with photons having an energy close to the energy differ-
ence between the one-polariton and zero-polariton states,
as can be seen in Fig. 2(b). In the single-polariton regime
considered here, the polaritonic splitting !ð1Þ is tuned to
about the mechanical frequency !m in order to make
resonant the processes in which a phonon is annihilated
(created), thus giving rise to cooling (amplification) of
mechanical motion. These processes can be selected opti-
cally by a proper tuning of the pump frequency !p.
Figure 3 presents the joint spectral density of polaronic
states defined as follows:

D½!' ¼
X

s0 ;s¼)
m0 ;m2N

jhs0ð1;m0ÞjV̂pjsð0;mÞij2$ð!! ð!s0ð1;m
0Þ !!sð0;mÞ ÞÞ:

(7)

For clarity in Fig. 3, we have convoluted the spectral
joint density with a Lorentzian of width "ac both for the

main panel and for the inset. D½!' shows a series of
resonances corresponding to polaronic transitions where
the number of phonons is either conserved, reduced, or
increased. The main panel shows D½!' for gcm=!m ¼
10!1 displaying two spectral structures centered on the

lower (upper) polariton energy !ð1Þ
! (!ð1Þ

þ ). Each structure
is itself split into a doublet with a splitting,gcm. The inset
in Fig. 3 shows D½!' for a weaker optomechanical cou-
pling gcm=!m ¼ 10!3. In this case the polaronic fine
structure splitting ,gcm is no longer visible at a scale

,!m, and D½!' presents only two resonances at !ð1Þ
) .

The resonances around !ð1Þ
! correspond to transitions for

which the number of phonons decreases (blue peaks) or is

conserved (green peak), and those around !ð1Þ
þ correspond

to processes increasing the number of phonons (red peaks).
Figure 4(a) presents the dynamical behavior of the

mechanical mode coupled to the polaritonic atom-cavity
system under optical pumping close to !ð1Þ

! (cooling con-
dition), for the set of parameters of Fig. 3, main panel. It
presents the number of phonons and photons as a function
of time (pump switched on abruptly at t > 0, inducing an
early transient regime). As the number of photons in the
cavity approaches a stationary state, the number of
phonons steadily decreases with an effective dissipation
constant "eff ’ 18"m towards an asymptotic value nmin ,
1=10. The dependence of "eff and nmin on the pump
frequency !p shows a good fit with the transitions
described by D½!' (not shown here). By numerically find-
ing the stationary solution of Eq. (6), it is possible to study
the system statistics in the stationary regime (t ! þ1).
Figure 4(b) presents the stationary second-order autocor-
relation function G2 ¼ hb̂yb̂yb̂ b̂i=hb̂yb̂i2 as a function of
the pump frequency. When the transitions around the lower
polariton energy are excited (here!ð1Þ

! ¼ !c !!m=2), the
mean phonon occupancy is reduced as previously men-
tioned and the statistics of the mechanical oscillator is
drastically changed, leading to strong phonon bunching

FIG. 3 (color online). Optical joint spectral density of polar-
onic states describing transitions between the states with 0 and 1
polaritons. Main panel: gcm=!m ¼ 10!1, Qac ¼ 104. Inset:
gcm=!m ¼ 10!3, Qac ¼ 106. For clarity, we present only tran-
sitions between states with mðnÞ ( 5 polarons. Blue, green, and
red peaks represent transitions reducing, conserving, and in-
creasing the number of phonons, respectively.
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amplify

G2 ! 5. The solid line represents the values of G2 for the
equivalent atomless system (gac ¼ 0). The changes on G2

in this scenario are much weaker (!10#2), showing that
the presence of the two-level atom is crucial for entering
this strong phonon bunching regime. Figure 4(c) reports
the stationary number of phonons as a function of !p for
the set of parameters of the inset in Fig. 3, showing both
cooling and amplification as the optical pump resonates
with the polaritonic levels. The solid line represents the
evolution of hb̂yb̂iðþ1Þ for the corresponding atomless
scenario (gac ¼ 0), the other parameters remaining the
same. In this case, the cooling mechanism is hindered by
the nonresonant pumping, and no phonon population
change is in practice visible. In the case considered in
Fig. 4(c), the insertion of the two-level atom in the opto-
mechanical cavity strongly boosts the cooling of mechani-
cal motion through a doubly resonant process.

We nowmove to situations where phonon amplification or
emission can occur under pumping of the hybrid atom-
optomechanical system. Figure 5 exhibits the phonon statis-
tics (with a zero-temperature bath) for different polariton
pumping regimes. Figures 5(a) and 5(b) correspond to a
coherent pump whose frequency has been set close to the
upper-polariton energy. This pump detuning leads to the
appearance of nonclassical statistics for the mechanical

motion as shown in Fig. 5(b), where the mechanical Wigner
function acquires negativevalues (represented by a black ring
in the density plot) [21]. Describing this behavior analytically
appears quite involved. We checked, however, that the pres-
ence of the atom is mandatory to obtain this nonclassicity for
the considered set of parameters (see Supplemental Material
[22]). We also checked that a finite temperature for the
phonon bath progressively destroys the negativity of the
Wigner function. In some cases, interesting analogies can
be drawn between this polariton-assisted amplification of
motion and the situation of a single-atom laser [23]. These
analogies are addressed in Supplemental Material [22].
If we now consider the case of an incoherent pumping

of the one-polariton states [described by adding

FincðL½jþð1Þihg; 0j(!̂þ L½j#ð1Þihg; 0j(!̂Þ and setting Fp ¼
0 in Eq. (6)], the phonon statistics can be described through
an analytical approach [22,23]. As shown in Fig. 5(c), the
incoherent pump populates the excited polaritonic states
which, in the eigenbasis of the Hamiltonian, leads to excita-
tion of polarons and then emission of phonons. Figure 5(d)
shows that forweak incoherent pumping the anharmonicity of
the polaronic states yields sub-Poissonian statistics (G2 ) 1)
for the emitted phonons. The analytical results (circles) are in
excellent agreement with the numerical results.

(a) (b)

(c)

FIG. 4 (color online). Atom-assisted optomechanical cooling.
(a) Time evolution of the number of photons (red) and phonons
(blue) for an initial mechanical state jl ¼ 2i. (b) Phonon second-
order correlation function G2 of the stationary state.
(c) Stationary number of phonons as a function of !p for Qm ¼
106,Qac ¼ 106, gcm=!m ¼ 10#3, and Fp="ac ¼ 100. In (b) and
(c), the dashed blue lines represent the hybrid QED-
optomechanics case with an atom (gac ! 0), while the black
solid lines correspond to the usual atomless scenario (gac ¼ 0).
The inset in (c) depicts schematically the doubly resonant polar-
iton cooling of motion.

(a) (b)

(c) (d)

FIG. 5 (color online). Steady-state mechanical resonator sta-
tistics (bath at zero temperature). (a) Real part of the mechanical
reduced density matrix and (b) the corresponding Wigner func-

tion for an optical coherent pump tuned to ð!p #!ð1Þ
þ Þ=!m ¼

10#1. (c) Phonon occupation number and (d) second-order
correlation function G2 under incoherent pumping as a function
of the polariton quality factor Qac. The incoherent pump rate is
set to Finc ¼ "ac. Black solid, blue dashed, and red dotted lines
correspond to numerical results for Qm ¼ 101, 102, and 103,
respectively. The analytical solutions of the master equation are
represented by circles.
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number of photons n! 1=2 increases, the anharmonicity
of the system becomes more pronounced within each
multiplet. For illustrative purposes, Fig. 2(c) depicts in
detail the anharmonic spectrum of the n ¼ 1 multiplet.

Having understood the nature of the dressed polaron states,
we can consider the dynamics of the open system in the
presence of losses and when coupled to a bath at temperature
T. Within a Lindblad approach for the dissipation, the density
matrix !̂ of the system follows the master equation

d!̂ðtÞ
dt

¼ !i½Ĥtot þ V̂pðtÞ; !̂' þ "acL½â'!̂þ "acL½#̂!'!̂

þ nth"mL½b̂y'!̂þ ðnth þ 1Þ"mL½b̂'!̂; (6)

where "m ("ac) is the phonon (polariton) loss rate, nth
is the thermal mean phononic occupancy, V̂pðtÞ ¼
iFpðâyei!pt ! âe!i!ptÞ is a coherent pump term with
frequency !p, and L½ô'!̂ ¼ ô !̂ ôy ! 1

2 ðôyô !̂þ!̂ôyôÞ
for any given jump operator ô.

For strong enough light-matter coupling, the anharmo-
nicity of the polaritonic energies is known to give rise to
photon blockade effects [20]. In the following, we consider
only a moderate pumping regime in which one cavity
photon and hence one single polariton is excited at most.
This allows us to understand the physics in terms of the
subspaces H n with n ( 1 and hence to consider only

transitions within the set of states fj)ðn;mðnÞÞign2½0;1' (note:
the numerical solutions actually include states with a
higher number n; the validity of such an approximation
has been carefully checked). In the figures of this Letter,
unless otherwise stated, we will always consider the fol-
lowing parameters: !c=!m ¼ 102, !a ¼ !c, gac=!m ¼
1=2, gcm=!m¼10!1, Qm¼!m="m¼104, Qac ¼
!a;c="ac ¼ 104, Fp="ac ¼ 1, and nth ¼ 3:45.

We initially prepare the system in the state jg; k ¼ 0i*
hg; k ¼ 0j + !̂m (no photons in the cavity, the atom in the
ground state and an arbitrary mechanical state) and pump it
with photons having an energy close to the energy differ-
ence between the one-polariton and zero-polariton states,
as can be seen in Fig. 2(b). In the single-polariton regime
considered here, the polaritonic splitting !ð1Þ is tuned to
about the mechanical frequency !m in order to make
resonant the processes in which a phonon is annihilated
(created), thus giving rise to cooling (amplification) of
mechanical motion. These processes can be selected opti-
cally by a proper tuning of the pump frequency !p.
Figure 3 presents the joint spectral density of polaronic
states defined as follows:

D½!' ¼
X

s0 ;s¼)
m0 ;m2N

jhs0ð1;m0ÞjV̂pjsð0;mÞij2$ð!! ð!s0ð1;m
0Þ !!sð0;mÞ ÞÞ:

(7)

For clarity in Fig. 3, we have convoluted the spectral
joint density with a Lorentzian of width "ac both for the

main panel and for the inset. D½!' shows a series of
resonances corresponding to polaronic transitions where
the number of phonons is either conserved, reduced, or
increased. The main panel shows D½!' for gcm=!m ¼
10!1 displaying two spectral structures centered on the

lower (upper) polariton energy !ð1Þ
! (!ð1Þ

þ ). Each structure
is itself split into a doublet with a splitting,gcm. The inset
in Fig. 3 shows D½!' for a weaker optomechanical cou-
pling gcm=!m ¼ 10!3. In this case the polaronic fine
structure splitting ,gcm is no longer visible at a scale

,!m, and D½!' presents only two resonances at !ð1Þ
) .

The resonances around !ð1Þ
! correspond to transitions for

which the number of phonons decreases (blue peaks) or is

conserved (green peak), and those around !ð1Þ
þ correspond

to processes increasing the number of phonons (red peaks).
Figure 4(a) presents the dynamical behavior of the

mechanical mode coupled to the polaritonic atom-cavity
system under optical pumping close to !ð1Þ

! (cooling con-
dition), for the set of parameters of Fig. 3, main panel. It
presents the number of phonons and photons as a function
of time (pump switched on abruptly at t > 0, inducing an
early transient regime). As the number of photons in the
cavity approaches a stationary state, the number of
phonons steadily decreases with an effective dissipation
constant "eff ’ 18"m towards an asymptotic value nmin ,
1=10. The dependence of "eff and nmin on the pump
frequency !p shows a good fit with the transitions
described by D½!' (not shown here). By numerically find-
ing the stationary solution of Eq. (6), it is possible to study
the system statistics in the stationary regime (t ! þ1).
Figure 4(b) presents the stationary second-order autocor-
relation function G2 ¼ hb̂yb̂yb̂ b̂i=hb̂yb̂i2 as a function of
the pump frequency. When the transitions around the lower
polariton energy are excited (here!ð1Þ

! ¼ !c !!m=2), the
mean phonon occupancy is reduced as previously men-
tioned and the statistics of the mechanical oscillator is
drastically changed, leading to strong phonon bunching

FIG. 3 (color online). Optical joint spectral density of polar-
onic states describing transitions between the states with 0 and 1
polaritons. Main panel: gcm=!m ¼ 10!1, Qac ¼ 104. Inset:
gcm=!m ¼ 10!3, Qac ¼ 106. For clarity, we present only tran-
sitions between states with mðnÞ ( 5 polarons. Blue, green, and
red peaks represent transitions reducing, conserving, and in-
creasing the number of phonons, respectively.
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number of photons n! 1=2 increases, the anharmonicity
of the system becomes more pronounced within each
multiplet. For illustrative purposes, Fig. 2(c) depicts in
detail the anharmonic spectrum of the n ¼ 1 multiplet.

Having understood the nature of the dressed polaron states,
we can consider the dynamics of the open system in the
presence of losses and when coupled to a bath at temperature
T. Within a Lindblad approach for the dissipation, the density
matrix !̂ of the system follows the master equation

d!̂ðtÞ
dt

¼ !i½Ĥtot þ V̂pðtÞ; !̂' þ "acL½â'!̂þ "acL½#̂!'!̂

þ nth"mL½b̂y'!̂þ ðnth þ 1Þ"mL½b̂'!̂; (6)

where "m ("ac) is the phonon (polariton) loss rate, nth
is the thermal mean phononic occupancy, V̂pðtÞ ¼
iFpðâyei!pt ! âe!i!ptÞ is a coherent pump term with
frequency !p, and L½ô'!̂ ¼ ô !̂ ôy ! 1

2 ðôyô !̂þ!̂ôyôÞ
for any given jump operator ô.

For strong enough light-matter coupling, the anharmo-
nicity of the polaritonic energies is known to give rise to
photon blockade effects [20]. In the following, we consider
only a moderate pumping regime in which one cavity
photon and hence one single polariton is excited at most.
This allows us to understand the physics in terms of the
subspaces H n with n ( 1 and hence to consider only

transitions within the set of states fj)ðn;mðnÞÞign2½0;1' (note:
the numerical solutions actually include states with a
higher number n; the validity of such an approximation
has been carefully checked). In the figures of this Letter,
unless otherwise stated, we will always consider the fol-
lowing parameters: !c=!m ¼ 102, !a ¼ !c, gac=!m ¼
1=2, gcm=!m¼10!1, Qm¼!m="m¼104, Qac ¼
!a;c="ac ¼ 104, Fp="ac ¼ 1, and nth ¼ 3:45.

We initially prepare the system in the state jg; k ¼ 0i*
hg; k ¼ 0j + !̂m (no photons in the cavity, the atom in the
ground state and an arbitrary mechanical state) and pump it
with photons having an energy close to the energy differ-
ence between the one-polariton and zero-polariton states,
as can be seen in Fig. 2(b). In the single-polariton regime
considered here, the polaritonic splitting !ð1Þ is tuned to
about the mechanical frequency !m in order to make
resonant the processes in which a phonon is annihilated
(created), thus giving rise to cooling (amplification) of
mechanical motion. These processes can be selected opti-
cally by a proper tuning of the pump frequency !p.
Figure 3 presents the joint spectral density of polaronic
states defined as follows:

D½!' ¼
X

s0 ;s¼)
m0 ;m2N

jhs0ð1;m0ÞjV̂pjsð0;mÞij2$ð!! ð!s0ð1;m
0Þ !!sð0;mÞ ÞÞ:

(7)

For clarity in Fig. 3, we have convoluted the spectral
joint density with a Lorentzian of width "ac both for the

main panel and for the inset. D½!' shows a series of
resonances corresponding to polaronic transitions where
the number of phonons is either conserved, reduced, or
increased. The main panel shows D½!' for gcm=!m ¼
10!1 displaying two spectral structures centered on the

lower (upper) polariton energy !ð1Þ
! (!ð1Þ

þ ). Each structure
is itself split into a doublet with a splitting,gcm. The inset
in Fig. 3 shows D½!' for a weaker optomechanical cou-
pling gcm=!m ¼ 10!3. In this case the polaronic fine
structure splitting ,gcm is no longer visible at a scale

,!m, and D½!' presents only two resonances at !ð1Þ
) .

The resonances around !ð1Þ
! correspond to transitions for

which the number of phonons decreases (blue peaks) or is

conserved (green peak), and those around !ð1Þ
þ correspond

to processes increasing the number of phonons (red peaks).
Figure 4(a) presents the dynamical behavior of the

mechanical mode coupled to the polaritonic atom-cavity
system under optical pumping close to !ð1Þ

! (cooling con-
dition), for the set of parameters of Fig. 3, main panel. It
presents the number of phonons and photons as a function
of time (pump switched on abruptly at t > 0, inducing an
early transient regime). As the number of photons in the
cavity approaches a stationary state, the number of
phonons steadily decreases with an effective dissipation
constant "eff ’ 18"m towards an asymptotic value nmin ,
1=10. The dependence of "eff and nmin on the pump
frequency !p shows a good fit with the transitions
described by D½!' (not shown here). By numerically find-
ing the stationary solution of Eq. (6), it is possible to study
the system statistics in the stationary regime (t ! þ1).
Figure 4(b) presents the stationary second-order autocor-
relation function G2 ¼ hb̂yb̂yb̂ b̂i=hb̂yb̂i2 as a function of
the pump frequency. When the transitions around the lower
polariton energy are excited (here!ð1Þ

! ¼ !c !!m=2), the
mean phonon occupancy is reduced as previously men-
tioned and the statistics of the mechanical oscillator is
drastically changed, leading to strong phonon bunching

FIG. 3 (color online). Optical joint spectral density of polar-
onic states describing transitions between the states with 0 and 1
polaritons. Main panel: gcm=!m ¼ 10!1, Qac ¼ 104. Inset:
gcm=!m ¼ 10!3, Qac ¼ 106. For clarity, we present only tran-
sitions between states with mðnÞ ( 5 polarons. Blue, green, and
red peaks represent transitions reducing, conserving, and in-
creasing the number of phonons, respectively.
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G2 ! 5. The solid line represents the values of G2 for the
equivalent atomless system (gac ¼ 0). The changes on G2

in this scenario are much weaker (!10#2), showing that
the presence of the two-level atom is crucial for entering
this strong phonon bunching regime. Figure 4(c) reports
the stationary number of phonons as a function of !p for
the set of parameters of the inset in Fig. 3, showing both
cooling and amplification as the optical pump resonates
with the polaritonic levels. The solid line represents the
evolution of hb̂yb̂iðþ1Þ for the corresponding atomless
scenario (gac ¼ 0), the other parameters remaining the
same. In this case, the cooling mechanism is hindered by
the nonresonant pumping, and no phonon population
change is in practice visible. In the case considered in
Fig. 4(c), the insertion of the two-level atom in the opto-
mechanical cavity strongly boosts the cooling of mechani-
cal motion through a doubly resonant process.

We nowmove to situations where phonon amplification or
emission can occur under pumping of the hybrid atom-
optomechanical system. Figure 5 exhibits the phonon statis-
tics (with a zero-temperature bath) for different polariton
pumping regimes. Figures 5(a) and 5(b) correspond to a
coherent pump whose frequency has been set close to the
upper-polariton energy. This pump detuning leads to the
appearance of nonclassical statistics for the mechanical

motion as shown in Fig. 5(b), where the mechanical Wigner
function acquires negativevalues (represented by a black ring
in the density plot) [21]. Describing this behavior analytically
appears quite involved. We checked, however, that the pres-
ence of the atom is mandatory to obtain this nonclassicity for
the considered set of parameters (see Supplemental Material
[22]). We also checked that a finite temperature for the
phonon bath progressively destroys the negativity of the
Wigner function. In some cases, interesting analogies can
be drawn between this polariton-assisted amplification of
motion and the situation of a single-atom laser [23]. These
analogies are addressed in Supplemental Material [22].
If we now consider the case of an incoherent pumping

of the one-polariton states [described by adding

FincðL½jþð1Þihg; 0j(!̂þ L½j#ð1Þihg; 0j(!̂Þ and setting Fp ¼
0 in Eq. (6)], the phonon statistics can be described through
an analytical approach [22,23]. As shown in Fig. 5(c), the
incoherent pump populates the excited polaritonic states
which, in the eigenbasis of the Hamiltonian, leads to excita-
tion of polarons and then emission of phonons. Figure 5(d)
shows that forweak incoherent pumping the anharmonicity of
the polaronic states yields sub-Poissonian statistics (G2 ) 1)
for the emitted phonons. The analytical results (circles) are in
excellent agreement with the numerical results.

(a) (b)

(c)

FIG. 4 (color online). Atom-assisted optomechanical cooling.
(a) Time evolution of the number of photons (red) and phonons
(blue) for an initial mechanical state jl ¼ 2i. (b) Phonon second-
order correlation function G2 of the stationary state.
(c) Stationary number of phonons as a function of !p for Qm ¼
106,Qac ¼ 106, gcm=!m ¼ 10#3, and Fp="ac ¼ 100. In (b) and
(c), the dashed blue lines represent the hybrid QED-
optomechanics case with an atom (gac ! 0), while the black
solid lines correspond to the usual atomless scenario (gac ¼ 0).
The inset in (c) depicts schematically the doubly resonant polar-
iton cooling of motion.

(a) (b)

(c) (d)

FIG. 5 (color online). Steady-state mechanical resonator sta-
tistics (bath at zero temperature). (a) Real part of the mechanical
reduced density matrix and (b) the corresponding Wigner func-

tion for an optical coherent pump tuned to ð!p #!ð1Þ
þ Þ=!m ¼

10#1. (c) Phonon occupation number and (d) second-order
correlation function G2 under incoherent pumping as a function
of the polariton quality factor Qac. The incoherent pump rate is
set to Finc ¼ "ac. Black solid, blue dashed, and red dotted lines
correspond to numerical results for Qm ¼ 101, 102, and 103,
respectively. The analytical solutions of the master equation are
represented by circles.
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Conclusions
• atom-cavity-mechanics polaron eigenstates

• atom enhances single-phonon cooling

• atom leads to strong bunching of phonons

• atom yields non-classical mechanical states

• atom leads to single-phonon emission
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We propose to use the intrinsic two-level system (TLS) defect states found naturally in integrated

optomechanical devices for exploring cavity QED-like phenomena with localized phonons. The Jaynes-

Cummings-type interaction between TLS and mechanics can reach the strong coupling regime for existing

nano-optomechanical systems, observable via clear signatures in the optomechanical output spectrum.

These signatures persist even at finite temperature, and we derive an explicit expression for the

temperature at which they vanish. Further, the ability to drive the defect with a microwave field allows

for realization of phonon blockade, and the available controls are sufficient to deterministically prepare

non-classical states of the mechanical resonator.
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Introduction.—Cavity optomechanics [1–3] has enabled
the preparation of mechanical resonators in states of low
phonon occupation via optomechanical (OM) sideband
cooling [4–9], and to observe their quantum coherent
interaction with light [9]. Further, OM systems have
enabled displacement detection at or even below the stan-
dard quantum limit [10–12], thereby complementing other
mechanics-based sensing applications [13,14]. They have
also been proposed for creating macroscopic quantum
superpositions [15] as well as for applications in quantum
information [16,17]. However, in experiments carried out
so far, the interaction between the mechanical oscillator
and the cavity field is effectively linear, while one of the
major challenges in the field is to realize nonlinearities at
the single phonon level. For example, the intrinsic OM
radiation pressure nonlinearity is predicted to enable the
generation of non-classical states of light and mechanics
[18,19], provided that the single-photon coupling rate
exceeds the mechanical frequency and the cavity decay
rate. In multimode OM systems, the same nonlinearity
can be exploited more easily and it has been proposed to
use it for enhanced readout [20] and quantum information
processing [21].

Here we propose an alternative route to render the
dynamics of the mechanical oscillator nonlinear at the
single quantum level: using its natural coupling to intrinsic
structural two-level system (TLS) defects and thereby
alleviating the need to functionalize the system [see
Fig. 1(a)]. Ensembles of TLS defects were first studied in
the context of the anomalous and universal low tempera-
ture properties of glasses [22–26], where they arise from
frustration. In experiments involving Josephson junctions,
individual TLSs with transition energies distributed well
into the GHz regime were observed and studied for their
role in decoherence [27]. Nevertheless, their comparatively
long coherence times, and their ability to strongly couple to

Josephson junctions via the electric dipole moment have
enabled a TLS quantum memory [28]. In the same context,
the influence of strain on TLSs has been probed recently
[29]. However, in the OM setting, TLS ensembles have
mainly been studied as a source of decoherence [30–32]. In
this Letter, we demonstrate theoretically that the coupling
of an individual TLS to a localized phonon mode of an
OM system can be large enough to exceed the mechanical
and TLS dissipation rates, and hence it provides a route to
cavity QED-like experiments with single phonons. Such
experiments have recently been proposed using a different
class of defect states, consisting of donor-acceptor impu-
rity doped silicon [33,34]. The interaction between the
TLS and OM system is shown below to be described by
a Jaynes-Cummings (JC) Hamiltonian [31,35], and induces
single-phonon nonlinearities that can be witnessed in the

(c)

(b)

(d)

(a)

FIG. 1 (color online). (a) Strain coupling of a single two-level
system (TLS) defect to an optomechanical system. (b) At low
temperature, the defect can be effectively described by two states
in a double-well potential, where !0 is the tunnel splitting
frequency and ! the asymmetry frequency. (c) Schematic illus-
tration of decay channels and couplings (see text). Resonator and
TLS form a Jaynes-Cummings model (dashed box), exhibiting
the characteristic anharmonic spectrum shown in (d).
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defects in silica toroids

n! ½ _Jmðkn!RÞ=Jmðkn!RÞ$ % _Hð2Þ
m ðkn!RÞ=Hð2Þ

m ðkn!RÞ ¼ 0,
where n! is the effective index of the slab of thickness h,

Jm is the first-kind Bessel function of order m, Hð2Þ
m is the

second-kind Hankel function of order m, and k ¼ 2"=#.
For a given h, this dispersion relation only depends on kR:
if k0 is a solution to this equation for a radius R0, the
solution k for radius R is given by k ¼ k0R0=R. Thus in
the limit of a thick disk, d!=dR ¼ %!=R is the exact
optomechanical coupling factor gom for a pure radial dis-
placement dR. Thanks to a large refractive index, GaAs
disks with radius as small as 1 $m can sustain high quality
factor (Q) optical WGMs in the near infrared [13–15].
According to the formula gom ¼ %!=R, gom values are
expected to rise up to the THz=nm range on such disks.

Our GaAs disks are fabricated from an epitaxial wafer
using e-beam lithography and wet etching [14]. The typical
disk size is 5 $m in diameter and 200 nm in thickness, as
seen in Fig. 1(a). Near-field experiments on a single disk
are performed employing a microlooped optical fiber taper
evanescent coupling technique at a wavelength of 1:55 $m
[16,17], and using a balanced photodetector to remove the
contribution of laser excess noise in the measurement
[Fig. 1(b)]. When tuning the laser wavelength to a flank
of the disk optical resonance [inset of Fig. 2(a)], the disk
vibration modulates the optical transmission T of the fiber
and the setup performs optical vibrational spectroscopy of
the disk. At the inflection point of the flank and for a small
displacement !%, we have Tð!%Þ % Tð0Þ ¼ ðdT=d!Þ
ðd!=d%Þ!% ¼ ½ð3

ffiffiffi
3

p
Þ=4$!TðQ=!Þgom!% [18], where

!T ¼ 1% Ton is the contrast of the optical WGM reso-
nance, Ton the on-resonance transmission, and Q the
loaded optical quality factor, which is typically 105 in
our experiments. !T and Q being measured quantities,
the calibration of a vibrational measurement directly gives
the optomechanical coupling factor gom.

Figure 2 shows vibrational optical noise spectra obtained
on selected disks at room temperature and pressure. Several
mechanical resonances are observed with amplitude up
to 20 dB over the noise floor. A striking feature is the
high frequency of these resonances, from 100 MHz to

1 GHz [19]. This results from the small size of the disks,
which also induces small motional masses (see also
Table I). The mechanical Q factors span from a few tens
to a few 103. Figure 2(d) shows a mechanical resonance
at 858.9 MHz with Q ¼ 862. This corresponds to a
frequency-Q product of 0:7' 1012, approaching best re-
ported values in the 1013 range [20] and obtained here in
ambient conditions. Note that high purity crystalline GaAs
mechanical oscillators should be free of mechanical losses
affecting amorphous glasses at low temperature [21]. A
GaAs micromechanical oscillator with Q factor above 105

has already been reported at low temperature [22].
Figure 2(b) displays a measurement of the disk

Brownian motion at 300 K, showing a sensitivity of

2' 10%17 m=
ffiffiffiffiffiffi
Hz

p
. The calibration is obtained here using

equipartition of energy for the Brownian motion amplitude
[18] but it can also be obtained from an independent
estimation of gom, as detailed below.
The formula gom ¼ %!=R is expected to be no longer

valid if the mechanical mode has a nonradial component
(out-of-plane motion) or in case the effective index ap-
proach does not hold anymore. The latter occurs if the disk
is too thin (< #=n) or if it is not a perfect cylinder. With
a 200 nm thickness, we expect our GaAs disk resonators
to deviate from gom ¼ %!=R. The general problem of
how an optical resonator eigenfrequency ! depends on
the deformation % of the resonator can be solved by a
perturbative treatment of Maxwell’s equations [23]. A
convenient approach is to represent the resonator deforma-
tion by the displacement % of a chosen point of the
resonator having maximum displacement amplitude. If
the normalized displacement profile is known, % suffices
to represent the complete resonator deformation field.
With this approach gom is expressed as the integral of

FIG. 1 (color online). Optomechanical study of a GaAs disk.
(a) Scanning electron microscope (SEM) view of a GaAs disk
(4:5 $m diameter and 200 nm thickness) suspended on an
AlGaAs pedestal. (b) Schematics of the near-field optomechan-
ical spectroscopy experiment. FPC stands for fiber polarization
control, PBS for polarization beam splitter.

FIG. 2 (color online). Selected vibrational spectra of GaAs
nano-optomechanical disks. (a) Optically measured motional
noise spectrum of a disk of radius 5:6 $m and thickness
200 nm. (b) Calibrated displacement noise resonance of a disk
of radius 4:5 $m, showing a sensitivity of 2' 10%17 m=

ffiffiffiffiffiffi
Hz

p
.

(c),(d) High-frequency mechanical resonances of a disk of radius
3:6 $m in the 500 MHz–1 GHz band.
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structure and subsequently patterning the qubit. The fabrication pro-
cess involved 13 layers of lithography, including metal and dielectric
deposition and etching steps (Supplementary Information). In the last
step, the device was exposed to xenon difluoride gas to release the
mechanical resonator. A photomicrograph of a completed device is
shown in Fig. 2.

Our quantum electrical circuit is a Josephson phase qubit23,24,30

comprising a Josephson junction shunted in parallel by a capacitor
and an inductor. The qubit can be approximated as a two-level
quantum system with a ground state, jgæ, and an excited state, jeæ,
separated in energy from jgæ by DE, whose transition frequency,
fq 5DE/h, can be set between 5 and 10 GHz. The qubit frequency is
precisely controlled by a current bias, which is applied using an
external magnetic flux coupled through the parallel inductor. The state
of the qubit is measured using a single-shot procedure23; accumulating
,1,000 such measurements allows us to determine the excited-state
occupation probability, Pe (Supplementary Information). We have
previously used the phase qubit to perform one- and two-qubit gate
operations24, to measure and quantum-control photons in an electro-
magnetic resonator27,28 and to demonstrate the violation of a Bell
inequality31. Here the qubit and the mechanical resonator are coupled
through an interdigitated capacitor of capacitance Cc < 0.5 pF, to
maximize the coupling strength between the qubit and resonator while
not overloading the qubit. The coupled system can be modelled using
the Jaynes–Cummings Hamiltonian32, allowing us to estimate the
coupling energy, g, between the mechanical resonator and the qubit.
This energy involves the coupling capacitance as well as the electrical
and mechanical properties of the mechanical resonator, as described in
ref. 5; the corresponding coupling frequency is designed to be V 5 2g/
h < 110 MHz. The equivalent electrical circuit for the combined res-
onator and qubit is shown in Fig. 2b.

Quantum ground state

The completed device was mounted on the mixing chamber of a
dilution refrigerator and cooled to T < 25 mK. At this temperature,
both the qubit and the resonator should occupy their quantum

ground states. To study the cooled device, we performed microwave
qubit spectroscopy23 to reveal the resonant frequencies of the com-
bined system, using the pulse sequence shown in Fig. 2c. We mea-
sured the excited-state probability, Pe, as a function of the qubit
frequency and the microwave excitation frequency, as shown in
Fig. 2d. The qubit frequency tunes as expected23,30 and displays the
characteristic level avoidance of a coupled system as its frequency
crosses the fixed mechanical resonator frequency, fr. Similar observa-
tions have been made using optomechanical systems33.

We note that the mechanical resonator produces two features in the
classical transmission measurement shown in Fig. 1d, generating a
maximum (at fr) and a minimum (at fs) in the response. When
coupled and measured using the qubit as in Fig. 2, the lower-frequency
resonance, at fs, does not produce a response, as this resonance does
not correspond to a sustainable excitation of the complete circuit.
However, the higher-frequency feature, at fr, does sustain such excita-
tions and thus appears in the spectroscopic measurement.

To determine the coupling strength between the qubit and the
mechanical resonator, we fitted the detailed behaviour near the level
avoidance, as shown in Fig. 2e. The fitted qubit–resonator coupling
strength, V < 124 MHz, corresponds to an energy transfer (Rabi-
swap) time of about 4.0 ns, and is in reasonable agreement with
our design value.

We then performed a second spectroscopy measurement, similar
to the qubit spectroscopy but coupling the microwaves to the mech-
anical resonator through the capacitor of capacitance Cx shown in
Fig. 2b, rather than to the qubit. In this measurement, shown in Fig. 3,
the mechanical resonator acts as a narrow band-pass filter, so signifi-
cant qubit excitation (large Pe) should only occur near the mech-
anical resonance frequency, fr, as observed. In general, the spectrum
looks very similar to that measured while exciting the qubit, provid-
ing strong support that the fixed resonance is indeed due to the
mechanical resonator.

For higher-power microwave excitations, a new feature emerges in
the resonator spectroscopy, as shown in Fig. 3b. The qubit, although
approximated as a two-level system, actually has a double-well
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Figure 1 | Dilatational resonator. a, Scanning electron micrograph of a
suspended film bulk acoustic resonator. Details on the fabrication of the
resonator appear in Supplementary Information. The mechanical structure
was released from the substrate by exposing the device to xenon difluoride,
which isotropically etches any exposed silicon; the suspended structure
comprises, from bottom to top, 150 nm SiO2, 130 nm Al, 330 nm AlN and
130 nm Al. The dashed box indicates the mechanically active part of
structure. b, Fundamental dilatational resonant mode for the mechanically
active part of the resonator. The thickness of the structure changes through
the oscillation cycle. c, Equivalent lumped-element circuit representation of
the mechanical resonator, based on a modified van Dyke–Butterworth
model26,38. This circuit includes a series-connected equivalent mechanical
inductance Lm and capacitance Cm and a parallel geometric capacitance C0,
with mechanical dissipation modelled as Rm and dielectric loss as R0.
d, Measured classical transmission, | S21 | (blue), and fit (red) of a typical
mechanical resonance. The transmission has two features: one, at the

frequency fs < 1/2p
ffiffiffiffiffiffiffiffiffiffiffiffi
LmCm

p
< 6.07 GHz, due to the series resonance of the

equivalent mechanical components Lm and Cm, and one, at the slightly
higher frequency fr < 1/2p

ffiffiffiffiffiffiffiffiffiffiffi
LmCs
p

< 6.10 GHz, due to Lm and the equivalent
capacitance, Cs, of the capacitors Cm and C0 in series. These expressions are
approximate, as they do not take into account the effect of the dissipative
elements and external circuit loading. Inset, equivalent circuit for the
resonator (Z, as shown in c) embedded in the measurement circuit,
including two on-chip external coupling capacitors with Cx 5 37 fF and an
inductive element with Ls < 1 nH that accounts for stray on-chip wiring
inductance. Measurement is done using a calibrated network analyser that
measures the transmission from port 1 to port 2. We calculate C0 5 0.19 pF
scaling from the geometry, and from the fit we obtain Cm 5 0.655 fF,
Lm 5 1.043mH, Rm 5 146V and R0 5 8V. These values are compatible with
the geometry and measured properties of AlN29. We calculate a mechanical
quality factor of Q < 260 and a piezoelectric coupling coefficient of
k2

eff < 1.2% (ref. 38).
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