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Using micromagnetic simulations, we have investigated spin dynamics in a spin-valve bilayer in the
presence of a thermal gradient. The direction and the intensity of the gradient allow us to excite the spin
wave modes of each layer selectively. This permits us to synchronize the magnetization precession of the
two layers and to rectify the flows of energy and magnetization through the system. Our study yields
promising opportunities for applications in spin caloritronics and nanophononics devices.
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The recent discovery of the spin-Seebeck effect [1,2]
is at the core of spin caloritronics [3], an emerging field
where the generation and control of spin currents by a
thermal gradient in nanoelectronics and magnonic devices
is in focus. In recent years, this field has been the object of
intense investigation, yielding promising opportunity in
energy efficient spintronics devices [3]. An essential step in
this direction is the realization of a diode that rectifies spin
current. In the present Letter, we investigate through
micromagnetic simulations, a realistic device that behaves
as a thermomagnonic diode, allowing the propagation of
energy and magnetization currents in one direction only.
The system consists of a spin-valve nanopillar made of

two Permalloy (Py) circular disks coupled by dipolar
interaction; see Fig. 1(a). A uniform thermal gradient
is applied along the z direction. The origin of the rectifi-
cation effect, which is similar to the case of the conven-
tional thermal diode [4], resides in the fact that the
spin-wave (SW) spectra of the disks are temperature
dependent and their overlap can be controlled by the
gradient.
This device has novel features with respect to both the

conventional thermal diode and the spin-caloritronics
devices studied so far. In particular, the rectification of
two coupled currents is a novel phenomenon that has not
been investigated before. Then, the SW spectra of the
nanopillar have several SW modes. Only some of those
modes can overlap in the presence of a thermal gradient,
leading to a “partial phase locking” between the two disks.
The definition of magnetization current between the two
layers emerges naturally within the formulation of the
problem, and extends the notion of the usual SW-spin
current [5] to discrete multimode systems coupled by
dipolar interaction. Finally, the present study is performed
on a realistic device [6,7], suggesting possible experimental
investigations.

Let us start with a brief review of the magnetization
dynamics inside our system, before discussing the effect of
the thermal gradient. The local dynamics of the magneti-
zation in a ferromagnet is described, at the length scale of
the exchange length, by the classical Landau-Lifshitz-
Gilbert (LLG) equation of motion [8,9]

∂M
∂t ¼ −γ0M ×Heff þ

α
Ms

M ×
∂M
∂t : (1)

Here, γ0 is the gyromagnetic ratio, α is the Gilbert damping
parameter and Ms is the saturation magnetization of
the sample. The first term at the right-hand side of Eq. (1)
is the adiabatic torque, which describes the precession of the
magnetizationM around the effective field Heff [10]. Here,
the latter contains, respectively, the external, exchange, and
demagnetizing field [6,7]. The second term at the right-hand
side of Eq. (1), describes energy dissipation at a rate propor-
tional to α, so that in the absence of external excitations the
magnetization eventually aligns with Heff .

FIG. 1 (color online). (a) Bilayer system studied in our
simulations. The magnetization is decomposed into the static
componentMz and the transverse componentsMx andMy, which
precess at the Larmor frequency in the x-y plane. A uniform
thermal gradient is set along the z axis. (b) Symmetric (s) and
antisymmetric (a) precession states of the system.
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Figure 1 | Seebeck and spin Seebeck effects. a, A schematic illustration of the Seebeck effect. When a temperature gradient rT is applied to a conductor,
an electric voltage V is generated along the rT direction. b,c, Schematic illustrations of the spin Seebeck effect. When rT is applied to a magnet, a spin
voltage Vs is generated. d, A schematic illustration of the measurement set-up. The sample consists of a LaY2Fe5O12 film with two Pt wires attached to the
surface. An external magnetic field H (with magnitude H) and a uniform temperature gradient rT were applied along the x direction. The temperatures of
the lower- and higher-temperature ends of the sample were stabilized at T = 300 K and T +1T, respectively, using a heater and thermocouples.
e, A schematic illustration of the inverse spin Hall effect (ISHE) in the Pt wire and the spin current induced across the LaY2Fe5O12/Pt interface. M,Js, and
EISHE denote the magnetization vector of the LaY2Fe5O12 layer, the spatial direction of the spin current, and the electric field generated by the ISHE in the Pt
layer, respectively. The spin-polarization vector � in the Pt layer is parallel to M.
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Figure 2 |Measurements of thermal voltage generation. a, A schematic illustration of the LaY2Fe5O12/Pt sample. b,c, 1T dependence of the electric
voltage difference V in the LaY2Fe5O12/Pt sample at H = 100 Oe, measured when the Pt wires are attached to the lower-temperature (300 K, b) and
higher-temperature (300 K+1T, c) ends of the LaY2Fe5O12 layer. The error bars represent the 95% confidence level. d,e, H dependence of V in the
LaY2Fe5O12/Pt sample for various values of 1T, measured when the Pt wires are attached to the lower-temperature (d) and higher-temperature (e) ends.
f, Magnetization M curve of the LaY2Fe5O12 film at 300 K. g, H dependence of V in the LaY2Fe5O12/Pt sample at 1T = 20 K when the in-plane magnetic
field H was applied at an angle ✓ to the x direction. h, H dependence of V in a LaY2Fe5O12/Cu sample at 1T = 20 K when H was applied along the
x direction. The measurements shown in g and h were performed at the higher-temperature end of the samples. i, H dependence of V in the LaY2Fe5O12/Pt
sample when the entire sample was uniformly heated to 320 K using the same system in which the data shown in b–e were measured.
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In Fig. 1 we plot the heat current J versus ! for differ-
ent temperatures T0. It is clearly seen that when !> 0 the
heat current increases with !, while in the region !< 0
the heat current is almost zero, i.e., the system behaves as
a thermal insulator. The results in Fig. 1 show that our
model has the rectifying effect in a wide range of tem-
peratures. The rectifying efficiency depends on tempera-
ture as well as on other parameters as described below:

kint effect. The interface elastic constant kint is a very
important parameter as it plays the role of coupling left
and right lattices. By adjusting this parameter one can
control the heat flow. Indeed, once the parameters of the
two lattices are fixed, then the smaller the coupling, the
smaller is the heat current through the system.

In order to describe quantitatively the rectifier effi-
ciency we introduce the ratio jJ!=J"j where J! is the
heat current (from left to right) when the bath at higher
temperature T! is at the left end of the chain and J" is the
heat current (from right to left) when the left end of the
chain is in contact with the bath at lower temperature T".

Figure 2(a) shows that, by varying kint, the rectifier
efficiency jJ!=J"j changes from about 2 times at kint #
0:5 to more than 100 times for kint $ 0:01. More impor-
tantly, this figure shows that the rectifying effect is very
significant in a wide range of kint. In the inset of this
figure we show jJ%j versus kint for a system of eight
particles. It is seen that, for small kint, numerical data
follow the dependence J% / k2int over almost 2 orders of
magnitude. Therefore the ratio jJ!j / jJ"j is a constant
independent of kint.

Figure 2(b) shows the temperature profile for different
kint. There exists a large temperature jump at the interface
and this jump is much larger when the high temperature
bath is at the right end. In this case there is very small
temperature gradient inside each lattice and, as a conse-
quence, the heat current is almost vanishing.

Effect of the lattice parameter !: As it is known [8],
in the FK model the elastic constant and the strength of
the on-site potential can be scaled to a single parameter.
Therefore, it is sufficient to study the properties of the
system (1) as a function of the single parameter !.

In Fig. 3, we show the current J% versus ! for two
different interface constants: kint # 0:05 and kint # 0:2.
This figure clearly show that in a wide range of parame-
ters our model has a quite good rectifying efficiency, i.e.,
jJ!=J"j& 100.

Rectifying mechanism. To understand the underlying
rectifying mechanism, let us start from the energy
spectrum of the interface particles. Figure 4 shows the
phonon spectra of the left and right interface particles at
different temperature when the two lattices are decoupled
(kint # 0).

The match/mismatch of the energy spectra of the two
interface particles controls the heat current. It is clearly
seen from Fig. 4 that, if the left end is in contact with the
high temperature bath TL, and the right end with the low
temperature bath TR ( < TL), then the phonon spectra of
the two particles at interface overlap in a large range of
frequencies, thus the heat current can easily go through
the system from the left end to the right end. However, if

FIG. 2 (color online). (a) Heat current jJ%j versus the inter-
face elastic constant kint for N # 100, ! # 0:2, T! # 0:105,
T" # 0:035. The solid circles are the current J! while empty
circles are the current J". Inset in (a) is jJ%j versus kint for a
system of eight particles. The solid lines in the figure and in the
inset have slope equal two. (b) The temperature profile for
kint # 0:01, 0.05, 0.2 for the same parameters of (a).

FIG. 1 (color online). Heat current J versus the dimensionless
temperature difference ! for different values of T0. Here the
total number of particles N # 100, kint # 0:05, ! # 0:2. The
lines are drawn to guide the eye.
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H
:

2 ¼ jE; (5)

where H2 ¼ p2 þ hðc1c$2 þ c$1c2Þ is the energy of oscil-
lator 2. An explicit calculation using Eqs. (2) gives
jE ¼ 2hReðc: 1c$2Þ. Notice that those currents are obtained
in the same way as the currents for the DNLS chain
[21–23], and they represent the special case where the
DNLS has only two elements. In particular, Eq. (4) con-
stitutes the continuity equations for the z component of the
magnetization in each disk, and in a continuum ferromag-
net leads to the usual definition of the SW current [20].
Notice that, if h12 ≠ h21, the Hamiltonian is not real and

the total SW power is not conserved. This issue is resolved
simply by rescaling the SW amplitudes in Eqs. (2) as c1 →ffiffiffiffiffiffiffi
h12

p
c1 and c2 →

ffiffiffiffiffiffiffi
h21

p
c2 and leads to the change h →ffiffiffiffiffiffiffiffiffiffiffiffiffi

h12h21
p

in the currents.
Let us now consider the numerical simulations. The

currents where computed from the time evolution for the
l ¼ 0 modes, in the gradient interval between &3 K=nm,
near the linear regime. The currents displayed in our figures
are the correlation functions jM ¼ Imhc1c$2i and
jE ¼ Rehc: 2c$1i, where h·i stands for both the ensemble
and the time average. The latter is performed in the interval
between 20 and 50 ns. Figure 5(a) shows the two currents
as a function of the thermal gradient. One can see that the
system displays a rectification effect, with the conducting
state at negative gradients.
This effect can be explained in a way similar to the

conventional thermal diode [4]. For an oscillator with only
one SWmode, the SWamplitude can bewritten in the phase-
amplitude representation as cj ¼

ffiffiffiffiffipj
p eiφj , for j ¼ 1; 2.

The currents then read jM ¼ 2h
ffiffiffiffiffiffiffiffiffiffi
p1p2

p
sinðΔφÞ and

jE ¼ 2h
ffiffiffiffiffiffiffiffiffiffi
p1p2

p
ω1 sinðΔφÞ, with Δφ ¼ φ1 − φ2 and

ϕ
:

j ¼ ωj. At zero gradient, the two oscillators precess with
different frequencies, so that the two phases ϕ1 and ϕ2

increase with different rates. Thus the currents oscillate in
time with zero average value. In this free-running
phase configuration the system is in the insulating state.
The crucial point is that, since the system is nonlinear, the
frequenciesare temperaturedependent.Thus, in thepresence
of a gradient the spectra may overlap, so that Δϕ becomes
constant. In this phase-locked configuration the currents
are constant and the system behaves as a conductor.
The phase locking can be clearly seen in Fig. 5(b). In the

presence of a negative gradient, all the a modes shift
towards higher frequencies and approach the s modes. In
particular a01 and s00 merge into a single mode. On the
contrary, with a positive gradient the s modes are the ones
that shift towards higher frequencies, so that the frequency
gap between the two oscillators increases.
In the multimode system considered here, the magneti-

zation current reads jM ¼ 2h Imð
P

l;m;l0;m0 hal;msl0;m0 iÞ,
and a similar expression holds for the energy current. In the
conducting state, jM consists of a sum of oscillating and
constant signals, the latter corresponding to the modes that
overlap. Thus, its power spectrum is a sequence of
Lorentzian peaks, which include a zero frequency mode
that accounts for the constant components of the current.
This physical picture is supported by Fig. 6. Panel (a)

shows Δϕ as a function of time for different thermal
gradients. One can see that Δϕ increases much faster in the
insulating region than in the conductive one, indicating that
in the latter case the frequencies of the two oscillators
become closer. Notice that, if the overlap of the modes were
complete, Δϕ would simply fluctuate around zero because

FIG. 5 (color online). (a) Rectification effect for magnetization
and energy currents. The panels (b) and (c) show the power
spectra computed for different gradients and illustrate the
rectification effect. (b) For negative gradients, the modes a01
and s01 overlap, giving a partial phase-locking and a conductive
state. (c) For positive gradients, there is no overlapping and the
conduction is reduced.

FIG. 6 (color online). (a) Phase difference Δϕ between the
oscillators vs time, computed for different thermal gradients. Δϕ
increases faster in the insulating region than in the conducting
one, where the frequencies of the two oscillators become closer.
(b) Corresponding power spectrum of the magnetization currents.
In the conductive state, the spectrum is dominated by the zero
frequency mode, which is barely visible in the insulating state. In
the insulating state, the spectra are reduced by a factor 3 for better
visibility.
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The recent discovery of the spin-Seebeck effect [1,2]
is at the core of spin caloritronics [3], an emerging field
where the generation and control of spin currents by a
thermal gradient in nanoelectronics and magnonic devices
is in focus. In recent years, this field has been the object of
intense investigation, yielding promising opportunity in
energy efficient spintronics devices [3]. An essential step in
this direction is the realization of a diode that rectifies spin
current. In the present Letter, we investigate through
micromagnetic simulations, a realistic device that behaves
as a thermomagnonic diode, allowing the propagation of
energy and magnetization currents in one direction only.
The system consists of a spin-valve nanopillar made of

two Permalloy (Py) circular disks coupled by dipolar
interaction; see Fig. 1(a). A uniform thermal gradient
is applied along the z direction. The origin of the rectifi-
cation effect, which is similar to the case of the conven-
tional thermal diode [4], resides in the fact that the
spin-wave (SW) spectra of the disks are temperature
dependent and their overlap can be controlled by the
gradient.
This device has novel features with respect to both the

conventional thermal diode and the spin-caloritronics
devices studied so far. In particular, the rectification of
two coupled currents is a novel phenomenon that has not
been investigated before. Then, the SW spectra of the
nanopillar have several SW modes. Only some of those
modes can overlap in the presence of a thermal gradient,
leading to a “partial phase locking” between the two disks.
The definition of magnetization current between the two
layers emerges naturally within the formulation of the
problem, and extends the notion of the usual SW-spin
current [5] to discrete multimode systems coupled by
dipolar interaction. Finally, the present study is performed
on a realistic device [6,7], suggesting possible experimental
investigations.

Let us start with a brief review of the magnetization
dynamics inside our system, before discussing the effect of
the thermal gradient. The local dynamics of the magneti-
zation in a ferromagnet is described, at the length scale of
the exchange length, by the classical Landau-Lifshitz-
Gilbert (LLG) equation of motion [8,9]

∂M
∂t ¼ −γ0M ×Heff þ

α
Ms

M ×
∂M
∂t : (1)

Here, γ0 is the gyromagnetic ratio, α is the Gilbert damping
parameter and Ms is the saturation magnetization of
the sample. The first term at the right-hand side of Eq. (1)
is the adiabatic torque, which describes the precession of the
magnetizationM around the effective field Heff [10]. Here,
the latter contains, respectively, the external, exchange, and
demagnetizing field [6,7]. The second term at the right-hand
side of Eq. (1), describes energy dissipation at a rate propor-
tional to α, so that in the absence of external excitations the
magnetization eventually aligns with Heff .

FIG. 1 (color online). (a) Bilayer system studied in our
simulations. The magnetization is decomposed into the static
componentMz and the transverse componentsMx andMy, which
precess at the Larmor frequency in the x-y plane. A uniform
thermal gradient is set along the z axis. (b) Symmetric (s) and
antisymmetric (a) precession states of the system.
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The recent discovery of the spin-Seebeck effect [1,2]
is at the core of spin caloritronics [3], an emerging field
where the generation and control of spin currents by a
thermal gradient in nanoelectronics and magnonic devices
is in focus. In recent years, this field has been the object of
intense investigation, yielding promising opportunity in
energy efficient spintronics devices [3]. An essential step in
this direction is the realization of a diode that rectifies spin
current. In the present Letter, we investigate through
micromagnetic simulations, a realistic device that behaves
as a thermomagnonic diode, allowing the propagation of
energy and magnetization currents in one direction only.
The system consists of a spin-valve nanopillar made of

two Permalloy (Py) circular disks coupled by dipolar
interaction; see Fig. 1(a). A uniform thermal gradient
is applied along the z direction. The origin of the rectifi-
cation effect, which is similar to the case of the conven-
tional thermal diode [4], resides in the fact that the
spin-wave (SW) spectra of the disks are temperature
dependent and their overlap can be controlled by the
gradient.
This device has novel features with respect to both the

conventional thermal diode and the spin-caloritronics
devices studied so far. In particular, the rectification of
two coupled currents is a novel phenomenon that has not
been investigated before. Then, the SW spectra of the
nanopillar have several SW modes. Only some of those
modes can overlap in the presence of a thermal gradient,
leading to a “partial phase locking” between the two disks.
The definition of magnetization current between the two
layers emerges naturally within the formulation of the
problem, and extends the notion of the usual SW-spin
current [5] to discrete multimode systems coupled by
dipolar interaction. Finally, the present study is performed
on a realistic device [6,7], suggesting possible experimental
investigations.

Let us start with a brief review of the magnetization
dynamics inside our system, before discussing the effect of
the thermal gradient. The local dynamics of the magneti-
zation in a ferromagnet is described, at the length scale of
the exchange length, by the classical Landau-Lifshitz-
Gilbert (LLG) equation of motion [8,9]

∂M
∂t ¼ −γ0M ×Heff þ

α
Ms

M ×
∂M
∂t : (1)

Here, γ0 is the gyromagnetic ratio, α is the Gilbert damping
parameter and Ms is the saturation magnetization of
the sample. The first term at the right-hand side of Eq. (1)
is the adiabatic torque, which describes the precession of the
magnetizationM around the effective field Heff [10]. Here,
the latter contains, respectively, the external, exchange, and
demagnetizing field [6,7]. The second term at the right-hand
side of Eq. (1), describes energy dissipation at a rate propor-
tional to α, so that in the absence of external excitations the
magnetization eventually aligns with Heff .

FIG. 1 (color online). (a) Bilayer system studied in our
simulations. The magnetization is decomposed into the static
componentMz and the transverse componentsMx andMy, which
precess at the Larmor frequency in the x-y plane. A uniform
thermal gradient is set along the z axis. (b) Symmetric (s) and
antisymmetric (a) precession states of the system.
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Below we briefly review the classification of the SW
modes of our system; see Refs. [6,7] for a thorough
discussion. The magnetization dynamics in a confined
nanostructure is described by the continuous magnetization
vector field Mðr; tÞ. In the case of thin layers considered
here, M is uniform along the thickness, so that the LLG
equation simplifies to two equations describing the
circular precession of Mx and My around z [11]. These
equations can be rewritten as one complex equation
for the dimensionless SW amplitude c ¼ ðMx þ iMyÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MsðMs þMzÞ

p
, which depends on the polar coordinates

ðρ;ϕÞ.
The dynamics of the two disks, written in terms of

cðρ;ϕ; tÞ is described by the equations

c
:
1 ¼ iω1ðp1Þc1 − Γ1ðp1Þc1 þ ih12c2;

c
:
2 ¼ iω2ðp2Þc2 − Γjðp2Þc2 þ ih21c1; (2)

which are the equations of motion of two coupled nonlinear
oscillators with resonance frequency ωjðpjÞ, j ¼ 1, 2. The
term ΓjðpjÞ is the damping rate, responsible for the finite
linewidth of the resonance peaks [10,11]. Both terms
depend on the SW power pj ¼ jcjj2, which describes
the amplitude of the oscillations in each disk [11]. The
coupling strength hjj0 , due to the dynamical dipolar
coupling between the two disks, is an effective term
obtained by averaging the dipolar field over the volumes
of the samples, see Ref. [7] for the explicit expression.
The normal SW modes of an isolated disk are given by

cl;nðρ;ϕ; tÞ ¼ Jlðkl;nρÞ expðþilφÞ expðiωl;ntÞ, where
Jls are Bessel functions of the first kind, ωl;n is the
resonance frequency, and kl;n is the norm of the in-plane
SW wave vector. In this notation, n and l represent,
respectively, the radial and azimuthal mode index. The l
index determines the coupling of the system with an
external rf source: the l ¼ 0 modes are excited only by
a uniform in-plane field, while the l ¼ 1modes are excited
only by an orthoradial field [6,7].
In the case of two thin disks coupled via dipolar

interaction considered here, the spatial profile of the SW
modes is unchanged, while the collective magnetization
dynamics separates into a bonding (or symmetric, s) and an
antibonding (antisymmetric, a) state with different reso-
nance frequencies. The first corresponds to an in-phase
precession of the two disks, that occurs mainly in the thin
layer, while the latter corresponds to an antiphase preces-
sion, that occurs mainly in the thick layer; see Fig. 1(b) for
a cartoon.
To resume, each peak of the SW spectrum is identified as

sl;m=al;m, according to the disk which precesses the most,
and to the azimuthal and radial indexes.
Let us now turn to micromagnetic simulations. The

system studied, shown in Fig. 1, consists of two Permalloy
disks Pyj, j ¼ 1; 2, separated by 10 nm. The layers have
thicknesses tj of 4 and 15 nm, correspondingly, and a radius

R ¼ 125 nm. The exchange stiffness of Py is
A ¼ 1.3 × 10−11 J=m. The magnetic parameters of the
disks, taken from Ref. [6], are Ms1 ¼ 7.8 × 105 A=m,
Ms2 ¼ 9.4 × 105 A=m, α1 ¼ 1.6 × 10−2, α2 ¼
0.85 × 10−2, and γ0 ¼ 1.87 × 1011 rad−1 T−1. The sample
is saturated by an external field of 1 T in the z direction.
The simulations were performed with the NMAG finite

element micromagnetic solver [12]. The integration of the
LLG equation at each mesh site is performed by the
Sundials ODE solver [13], which is based on variable
steps multistep methods. The tetrahedral mesh, automati-
cally generated by the Netgen package [14], has a maxi-
mum intersite distance of 6 nm, of the order of the Py
exchange length.
Thermal fluctuations are introduced by adding to the

effective field Hk
eff at site k of the mesh, a stochastic

field Hk
th. The latter is assumed to be a Gaussian random

process with zero mean and amplitude hHk
th;iH

l
th;ji ¼

2Dkδijδklδðt − t0Þ. Here i; j ¼ x; y; z stand for the
Cartesian components of the field, while k; l refers to
the sites on the mesh. The fluctuation amplitude is
Dk ¼ ð2αkBTkÞ=ðMsγ0μ0VkÞ, where kB is the Boltzmann
constant, μ0 is the vacuum magnetic permeability, Tk is the
temperature at site k, and Vk is the volume containing the
magnetic moment at site k [15]. In Permalloy, the parameter
α does not depend on the temperature [16].
The quantity of interest in our simulations is the space-

averaged magnetization hMjðtÞi ¼ 1
Vj

R
Vj
Mjðr; tÞd3r of the

disk j ¼ 1; 2, which is used to compute the SW amplitude
cj. The power spectrum is computed from the collective
SW amplitude averaged over the sample thicknesses
[7]: c ¼ ðc1t1 þ c2t2Þ=ðt1 þ t2Þ.
The l ¼ 0 modes (displayed in blue tones) are excited

starting from an initial condition where the magnetization
uniformly tilted 8° in the x direction with respect to the
precession axis z. The l ¼ þ1 modes (displayed in red
tones) are excited, applying to the magnetization aligned
with the z axis the perturbation orthoradial vector field
θðρ; zÞ ¼ ϵẑ × ρ̂, where ϵ ¼ 0.5 and ρ̂ is the unit vector in
the radial direction. Starting from these conditions, we have
computed the time evolution of the system for 50 ns, with
an integration time step of 1 ps.
Figures 2(a) and (b) show the power spectrum of the

system at zero temperature. The frequencies of the peaks,
tabulated in Fig. 2(c), agree with Refs. [6,7]. The relative
height of the peaks depends on the initial conditions,
which in our case favor the low frequency modes
(a00; a10; s00; s10). We focus on the analysis of those modes,
that dominate the spectrum.
Let us now turn to the description of the system in the

presence of the temperature gradient. We consider the
gradient positive when the temperature increases along z
(thin layer hotter than the thick one) and negative in the
opposite case. The low temperature side of the disks is
always kept at 0 K. The computations at finite temperature
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Below we briefly review the classification of the SW
modes of our system; see Refs. [6,7] for a thorough
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nanostructure is described by the continuous magnetization
vector field Mðr; tÞ. In the case of thin layers considered
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which are the equations of motion of two coupled nonlinear
oscillators with resonance frequency ωjðpjÞ, j ¼ 1, 2. The
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depend on the SW power pj ¼ jcjj2, which describes
the amplitude of the oscillations in each disk [11]. The
coupling strength hjj0 , due to the dynamical dipolar
coupling between the two disks, is an effective term
obtained by averaging the dipolar field over the volumes
of the samples, see Ref. [7] for the explicit expression.
The normal SW modes of an isolated disk are given by
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Jls are Bessel functions of the first kind, ωl;n is the
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SW wave vector. In this notation, n and l represent,
respectively, the radial and azimuthal mode index. The l
index determines the coupling of the system with an
external rf source: the l ¼ 0 modes are excited only by
a uniform in-plane field, while the l ¼ 1modes are excited
only by an orthoradial field [6,7].
In the case of two thin disks coupled via dipolar
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dynamics separates into a bonding (or symmetric, s) and an
antibonding (antisymmetric, a) state with different reso-
nance frequencies. The first corresponds to an in-phase
precession of the two disks, that occurs mainly in the thin
layer, while the latter corresponds to an antiphase preces-
sion, that occurs mainly in the thick layer; see Fig. 1(b) for
a cartoon.
To resume, each peak of the SW spectrum is identified as

sl;m=al;m, according to the disk which precesses the most,
and to the azimuthal and radial indexes.
Let us now turn to micromagnetic simulations. The

system studied, shown in Fig. 1, consists of two Permalloy
disks Pyj, j ¼ 1; 2, separated by 10 nm. The layers have
thicknesses tj of 4 and 15 nm, correspondingly, and a radius
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disks, taken from Ref. [6], are Ms1 ¼ 7.8 × 105 A=m,
Ms2 ¼ 9.4 × 105 A=m, α1 ¼ 1.6 × 10−2, α2 ¼
0.85 × 10−2, and γ0 ¼ 1.87 × 1011 rad−1 T−1. The sample
is saturated by an external field of 1 T in the z direction.
The simulations were performed with the NMAG finite

element micromagnetic solver [12]. The integration of the
LLG equation at each mesh site is performed by the
Sundials ODE solver [13], which is based on variable
steps multistep methods. The tetrahedral mesh, automati-
cally generated by the Netgen package [14], has a maxi-
mum intersite distance of 6 nm, of the order of the Py
exchange length.
Thermal fluctuations are introduced by adding to the

effective field Hk
eff at site k of the mesh, a stochastic

field Hk
th. The latter is assumed to be a Gaussian random

process with zero mean and amplitude hHk
th;iH

l
th;ji ¼

2Dkδijδklδðt − t0Þ. Here i; j ¼ x; y; z stand for the
Cartesian components of the field, while k; l refers to
the sites on the mesh. The fluctuation amplitude is
Dk ¼ ð2αkBTkÞ=ðMsγ0μ0VkÞ, where kB is the Boltzmann
constant, μ0 is the vacuum magnetic permeability, Tk is the
temperature at site k, and Vk is the volume containing the
magnetic moment at site k [15]. In Permalloy, the parameter
α does not depend on the temperature [16].
The quantity of interest in our simulations is the space-

averaged magnetization hMjðtÞi ¼ 1
Vj

R
Vj
Mjðr; tÞd3r of the

disk j ¼ 1; 2, which is used to compute the SW amplitude
cj. The power spectrum is computed from the collective
SW amplitude averaged over the sample thicknesses
[7]: c ¼ ðc1t1 þ c2t2Þ=ðt1 þ t2Þ.
The l ¼ 0 modes (displayed in blue tones) are excited

starting from an initial condition where the magnetization
uniformly tilted 8° in the x direction with respect to the
precession axis z. The l ¼ þ1 modes (displayed in red
tones) are excited, applying to the magnetization aligned
with the z axis the perturbation orthoradial vector field
θðρ; zÞ ¼ ϵẑ × ρ̂, where ϵ ¼ 0.5 and ρ̂ is the unit vector in
the radial direction. Starting from these conditions, we have
computed the time evolution of the system for 50 ns, with
an integration time step of 1 ps.
Figures 2(a) and (b) show the power spectrum of the

system at zero temperature. The frequencies of the peaks,
tabulated in Fig. 2(c), agree with Refs. [6,7]. The relative
height of the peaks depends on the initial conditions,
which in our case favor the low frequency modes
(a00; a10; s00; s10). We focus on the analysis of those modes,
that dominate the spectrum.
Let us now turn to the description of the system in the

presence of the temperature gradient. We consider the
gradient positive when the temperature increases along z
(thin layer hotter than the thick one) and negative in the
opposite case. The low temperature side of the disks is
always kept at 0 K. The computations at finite temperature
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Below we briefly review the classification of the SW
modes of our system; see Refs. [6,7] for a thorough
discussion. The magnetization dynamics in a confined
nanostructure is described by the continuous magnetization
vector field Mðr; tÞ. In the case of thin layers considered
here, M is uniform along the thickness, so that the LLG
equation simplifies to two equations describing the
circular precession of Mx and My around z [11]. These
equations can be rewritten as one complex equation
for the dimensionless SW amplitude c ¼ ðMx þ iMyÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MsðMs þMzÞ
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, which depends on the polar coordinates

ðρ;ϕÞ.
The dynamics of the two disks, written in terms of

cðρ;ϕ; tÞ is described by the equations

c
:
1 ¼ iω1ðp1Þc1 − Γ1ðp1Þc1 þ ih12c2;

c
:
2 ¼ iω2ðp2Þc2 − Γjðp2Þc2 þ ih21c1; (2)

which are the equations of motion of two coupled nonlinear
oscillators with resonance frequency ωjðpjÞ, j ¼ 1, 2. The
term ΓjðpjÞ is the damping rate, responsible for the finite
linewidth of the resonance peaks [10,11]. Both terms
depend on the SW power pj ¼ jcjj2, which describes
the amplitude of the oscillations in each disk [11]. The
coupling strength hjj0 , due to the dynamical dipolar
coupling between the two disks, is an effective term
obtained by averaging the dipolar field over the volumes
of the samples, see Ref. [7] for the explicit expression.
The normal SW modes of an isolated disk are given by

cl;nðρ;ϕ; tÞ ¼ Jlðkl;nρÞ expðþilφÞ expðiωl;ntÞ, where
Jls are Bessel functions of the first kind, ωl;n is the
resonance frequency, and kl;n is the norm of the in-plane
SW wave vector. In this notation, n and l represent,
respectively, the radial and azimuthal mode index. The l
index determines the coupling of the system with an
external rf source: the l ¼ 0 modes are excited only by
a uniform in-plane field, while the l ¼ 1modes are excited
only by an orthoradial field [6,7].
In the case of two thin disks coupled via dipolar

interaction considered here, the spatial profile of the SW
modes is unchanged, while the collective magnetization
dynamics separates into a bonding (or symmetric, s) and an
antibonding (antisymmetric, a) state with different reso-
nance frequencies. The first corresponds to an in-phase
precession of the two disks, that occurs mainly in the thin
layer, while the latter corresponds to an antiphase preces-
sion, that occurs mainly in the thick layer; see Fig. 1(b) for
a cartoon.
To resume, each peak of the SW spectrum is identified as

sl;m=al;m, according to the disk which precesses the most,
and to the azimuthal and radial indexes.
Let us now turn to micromagnetic simulations. The

system studied, shown in Fig. 1, consists of two Permalloy
disks Pyj, j ¼ 1; 2, separated by 10 nm. The layers have
thicknesses tj of 4 and 15 nm, correspondingly, and a radius

R ¼ 125 nm. The exchange stiffness of Py is
A ¼ 1.3 × 10−11 J=m. The magnetic parameters of the
disks, taken from Ref. [6], are Ms1 ¼ 7.8 × 105 A=m,
Ms2 ¼ 9.4 × 105 A=m, α1 ¼ 1.6 × 10−2, α2 ¼
0.85 × 10−2, and γ0 ¼ 1.87 × 1011 rad−1 T−1. The sample
is saturated by an external field of 1 T in the z direction.
The simulations were performed with the NMAG finite

element micromagnetic solver [12]. The integration of the
LLG equation at each mesh site is performed by the
Sundials ODE solver [13], which is based on variable
steps multistep methods. The tetrahedral mesh, automati-
cally generated by the Netgen package [14], has a maxi-
mum intersite distance of 6 nm, of the order of the Py
exchange length.
Thermal fluctuations are introduced by adding to the

effective field Hk
eff at site k of the mesh, a stochastic

field Hk
th. The latter is assumed to be a Gaussian random

process with zero mean and amplitude hHk
th;iH

l
th;ji ¼

2Dkδijδklδðt − t0Þ. Here i; j ¼ x; y; z stand for the
Cartesian components of the field, while k; l refers to
the sites on the mesh. The fluctuation amplitude is
Dk ¼ ð2αkBTkÞ=ðMsγ0μ0VkÞ, where kB is the Boltzmann
constant, μ0 is the vacuum magnetic permeability, Tk is the
temperature at site k, and Vk is the volume containing the
magnetic moment at site k [15]. In Permalloy, the parameter
α does not depend on the temperature [16].
The quantity of interest in our simulations is the space-

averaged magnetization hMjðtÞi ¼ 1
Vj

R
Vj
Mjðr; tÞd3r of the

disk j ¼ 1; 2, which is used to compute the SW amplitude
cj. The power spectrum is computed from the collective
SW amplitude averaged over the sample thicknesses
[7]: c ¼ ðc1t1 þ c2t2Þ=ðt1 þ t2Þ.
The l ¼ 0 modes (displayed in blue tones) are excited

starting from an initial condition where the magnetization
uniformly tilted 8° in the x direction with respect to the
precession axis z. The l ¼ þ1 modes (displayed in red
tones) are excited, applying to the magnetization aligned
with the z axis the perturbation orthoradial vector field
θðρ; zÞ ¼ ϵẑ × ρ̂, where ϵ ¼ 0.5 and ρ̂ is the unit vector in
the radial direction. Starting from these conditions, we have
computed the time evolution of the system for 50 ns, with
an integration time step of 1 ps.
Figures 2(a) and (b) show the power spectrum of the

system at zero temperature. The frequencies of the peaks,
tabulated in Fig. 2(c), agree with Refs. [6,7]. The relative
height of the peaks depends on the initial conditions,
which in our case favor the low frequency modes
(a00; a10; s00; s10). We focus on the analysis of those modes,
that dominate the spectrum.
Let us now turn to the description of the system in the

presence of the temperature gradient. We consider the
gradient positive when the temperature increases along z
(thin layer hotter than the thick one) and negative in the
opposite case. The low temperature side of the disks is
always kept at 0 K. The computations at finite temperature
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FIG. 6. (Color online) Color representation of the Bessel spatial
patterns for different values of the azimuthal mode index ! (by row)
and radial mode index n (by column). The arrows are a snapshot of
the transverse magnetization mν , labeled by the index ν = !,n. All
arrows are rotating synchronously in plane at the SW eigenfrequency.
In our coding scheme, the hue indicates the phase φ = arg(mν) (or
direction) of mν , and the brightness the amplitude of |mν |2. The nodal
positions (|mν | = 0) are marked in white.

of SW modes, but introduces effective pinning at the lateral
boundaries.65 Therefore, we use radial profiles of the form
ψ!(ρ) = J!(k!,nρ), where J!(x) is the Bessel function and k!,n

are SW wave numbers determined from the pinning conditions
at the disk boundary ρ = R. For our experimental conditions
(ta,tb ! R), the pinning is almost complete, and we shall use
k!,n = κ!,n/R, where κ!,n is the nth root of the Bessel function
of the !th order.

Figure 6 shows a color representation of the Bessel
spatial patterns for different values of the index ν = !,n.
We restrict the number of panels to two values of the
azimuthal mode index, ! = 0,+1, with the radial index varying
between n = 0,1,2. In our color code, the hue indicates the
phase (or direction) of the transverse component mν , while
the brightness indicates the amplitude of |mν |2. The nodal
positions are marked in white. A node is a location where
the transverse component vanishes; that is, the magnetization
vector is aligned along the equilibrium axis. This coding
scheme provides a distinct visualization of the phase and
amplitude of the precession profiles. The black arrows are
a snapshot of the mν vectors in the disk and are all rotating
synchronously in plane at the SW eigenfrequency.

The top left panel shows the ν = 0,0 (! = 0, n = 0) mode,
also called the uniform mode. It usually corresponds to the
lowest energy mode since all the vectors are pointing in the
same direction at all times. Below is the ! = +1, n = 0 mode.
It corresponds to SWs that are rotating around the disk in the
same direction as the Larmor precession. The corresponding
phase is in quadrature between two orthogonal positions and
this mode has a node at the center of the disk. The variation
upon the n = 0,1,2 index (! being fixed) shows higher-order
modes with an increasing number of nodal rings. Each ring
separates regions of opposite phase along the radial direction.

All these spatial patterns preserve the rotation invariance
symmetry.

3. Selection rules

Using the complete set of Bessel functions in Eq. (8), one
can obtain analytically the discrete spectrum of eigenvalues for
both the thin and the thick layers. The details of the numerical
application can be found in Appendix A 2. The spectral values
are displayed in Fig. 7 using vertical ticks labeled ν = j!n,
where j = a,b indicates the precessing layer, and !, n the
azimuthal and radial mode indices. They are calculated at
fixed applied field Hfix = 10 kOe and placed on the graphs
according to the frequency scale below Fig. 7(b), which is
in correspondence with the field scale above Fig. 7(a) (see
Sec. III C for the equivalence between field- and frequency-
sweep experiments).

The comparison with the experimental data in Figs. 2(a)
and 2(b) shows that the coupling to an external coherent source
depends primarily on the ! index. Indeed, this index carries
the discriminating symmetry in SW spectroscopy.67 This is
because the excitation efficiency is proportional to the overlap
integral

hν =
〈mν · h1〉

Nν

, (11)

where h1(r) is the spatial profile of the external excitation
field. It can be easily shown that a uniform rf magnetic field,
h1 = hrf x, can only excite ! = 0 SW modes. We have shown in

FIG. 7. (Color online) Analytically calculated spectra at Hfix =
10 kOe using the set of Bessel functions (see Fig. 6) as the trial
eigenvectors. Panel (a) shows the linear response to a uniform
excitation field ĥ1 = x̂ and panel (b) to an orthoradial excitation field
ĥ1 = − sin φ x̂ + cos φ ŷ. A light (dark) color is used to indicate the
energy stored Eq. (12) in the thin Pya and thick Pyb layers.
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were averaged over 24 samples with different realization of
the disorder.
Figures 3(a) and (b) show the effect of a positive gradient

on the modes with l ¼ 0 and l ¼ þ1, correspondingly.
When the gradient is positive, only the symmetric modes
sl;n are excited. They grow in height starting from
þ10−2 K=m, and eventually dominate the spectrum.
Between 0.5 and 1 K=m, those modes shift towards higher
frequencies. This effect is typical of nonlinear oscillators,
where the frequency depends on the oscillation amplitude
[11]. Notice that the antisymmetric modes al;n do not
modify their frequency, while their amplitude remains
constant until 1 K=m and then decreases.
Figures 3(c) and (d) show the effect obtained reversing

the gradient, where only the antisymmetric modes grow
and shift towards higher frequency. Notice that in Fig. 3(c)

the modes a01 and s01 are very close in frequency and
merge in a single mode at high gradient.
The frequencies of the excited SW modes increases

roughly linearly as a function of the gradient; see Figs. 4(a)
and (b).
We discuss now the main result of the Letter, that is, the

capability of the system to operate as a diode. We start by
introducing the Hamiltonian of the problem

H ¼ ω1ðp1Þp1 þ ω2ðp2Þp2 þ hðc1c%2 þ c%1c2Þ; (3)

where for simplicity we have taken a symmetric coupling
h12 ¼ h21 ¼ h. Equation (3) leads to the conservative part
of Eqs. (2) through c

:
j ¼ iδH=δc%j [7,11,22]. Notice that

Eq. (3) is the Hamiltonian of a nonlinear Schrödinger
dimer, the simplest possible realization of the discrete
nonlinear Schrödinger (DNLS) chain. The DNLS, which
has many applications in other branches of physics
[17–19], it is also used to model the small amplitude
dynamics of a spin chain and, in its continuum version, the
SW propagation in ferromagnets [20].
It is known that the Schrödinger dimer (and in general

the DNLS) have two conserved quantities, to which
correspond two conserved currents [20–22]: the total
“number of particles” (in our case, the SW power
p1 þ p2) and the total energy H. Multiplying Eqs. (2)
by their complex conjugate and summing them, as in
Ref. [11], gives the conservation equation for the SW
power

p
:
1 ¼ −2Γ1ðp1Þp1 þ jM; (4)

and a similar equation for p2. This leads to the definition of
the magnetization current jM ¼ 2h Imðc1c%2Þ between the
two oscillators.
The energy current jE is implicitly defined by the

conservation equation for the local energy [20–23]:

FIG. 2 (color online). (a) and (b) SW spectrum for l ¼ 0 and
l ¼ þ1 modes, respectively. (c) Tabulation of the corresponding
frequencies.

FIG. 3 (color online). SW spectrum for different lmodes in the
presence of the thermal gradient (expressed in K/nm). (a) and (b):
positive gradient, (c) and (d) negative gradient. Positive (neg-
ative) gradients excite only the s (a) modes.

FIG. 4 (color online). Frequency of the SWmodes as a function
of a positive (a) and a negative (b) gradient. The lines are a guide
to the eye.

PRL 112, 047203 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

31 JANUARY 2014

047203-3

were averaged over 24 samples with different realization of
the disorder.
Figures 3(a) and (b) show the effect of a positive gradient

on the modes with l ¼ 0 and l ¼ þ1, correspondingly.
When the gradient is positive, only the symmetric modes
sl;n are excited. They grow in height starting from
þ10−2 K=m, and eventually dominate the spectrum.
Between 0.5 and 1 K=m, those modes shift towards higher
frequencies. This effect is typical of nonlinear oscillators,
where the frequency depends on the oscillation amplitude
[11]. Notice that the antisymmetric modes al;n do not
modify their frequency, while their amplitude remains
constant until 1 K=m and then decreases.
Figures 3(c) and (d) show the effect obtained reversing

the gradient, where only the antisymmetric modes grow
and shift towards higher frequency. Notice that in Fig. 3(c)

the modes a01 and s01 are very close in frequency and
merge in a single mode at high gradient.
The frequencies of the excited SW modes increases

roughly linearly as a function of the gradient; see Figs. 4(a)
and (b).
We discuss now the main result of the Letter, that is, the

capability of the system to operate as a diode. We start by
introducing the Hamiltonian of the problem

H ¼ ω1ðp1Þp1 þ ω2ðp2Þp2 þ hðc1c%2 þ c%1c2Þ; (3)

where for simplicity we have taken a symmetric coupling
h12 ¼ h21 ¼ h. Equation (3) leads to the conservative part
of Eqs. (2) through c

:
j ¼ iδH=δc%j [7,11,22]. Notice that
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FIG. 2 (color online). (a) and (b) SW spectrum for l ¼ 0 and
l ¼ þ1 modes, respectively. (c) Tabulation of the corresponding
frequencies.

FIG. 3 (color online). SW spectrum for different lmodes in the
presence of the thermal gradient (expressed in K/nm). (a) and (b):
positive gradient, (c) and (d) negative gradient. Positive (neg-
ative) gradients excite only the s (a) modes.

FIG. 4 (color online). Frequency of the SWmodes as a function
of a positive (a) and a negative (b) gradient. The lines are a guide
to the eye.
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The recent discovery of the spin-Seebeck effect [1,2]
is at the core of spin caloritronics [3], an emerging field
where the generation and control of spin currents by a
thermal gradient in nanoelectronics and magnonic devices
is in focus. In recent years, this field has been the object of
intense investigation, yielding promising opportunity in
energy efficient spintronics devices [3]. An essential step in
this direction is the realization of a diode that rectifies spin
current. In the present Letter, we investigate through
micromagnetic simulations, a realistic device that behaves
as a thermomagnonic diode, allowing the propagation of
energy and magnetization currents in one direction only.
The system consists of a spin-valve nanopillar made of

two Permalloy (Py) circular disks coupled by dipolar
interaction; see Fig. 1(a). A uniform thermal gradient
is applied along the z direction. The origin of the rectifi-
cation effect, which is similar to the case of the conven-
tional thermal diode [4], resides in the fact that the
spin-wave (SW) spectra of the disks are temperature
dependent and their overlap can be controlled by the
gradient.
This device has novel features with respect to both the

conventional thermal diode and the spin-caloritronics
devices studied so far. In particular, the rectification of
two coupled currents is a novel phenomenon that has not
been investigated before. Then, the SW spectra of the
nanopillar have several SW modes. Only some of those
modes can overlap in the presence of a thermal gradient,
leading to a “partial phase locking” between the two disks.
The definition of magnetization current between the two
layers emerges naturally within the formulation of the
problem, and extends the notion of the usual SW-spin
current [5] to discrete multimode systems coupled by
dipolar interaction. Finally, the present study is performed
on a realistic device [6,7], suggesting possible experimental
investigations.

Let us start with a brief review of the magnetization
dynamics inside our system, before discussing the effect of
the thermal gradient. The local dynamics of the magneti-
zation in a ferromagnet is described, at the length scale of
the exchange length, by the classical Landau-Lifshitz-
Gilbert (LLG) equation of motion [8,9]

∂M
∂t ¼ −γ0M ×Heff þ

α
Ms

M ×
∂M
∂t : (1)

Here, γ0 is the gyromagnetic ratio, α is the Gilbert damping
parameter and Ms is the saturation magnetization of
the sample. The first term at the right-hand side of Eq. (1)
is the adiabatic torque, which describes the precession of the
magnetizationM around the effective field Heff [10]. Here,
the latter contains, respectively, the external, exchange, and
demagnetizing field [6,7]. The second term at the right-hand
side of Eq. (1), describes energy dissipation at a rate propor-
tional to α, so that in the absence of external excitations the
magnetization eventually aligns with Heff .

FIG. 1 (color online). (a) Bilayer system studied in our
simulations. The magnetization is decomposed into the static
componentMz and the transverse componentsMx andMy, which
precess at the Larmor frequency in the x-y plane. A uniform
thermal gradient is set along the z axis. (b) Symmetric (s) and
antisymmetric (a) precession states of the system.
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this direction is the realization of a diode that rectifies spin
current. In the present Letter, we investigate through
micromagnetic simulations, a realistic device that behaves
as a thermomagnonic diode, allowing the propagation of
energy and magnetization currents in one direction only.
The system consists of a spin-valve nanopillar made of
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interaction; see Fig. 1(a). A uniform thermal gradient
is applied along the z direction. The origin of the rectifi-
cation effect, which is similar to the case of the conven-
tional thermal diode [4], resides in the fact that the
spin-wave (SW) spectra of the disks are temperature
dependent and their overlap can be controlled by the
gradient.
This device has novel features with respect to both the

conventional thermal diode and the spin-caloritronics
devices studied so far. In particular, the rectification of
two coupled currents is a novel phenomenon that has not
been investigated before. Then, the SW spectra of the
nanopillar have several SW modes. Only some of those
modes can overlap in the presence of a thermal gradient,
leading to a “partial phase locking” between the two disks.
The definition of magnetization current between the two
layers emerges naturally within the formulation of the
problem, and extends the notion of the usual SW-spin
current [5] to discrete multimode systems coupled by
dipolar interaction. Finally, the present study is performed
on a realistic device [6,7], suggesting possible experimental
investigations.

Let us start with a brief review of the magnetization
dynamics inside our system, before discussing the effect of
the thermal gradient. The local dynamics of the magneti-
zation in a ferromagnet is described, at the length scale of
the exchange length, by the classical Landau-Lifshitz-
Gilbert (LLG) equation of motion [8,9]

∂M
∂t ¼ −γ0M ×Heff þ
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M ×
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Here, γ0 is the gyromagnetic ratio, α is the Gilbert damping
parameter and Ms is the saturation magnetization of
the sample. The first term at the right-hand side of Eq. (1)
is the adiabatic torque, which describes the precession of the
magnetizationM around the effective field Heff [10]. Here,
the latter contains, respectively, the external, exchange, and
demagnetizing field [6,7]. The second term at the right-hand
side of Eq. (1), describes energy dissipation at a rate propor-
tional to α, so that in the absence of external excitations the
magnetization eventually aligns with Heff .

FIG. 1 (color online). (a) Bilayer system studied in our
simulations. The magnetization is decomposed into the static
componentMz and the transverse componentsMx andMy, which
precess at the Larmor frequency in the x-y plane. A uniform
thermal gradient is set along the z axis. (b) Symmetric (s) and
antisymmetric (a) precession states of the system.
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Below we briefly review the classification of the SW
modes of our system; see Refs. [6,7] for a thorough
discussion. The magnetization dynamics in a confined
nanostructure is described by the continuous magnetization
vector field Mðr; tÞ. In the case of thin layers considered
here, M is uniform along the thickness, so that the LLG
equation simplifies to two equations describing the
circular precession of Mx and My around z [11]. These
equations can be rewritten as one complex equation
for the dimensionless SW amplitude c ¼ ðMx þ iMyÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MsðMs þMzÞ

p
, which depends on the polar coordinates

ðρ;ϕÞ.
The dynamics of the two disks, written in terms of

cðρ;ϕ; tÞ is described by the equations

c
:
1 ¼ iω1ðp1Þc1 − Γ1ðp1Þc1 þ ih12c2;

c
:
2 ¼ iω2ðp2Þc2 − Γjðp2Þc2 þ ih21c1; (2)

which are the equations of motion of two coupled nonlinear
oscillators with resonance frequency ωjðpjÞ, j ¼ 1, 2. The
term ΓjðpjÞ is the damping rate, responsible for the finite
linewidth of the resonance peaks [10,11]. Both terms
depend on the SW power pj ¼ jcjj2, which describes
the amplitude of the oscillations in each disk [11]. The
coupling strength hjj0 , due to the dynamical dipolar
coupling between the two disks, is an effective term
obtained by averaging the dipolar field over the volumes
of the samples, see Ref. [7] for the explicit expression.
The normal SW modes of an isolated disk are given by

cl;nðρ;ϕ; tÞ ¼ Jlðkl;nρÞ expðþilφÞ expðiωl;ntÞ, where
Jls are Bessel functions of the first kind, ωl;n is the
resonance frequency, and kl;n is the norm of the in-plane
SW wave vector. In this notation, n and l represent,
respectively, the radial and azimuthal mode index. The l
index determines the coupling of the system with an
external rf source: the l ¼ 0 modes are excited only by
a uniform in-plane field, while the l ¼ 1modes are excited
only by an orthoradial field [6,7].
In the case of two thin disks coupled via dipolar

interaction considered here, the spatial profile of the SW
modes is unchanged, while the collective magnetization
dynamics separates into a bonding (or symmetric, s) and an
antibonding (antisymmetric, a) state with different reso-
nance frequencies. The first corresponds to an in-phase
precession of the two disks, that occurs mainly in the thin
layer, while the latter corresponds to an antiphase preces-
sion, that occurs mainly in the thick layer; see Fig. 1(b) for
a cartoon.
To resume, each peak of the SW spectrum is identified as

sl;m=al;m, according to the disk which precesses the most,
and to the azimuthal and radial indexes.
Let us now turn to micromagnetic simulations. The

system studied, shown in Fig. 1, consists of two Permalloy
disks Pyj, j ¼ 1; 2, separated by 10 nm. The layers have
thicknesses tj of 4 and 15 nm, correspondingly, and a radius

R ¼ 125 nm. The exchange stiffness of Py is
A ¼ 1.3 × 10−11 J=m. The magnetic parameters of the
disks, taken from Ref. [6], are Ms1 ¼ 7.8 × 105 A=m,
Ms2 ¼ 9.4 × 105 A=m, α1 ¼ 1.6 × 10−2, α2 ¼
0.85 × 10−2, and γ0 ¼ 1.87 × 1011 rad−1 T−1. The sample
is saturated by an external field of 1 T in the z direction.
The simulations were performed with the NMAG finite

element micromagnetic solver [12]. The integration of the
LLG equation at each mesh site is performed by the
Sundials ODE solver [13], which is based on variable
steps multistep methods. The tetrahedral mesh, automati-
cally generated by the Netgen package [14], has a maxi-
mum intersite distance of 6 nm, of the order of the Py
exchange length.
Thermal fluctuations are introduced by adding to the

effective field Hk
eff at site k of the mesh, a stochastic

field Hk
th. The latter is assumed to be a Gaussian random

process with zero mean and amplitude hHk
th;iH

l
th;ji ¼

2Dkδijδklδðt − t0Þ. Here i; j ¼ x; y; z stand for the
Cartesian components of the field, while k; l refers to
the sites on the mesh. The fluctuation amplitude is
Dk ¼ ð2αkBTkÞ=ðMsγ0μ0VkÞ, where kB is the Boltzmann
constant, μ0 is the vacuum magnetic permeability, Tk is the
temperature at site k, and Vk is the volume containing the
magnetic moment at site k [15]. In Permalloy, the parameter
α does not depend on the temperature [16].
The quantity of interest in our simulations is the space-

averaged magnetization hMjðtÞi ¼ 1
Vj

R
Vj
Mjðr; tÞd3r of the

disk j ¼ 1; 2, which is used to compute the SW amplitude
cj. The power spectrum is computed from the collective
SW amplitude averaged over the sample thicknesses
[7]: c ¼ ðc1t1 þ c2t2Þ=ðt1 þ t2Þ.
The l ¼ 0 modes (displayed in blue tones) are excited

starting from an initial condition where the magnetization
uniformly tilted 8° in the x direction with respect to the
precession axis z. The l ¼ þ1 modes (displayed in red
tones) are excited, applying to the magnetization aligned
with the z axis the perturbation orthoradial vector field
θðρ; zÞ ¼ ϵẑ × ρ̂, where ϵ ¼ 0.5 and ρ̂ is the unit vector in
the radial direction. Starting from these conditions, we have
computed the time evolution of the system for 50 ns, with
an integration time step of 1 ps.
Figures 2(a) and (b) show the power spectrum of the

system at zero temperature. The frequencies of the peaks,
tabulated in Fig. 2(c), agree with Refs. [6,7]. The relative
height of the peaks depends on the initial conditions,
which in our case favor the low frequency modes
(a00; a10; s00; s10). We focus on the analysis of those modes,
that dominate the spectrum.
Let us now turn to the description of the system in the

presence of the temperature gradient. We consider the
gradient positive when the temperature increases along z
(thin layer hotter than the thick one) and negative in the
opposite case. The low temperature side of the disks is
always kept at 0 K. The computations at finite temperature
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mum intersite distance of 6 nm, of the order of the Py
exchange length.
Thermal fluctuations are introduced by adding to the

effective field Hk
eff at site k of the mesh, a stochastic

field Hk
th. The latter is assumed to be a Gaussian random

process with zero mean and amplitude hHk
th;iH

l
th;ji ¼

2Dkδijδklδðt − t0Þ. Here i; j ¼ x; y; z stand for the
Cartesian components of the field, while k; l refers to
the sites on the mesh. The fluctuation amplitude is
Dk ¼ ð2αkBTkÞ=ðMsγ0μ0VkÞ, where kB is the Boltzmann
constant, μ0 is the vacuum magnetic permeability, Tk is the
temperature at site k, and Vk is the volume containing the
magnetic moment at site k [15]. In Permalloy, the parameter
α does not depend on the temperature [16].
The quantity of interest in our simulations is the space-

averaged magnetization hMjðtÞi ¼ 1
Vj

R
Vj
Mjðr; tÞd3r of the

disk j ¼ 1; 2, which is used to compute the SW amplitude
cj. The power spectrum is computed from the collective
SW amplitude averaged over the sample thicknesses
[7]: c ¼ ðc1t1 þ c2t2Þ=ðt1 þ t2Þ.
The l ¼ 0 modes (displayed in blue tones) are excited

starting from an initial condition where the magnetization
uniformly tilted 8° in the x direction with respect to the
precession axis z. The l ¼ þ1 modes (displayed in red
tones) are excited, applying to the magnetization aligned
with the z axis the perturbation orthoradial vector field
θðρ; zÞ ¼ ϵẑ × ρ̂, where ϵ ¼ 0.5 and ρ̂ is the unit vector in
the radial direction. Starting from these conditions, we have
computed the time evolution of the system for 50 ns, with
an integration time step of 1 ps.
Figures 2(a) and (b) show the power spectrum of the

system at zero temperature. The frequencies of the peaks,
tabulated in Fig. 2(c), agree with Refs. [6,7]. The relative
height of the peaks depends on the initial conditions,
which in our case favor the low frequency modes
(a00; a10; s00; s10). We focus on the analysis of those modes,
that dominate the spectrum.
Let us now turn to the description of the system in the

presence of the temperature gradient. We consider the
gradient positive when the temperature increases along z
(thin layer hotter than the thick one) and negative in the
opposite case. The low temperature side of the disks is
always kept at 0 K. The computations at finite temperature
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Below we briefly review the classification of the SW
modes of our system; see Refs. [6,7] for a thorough
discussion. The magnetization dynamics in a confined
nanostructure is described by the continuous magnetization
vector field Mðr; tÞ. In the case of thin layers considered
here, M is uniform along the thickness, so that the LLG
equation simplifies to two equations describing the
circular precession of Mx and My around z [11]. These
equations can be rewritten as one complex equation
for the dimensionless SW amplitude c ¼ ðMx þ iMyÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MsðMs þMzÞ

p
, which depends on the polar coordinates

ðρ;ϕÞ.
The dynamics of the two disks, written in terms of

cðρ;ϕ; tÞ is described by the equations
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:
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:
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term ΓjðpjÞ is the damping rate, responsible for the finite
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index determines the coupling of the system with an
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a uniform in-plane field, while the l ¼ 1modes are excited
only by an orthoradial field [6,7].
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interaction considered here, the spatial profile of the SW
modes is unchanged, while the collective magnetization
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nance frequencies. The first corresponds to an in-phase
precession of the two disks, that occurs mainly in the thin
layer, while the latter corresponds to an antiphase preces-
sion, that occurs mainly in the thick layer; see Fig. 1(b) for
a cartoon.
To resume, each peak of the SW spectrum is identified as

sl;m=al;m, according to the disk which precesses the most,
and to the azimuthal and radial indexes.
Let us now turn to micromagnetic simulations. The
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gradient positive when the temperature increases along z
(thin layer hotter than the thick one) and negative in the
opposite case. The low temperature side of the disks is
always kept at 0 K. The computations at finite temperature

PRL 112, 047203 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

31 JANUARY 2014

047203-2

Below we briefly review the classification of the SW
modes of our system; see Refs. [6,7] for a thorough
discussion. The magnetization dynamics in a confined
nanostructure is described by the continuous magnetization
vector field Mðr; tÞ. In the case of thin layers considered
here, M is uniform along the thickness, so that the LLG
equation simplifies to two equations describing the
circular precession of Mx and My around z [11]. These
equations can be rewritten as one complex equation
for the dimensionless SW amplitude c ¼ ðMx þ iMyÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MsðMs þMzÞ

p
, which depends on the polar coordinates

ðρ;ϕÞ.
The dynamics of the two disks, written in terms of

cðρ;ϕ; tÞ is described by the equations

c
:
1 ¼ iω1ðp1Þc1 − Γ1ðp1Þc1 þ ih12c2;

c
:
2 ¼ iω2ðp2Þc2 − Γjðp2Þc2 þ ih21c1; (2)

which are the equations of motion of two coupled nonlinear
oscillators with resonance frequency ωjðpjÞ, j ¼ 1, 2. The
term ΓjðpjÞ is the damping rate, responsible for the finite
linewidth of the resonance peaks [10,11]. Both terms
depend on the SW power pj ¼ jcjj2, which describes
the amplitude of the oscillations in each disk [11]. The
coupling strength hjj0 , due to the dynamical dipolar
coupling between the two disks, is an effective term
obtained by averaging the dipolar field over the volumes
of the samples, see Ref. [7] for the explicit expression.
The normal SW modes of an isolated disk are given by

cl;nðρ;ϕ; tÞ ¼ Jlðkl;nρÞ expðþilφÞ expðiωl;ntÞ, where
Jls are Bessel functions of the first kind, ωl;n is the
resonance frequency, and kl;n is the norm of the in-plane
SW wave vector. In this notation, n and l represent,
respectively, the radial and azimuthal mode index. The l
index determines the coupling of the system with an
external rf source: the l ¼ 0 modes are excited only by
a uniform in-plane field, while the l ¼ 1modes are excited
only by an orthoradial field [6,7].
In the case of two thin disks coupled via dipolar

interaction considered here, the spatial profile of the SW
modes is unchanged, while the collective magnetization
dynamics separates into a bonding (or symmetric, s) and an
antibonding (antisymmetric, a) state with different reso-
nance frequencies. The first corresponds to an in-phase
precession of the two disks, that occurs mainly in the thin
layer, while the latter corresponds to an antiphase preces-
sion, that occurs mainly in the thick layer; see Fig. 1(b) for
a cartoon.
To resume, each peak of the SW spectrum is identified as

sl;m=al;m, according to the disk which precesses the most,
and to the azimuthal and radial indexes.
Let us now turn to micromagnetic simulations. The

system studied, shown in Fig. 1, consists of two Permalloy
disks Pyj, j ¼ 1; 2, separated by 10 nm. The layers have
thicknesses tj of 4 and 15 nm, correspondingly, and a radius

R ¼ 125 nm. The exchange stiffness of Py is
A ¼ 1.3 × 10−11 J=m. The magnetic parameters of the
disks, taken from Ref. [6], are Ms1 ¼ 7.8 × 105 A=m,
Ms2 ¼ 9.4 × 105 A=m, α1 ¼ 1.6 × 10−2, α2 ¼
0.85 × 10−2, and γ0 ¼ 1.87 × 1011 rad−1 T−1. The sample
is saturated by an external field of 1 T in the z direction.
The simulations were performed with the NMAG finite

element micromagnetic solver [12]. The integration of the
LLG equation at each mesh site is performed by the
Sundials ODE solver [13], which is based on variable
steps multistep methods. The tetrahedral mesh, automati-
cally generated by the Netgen package [14], has a maxi-
mum intersite distance of 6 nm, of the order of the Py
exchange length.
Thermal fluctuations are introduced by adding to the

effective field Hk
eff at site k of the mesh, a stochastic

field Hk
th. The latter is assumed to be a Gaussian random

process with zero mean and amplitude hHk
th;iH

l
th;ji ¼

2Dkδijδklδðt − t0Þ. Here i; j ¼ x; y; z stand for the
Cartesian components of the field, while k; l refers to
the sites on the mesh. The fluctuation amplitude is
Dk ¼ ð2αkBTkÞ=ðMsγ0μ0VkÞ, where kB is the Boltzmann
constant, μ0 is the vacuum magnetic permeability, Tk is the
temperature at site k, and Vk is the volume containing the
magnetic moment at site k [15]. In Permalloy, the parameter
α does not depend on the temperature [16].
The quantity of interest in our simulations is the space-

averaged magnetization hMjðtÞi ¼ 1
Vj

R
Vj
Mjðr; tÞd3r of the

disk j ¼ 1; 2, which is used to compute the SW amplitude
cj. The power spectrum is computed from the collective
SW amplitude averaged over the sample thicknesses
[7]: c ¼ ðc1t1 þ c2t2Þ=ðt1 þ t2Þ.
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that dominate the spectrum.
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gradient positive when the temperature increases along z
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were averaged over 24 samples with different realization of
the disorder.
Figures 3(a) and (b) show the effect of a positive gradient

on the modes with l ¼ 0 and l ¼ þ1, correspondingly.
When the gradient is positive, only the symmetric modes
sl;n are excited. They grow in height starting from
þ10−2 K=m, and eventually dominate the spectrum.
Between 0.5 and 1 K=m, those modes shift towards higher
frequencies. This effect is typical of nonlinear oscillators,
where the frequency depends on the oscillation amplitude
[11]. Notice that the antisymmetric modes al;n do not
modify their frequency, while their amplitude remains
constant until 1 K=m and then decreases.
Figures 3(c) and (d) show the effect obtained reversing

the gradient, where only the antisymmetric modes grow
and shift towards higher frequency. Notice that in Fig. 3(c)

the modes a01 and s01 are very close in frequency and
merge in a single mode at high gradient.
The frequencies of the excited SW modes increases

roughly linearly as a function of the gradient; see Figs. 4(a)
and (b).
We discuss now the main result of the Letter, that is, the

capability of the system to operate as a diode. We start by
introducing the Hamiltonian of the problem

H ¼ ω1ðp1Þp1 þ ω2ðp2Þp2 þ hðc1c%2 þ c%1c2Þ; (3)

where for simplicity we have taken a symmetric coupling
h12 ¼ h21 ¼ h. Equation (3) leads to the conservative part
of Eqs. (2) through c

:
j ¼ iδH=δc%j [7,11,22]. Notice that

Eq. (3) is the Hamiltonian of a nonlinear Schrödinger
dimer, the simplest possible realization of the discrete
nonlinear Schrödinger (DNLS) chain. The DNLS, which
has many applications in other branches of physics
[17–19], it is also used to model the small amplitude
dynamics of a spin chain and, in its continuum version, the
SW propagation in ferromagnets [20].
It is known that the Schrödinger dimer (and in general

the DNLS) have two conserved quantities, to which
correspond two conserved currents [20–22]: the total
“number of particles” (in our case, the SW power
p1 þ p2) and the total energy H. Multiplying Eqs. (2)
by their complex conjugate and summing them, as in
Ref. [11], gives the conservation equation for the SW
power

p
:
1 ¼ −2Γ1ðp1Þp1 þ jM; (4)

and a similar equation for p2. This leads to the definition of
the magnetization current jM ¼ 2h Imðc1c%2Þ between the
two oscillators.
The energy current jE is implicitly defined by the

conservation equation for the local energy [20–23]:

FIG. 2 (color online). (a) and (b) SW spectrum for l ¼ 0 and
l ¼ þ1 modes, respectively. (c) Tabulation of the corresponding
frequencies.

FIG. 3 (color online). SW spectrum for different lmodes in the
presence of the thermal gradient (expressed in K/nm). (a) and (b):
positive gradient, (c) and (d) negative gradient. Positive (neg-
ative) gradients excite only the s (a) modes.

FIG. 4 (color online). Frequency of the SWmodes as a function
of a positive (a) and a negative (b) gradient. The lines are a guide
to the eye.
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of a positive (a) and a negative (b) gradient. The lines are a guide
to the eye.
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frequencies. This effect is typical of nonlinear oscillators,
where the frequency depends on the oscillation amplitude
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p
:
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conservation equation for the local energy [20–23]:

FIG. 2 (color online). (a) and (b) SW spectrum for l ¼ 0 and
l ¼ þ1 modes, respectively. (c) Tabulation of the corresponding
frequencies.

FIG. 3 (color online). SW spectrum for different lmodes in the
presence of the thermal gradient (expressed in K/nm). (a) and (b):
positive gradient, (c) and (d) negative gradient. Positive (neg-
ative) gradients excite only the s (a) modes.

FIG. 4 (color online). Frequency of the SWmodes as a function
of a positive (a) and a negative (b) gradient. The lines are a guide
to the eye.
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H
:

2 ¼ jE; (5)

where H2 ¼ p2 þ hðc1c$2 þ c$1c2Þ is the energy of oscil-
lator 2. An explicit calculation using Eqs. (2) gives
jE ¼ 2hReðc: 1c$2Þ. Notice that those currents are obtained
in the same way as the currents for the DNLS chain
[21–23], and they represent the special case where the
DNLS has only two elements. In particular, Eq. (4) con-
stitutes the continuity equations for the z component of the
magnetization in each disk, and in a continuum ferromag-
net leads to the usual definition of the SW current [20].
Notice that, if h12 ≠ h21, the Hamiltonian is not real and

the total SW power is not conserved. This issue is resolved
simply by rescaling the SW amplitudes in Eqs. (2) as c1 →ffiffiffiffiffiffiffi
h12

p
c1 and c2 →

ffiffiffiffiffiffiffi
h21

p
c2 and leads to the change h →ffiffiffiffiffiffiffiffiffiffiffiffiffi

h12h21
p

in the currents.
Let us now consider the numerical simulations. The

currents where computed from the time evolution for the
l ¼ 0 modes, in the gradient interval between &3 K=nm,
near the linear regime. The currents displayed in our figures
are the correlation functions jM ¼ Imhc1c$2i and
jE ¼ Rehc: 2c$1i, where h·i stands for both the ensemble
and the time average. The latter is performed in the interval
between 20 and 50 ns. Figure 5(a) shows the two currents
as a function of the thermal gradient. One can see that the
system displays a rectification effect, with the conducting
state at negative gradients.
This effect can be explained in a way similar to the

conventional thermal diode [4]. For an oscillator with only
one SWmode, the SWamplitude can bewritten in the phase-
amplitude representation as cj ¼

ffiffiffiffiffipj
p eiφj , for j ¼ 1; 2.

The currents then read jM ¼ 2h
ffiffiffiffiffiffiffiffiffiffi
p1p2

p
sinðΔφÞ and

jE ¼ 2h
ffiffiffiffiffiffiffiffiffiffi
p1p2

p
ω1 sinðΔφÞ, with Δφ ¼ φ1 − φ2 and

ϕ
:

j ¼ ωj. At zero gradient, the two oscillators precess with
different frequencies, so that the two phases ϕ1 and ϕ2

increase with different rates. Thus the currents oscillate in
time with zero average value. In this free-running
phase configuration the system is in the insulating state.
The crucial point is that, since the system is nonlinear, the
frequenciesare temperaturedependent.Thus, in thepresence
of a gradient the spectra may overlap, so that Δϕ becomes
constant. In this phase-locked configuration the currents
are constant and the system behaves as a conductor.
The phase locking can be clearly seen in Fig. 5(b). In the

presence of a negative gradient, all the a modes shift
towards higher frequencies and approach the s modes. In
particular a01 and s00 merge into a single mode. On the
contrary, with a positive gradient the s modes are the ones
that shift towards higher frequencies, so that the frequency
gap between the two oscillators increases.
In the multimode system considered here, the magneti-

zation current reads jM ¼ 2h Imð
P

l;m;l0;m0 hal;msl0;m0 iÞ,
and a similar expression holds for the energy current. In the
conducting state, jM consists of a sum of oscillating and
constant signals, the latter corresponding to the modes that
overlap. Thus, its power spectrum is a sequence of
Lorentzian peaks, which include a zero frequency mode
that accounts for the constant components of the current.
This physical picture is supported by Fig. 6. Panel (a)

shows Δϕ as a function of time for different thermal
gradients. One can see that Δϕ increases much faster in the
insulating region than in the conductive one, indicating that
in the latter case the frequencies of the two oscillators
become closer. Notice that, if the overlap of the modes were
complete, Δϕ would simply fluctuate around zero because

FIG. 5 (color online). (a) Rectification effect for magnetization
and energy currents. The panels (b) and (c) show the power
spectra computed for different gradients and illustrate the
rectification effect. (b) For negative gradients, the modes a01
and s01 overlap, giving a partial phase-locking and a conductive
state. (c) For positive gradients, there is no overlapping and the
conduction is reduced.

FIG. 6 (color online). (a) Phase difference Δϕ between the
oscillators vs time, computed for different thermal gradients. Δϕ
increases faster in the insulating region than in the conducting
one, where the frequencies of the two oscillators become closer.
(b) Corresponding power spectrum of the magnetization currents.
In the conductive state, the spectrum is dominated by the zero
frequency mode, which is barely visible in the insulating state. In
the insulating state, the spectra are reduced by a factor 3 for better
visibility.
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are the correlation functions jM ¼ Imhc1c$2i and
jE ¼ Rehc: 2c$1i, where h·i stands for both the ensemble
and the time average. The latter is performed in the interval
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increase with different rates. Thus the currents oscillate in
time with zero average value. In this free-running
phase configuration the system is in the insulating state.
The crucial point is that, since the system is nonlinear, the
frequenciesare temperaturedependent.Thus, in thepresence
of a gradient the spectra may overlap, so that Δϕ becomes
constant. In this phase-locked configuration the currents
are constant and the system behaves as a conductor.
The phase locking can be clearly seen in Fig. 5(b). In the

presence of a negative gradient, all the a modes shift
towards higher frequencies and approach the s modes. In
particular a01 and s00 merge into a single mode. On the
contrary, with a positive gradient the s modes are the ones
that shift towards higher frequencies, so that the frequency
gap between the two oscillators increases.
In the multimode system considered here, the magneti-

zation current reads jM ¼ 2h Imð
P

l;m;l0;m0 hal;msl0;m0 iÞ,
and a similar expression holds for the energy current. In the
conducting state, jM consists of a sum of oscillating and
constant signals, the latter corresponding to the modes that
overlap. Thus, its power spectrum is a sequence of
Lorentzian peaks, which include a zero frequency mode
that accounts for the constant components of the current.
This physical picture is supported by Fig. 6. Panel (a)

shows Δϕ as a function of time for different thermal
gradients. One can see that Δϕ increases much faster in the
insulating region than in the conductive one, indicating that
in the latter case the frequencies of the two oscillators
become closer. Notice that, if the overlap of the modes were
complete, Δϕ would simply fluctuate around zero because

FIG. 5 (color online). (a) Rectification effect for magnetization
and energy currents. The panels (b) and (c) show the power
spectra computed for different gradients and illustrate the
rectification effect. (b) For negative gradients, the modes a01
and s01 overlap, giving a partial phase-locking and a conductive
state. (c) For positive gradients, there is no overlapping and the
conduction is reduced.

FIG. 6 (color online). (a) Phase difference Δϕ between the
oscillators vs time, computed for different thermal gradients. Δϕ
increases faster in the insulating region than in the conducting
one, where the frequencies of the two oscillators become closer.
(b) Corresponding power spectrum of the magnetization currents.
In the conductive state, the spectrum is dominated by the zero
frequency mode, which is barely visible in the insulating state. In
the insulating state, the spectra are reduced by a factor 3 for better
visibility.
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where H2 ¼ p2 þ hðc1c$2 þ c$1c2Þ is the energy of oscil-
lator 2. An explicit calculation using Eqs. (2) gives
jE ¼ 2hReðc: 1c$2Þ. Notice that those currents are obtained
in the same way as the currents for the DNLS chain
[21–23], and they represent the special case where the
DNLS has only two elements. In particular, Eq. (4) con-
stitutes the continuity equations for the z component of the
magnetization in each disk, and in a continuum ferromag-
net leads to the usual definition of the SW current [20].
Notice that, if h12 ≠ h21, the Hamiltonian is not real and
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currents where computed from the time evolution for the
l ¼ 0 modes, in the gradient interval between &3 K=nm,
near the linear regime. The currents displayed in our figures
are the correlation functions jM ¼ Imhc1c$2i and
jE ¼ Rehc: 2c$1i, where h·i stands for both the ensemble
and the time average. The latter is performed in the interval
between 20 and 50 ns. Figure 5(a) shows the two currents
as a function of the thermal gradient. One can see that the
system displays a rectification effect, with the conducting
state at negative gradients.
This effect can be explained in a way similar to the
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increase with different rates. Thus the currents oscillate in
time with zero average value. In this free-running
phase configuration the system is in the insulating state.
The crucial point is that, since the system is nonlinear, the
frequenciesare temperaturedependent.Thus, in thepresence
of a gradient the spectra may overlap, so that Δϕ becomes
constant. In this phase-locked configuration the currents
are constant and the system behaves as a conductor.
The phase locking can be clearly seen in Fig. 5(b). In the

presence of a negative gradient, all the a modes shift
towards higher frequencies and approach the s modes. In
particular a01 and s00 merge into a single mode. On the
contrary, with a positive gradient the s modes are the ones
that shift towards higher frequencies, so that the frequency
gap between the two oscillators increases.
In the multimode system considered here, the magneti-

zation current reads jM ¼ 2h Imð
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l;m;l0;m0 hal;msl0;m0 iÞ,
and a similar expression holds for the energy current. In the
conducting state, jM consists of a sum of oscillating and
constant signals, the latter corresponding to the modes that
overlap. Thus, its power spectrum is a sequence of
Lorentzian peaks, which include a zero frequency mode
that accounts for the constant components of the current.
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shows Δϕ as a function of time for different thermal
gradients. One can see that Δϕ increases much faster in the
insulating region than in the conductive one, indicating that
in the latter case the frequencies of the two oscillators
become closer. Notice that, if the overlap of the modes were
complete, Δϕ would simply fluctuate around zero because

FIG. 5 (color online). (a) Rectification effect for magnetization
and energy currents. The panels (b) and (c) show the power
spectra computed for different gradients and illustrate the
rectification effect. (b) For negative gradients, the modes a01
and s01 overlap, giving a partial phase-locking and a conductive
state. (c) For positive gradients, there is no overlapping and the
conduction is reduced.

FIG. 6 (color online). (a) Phase difference Δϕ between the
oscillators vs time, computed for different thermal gradients. Δϕ
increases faster in the insulating region than in the conducting
one, where the frequencies of the two oscillators become closer.
(b) Corresponding power spectrum of the magnetization currents.
In the conductive state, the spectrum is dominated by the zero
frequency mode, which is barely visible in the insulating state. In
the insulating state, the spectra are reduced by a factor 3 for better
visibility.
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lator 2. An explicit calculation using Eqs. (2) gives
jE ¼ 2hReðc: 1c$2Þ. Notice that those currents are obtained
in the same way as the currents for the DNLS chain
[21–23], and they represent the special case where the
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stitutes the continuity equations for the z component of the
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are constant and the system behaves as a conductor.
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shows Δϕ as a function of time for different thermal
gradients. One can see that Δϕ increases much faster in the
insulating region than in the conductive one, indicating that
in the latter case the frequencies of the two oscillators
become closer. Notice that, if the overlap of the modes were
complete, Δϕ would simply fluctuate around zero because

FIG. 5 (color online). (a) Rectification effect for magnetization
and energy currents. The panels (b) and (c) show the power
spectra computed for different gradients and illustrate the
rectification effect. (b) For negative gradients, the modes a01
and s01 overlap, giving a partial phase-locking and a conductive
state. (c) For positive gradients, there is no overlapping and the
conduction is reduced.

FIG. 6 (color online). (a) Phase difference Δϕ between the
oscillators vs time, computed for different thermal gradients. Δϕ
increases faster in the insulating region than in the conducting
one, where the frequencies of the two oscillators become closer.
(b) Corresponding power spectrum of the magnetization currents.
In the conductive state, the spectrum is dominated by the zero
frequency mode, which is barely visible in the insulating state. In
the insulating state, the spectra are reduced by a factor 3 for better
visibility.
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Using micromagnetic simulations, we have investigated spin dynamics in a spin-valve bilayer in the
presence of a thermal gradient. The direction and the intensity of the gradient allow us to excite the spin
wave modes of each layer selectively. This permits us to synchronize the magnetization precession of the
two layers and to rectify the flows of energy and magnetization through the system. Our study yields
promising opportunities for applications in spin caloritronics and nanophononics devices.
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The recent discovery of the spin-Seebeck effect [1,2]
is at the core of spin caloritronics [3], an emerging field
where the generation and control of spin currents by a
thermal gradient in nanoelectronics and magnonic devices
is in focus. In recent years, this field has been the object of
intense investigation, yielding promising opportunity in
energy efficient spintronics devices [3]. An essential step in
this direction is the realization of a diode that rectifies spin
current. In the present Letter, we investigate through
micromagnetic simulations, a realistic device that behaves
as a thermomagnonic diode, allowing the propagation of
energy and magnetization currents in one direction only.
The system consists of a spin-valve nanopillar made of

two Permalloy (Py) circular disks coupled by dipolar
interaction; see Fig. 1(a). A uniform thermal gradient
is applied along the z direction. The origin of the rectifi-
cation effect, which is similar to the case of the conven-
tional thermal diode [4], resides in the fact that the
spin-wave (SW) spectra of the disks are temperature
dependent and their overlap can be controlled by the
gradient.
This device has novel features with respect to both the

conventional thermal diode and the spin-caloritronics
devices studied so far. In particular, the rectification of
two coupled currents is a novel phenomenon that has not
been investigated before. Then, the SW spectra of the
nanopillar have several SW modes. Only some of those
modes can overlap in the presence of a thermal gradient,
leading to a “partial phase locking” between the two disks.
The definition of magnetization current between the two
layers emerges naturally within the formulation of the
problem, and extends the notion of the usual SW-spin
current [5] to discrete multimode systems coupled by
dipolar interaction. Finally, the present study is performed
on a realistic device [6,7], suggesting possible experimental
investigations.

Let us start with a brief review of the magnetization
dynamics inside our system, before discussing the effect of
the thermal gradient. The local dynamics of the magneti-
zation in a ferromagnet is described, at the length scale of
the exchange length, by the classical Landau-Lifshitz-
Gilbert (LLG) equation of motion [8,9]

∂M
∂t ¼ −γ0M ×Heff þ

α
Ms

M ×
∂M
∂t : (1)

Here, γ0 is the gyromagnetic ratio, α is the Gilbert damping
parameter and Ms is the saturation magnetization of
the sample. The first term at the right-hand side of Eq. (1)
is the adiabatic torque, which describes the precession of the
magnetizationM around the effective field Heff [10]. Here,
the latter contains, respectively, the external, exchange, and
demagnetizing field [6,7]. The second term at the right-hand
side of Eq. (1), describes energy dissipation at a rate propor-
tional to α, so that in the absence of external excitations the
magnetization eventually aligns with Heff .

FIG. 1 (color online). (a) Bilayer system studied in our
simulations. The magnetization is decomposed into the static
componentMz and the transverse componentsMx andMy, which
precess at the Larmor frequency in the x-y plane. A uniform
thermal gradient is set along the z axis. (b) Symmetric (s) and
antisymmetric (a) precession states of the system.
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