Designing a Spin-Seebeck Diode

Simone Borlenghi,¹ Weiwei Wang,² Hans Fangohr,² Lars Bergqvist,^{1,3} and Anna Delin^{1,3,4} ¹Department of Materials and Nanophysics, School of Information and Communication Technology, Electrum 229, Royal Institute of Technology, SE-16440 Kista, Sweden ²Engineering and the Environment, University of Southampton, SO17 1BJ Southampton, United Kingdom ³SeRC (Swedish e-Science Research Center), KTH, SE-10044 Stockholm, Sweden ⁴Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden

PRL 112, 047203 (2014)

Seebeck effect

Flow of electrons

$\mathbf{E} = -S \, \nabla T \quad S$: Seebeck coefficient

Spin Seebeck effect

Thermal Diode

Electron current only for one sign of the temperature gradient

Spin current only for one sign of the temperature gradient

System and Model

Thin magnetic disks \longrightarrow *M* is uniform along the thickness

 \rightarrow LLG describe circular precession of M_x and M_y

$$c(\rho,\phi,t) = \frac{M_x(\rho,\phi,t) + iM_y(\rho,\phi,t)}{\sqrt{2M_s(M_s + M_z)}} \qquad p_j = |c_j|^2$$

System and Model

Two disks that are dipolarly coupled

Spin wave modes decompose into two categories

symmetric modes

$$M_1 \qquad t_1 = 4 nm$$
$$M_2 \qquad t_2 = 15 nm$$

asymmetric modes

Use micromagnetic simulation in order to investigate the physics of the coupled disks (Nmag)

 $R = 125 nm \ A = 1.3 \times 10^{-11} J/m \qquad \alpha_1 = 1.6 \times 10^{-2} \quad 0.85 \times 10^{-2}$ $M_{s1} = 7.8 \times 10^5 A/m \quad M_{s2} = 9.4 \times 10^5 A/m \quad \gamma_0 = 1.87 \times 10^{11} \text{rad}^{-1} T^{-1}$

System and Model

Thermal fluctuations are added by introducing a (Gaussian) stochastic field H_{eff}^k at each site k,

$$\langle \boldsymbol{H}_{\text{th},i}^{k} \boldsymbol{H}_{\text{th},j}^{l} \rangle = 2D_{k} \delta_{ij} \delta_{kl} \delta(t-t') \qquad i, j = x, y, z$$
$$D_{k} = (2\alpha k_{B} T_{k}) / (M_{s} \gamma_{0} \mu_{0} V_{k})$$

The quantity of interest in the micromagnetic simulation is the averaged magnetization

$$\langle \mathbf{M}_j(t) \rangle = \frac{1}{V_j} \int_{V_j} \mathbf{M}_j(\mathbf{r}, t)$$

Modes of two coupled disks

Hamiltonian of the problem

$$\mathcal{H} = \omega_1(p_1)p_1 + \omega_2(p_2)p_2 + h(c_1c_2^* + c_1^*c_2),$$

Number of particles is conserved (p_1+p_2)

$$\longrightarrow \dot{p}_j = -2\Gamma_j(p_j)p_j + j_M$$

Spin current $j_M = 2h \operatorname{Im}(c_1 c_2^*)$

Similarly energy is conserved

Energy current
$$j_{
m E}=2h\,{
m Re}(\dot{c}_1c_2^*)$$

Conclusions

- Realistic model for a thermal spin diode
- Might be tested experimentally

THANK YOU !