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Recent experiments on nanoscale conductors coupled to microwave cavities put in prospect trans-
port investigations of electron-photon interplay in the deep quantum regime. Here we propose a
pump-probe scheme to investigate the transient dynamics of individual electron-photon excitations
in a double quantum dot-cavity system. Excitations pumped into the system decay via charge tun-
neling at the double dot, probed in real time. We investigate theoretically the short-time charge
transfer statistics at the dot, for periodic pumping, and show that this gives access to vacuum Rabi
oscillations as well as excitation dynamics in the presence of double dot dephasing and relaxation.
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Introduction.–Hybrid quantum electrodynamic (QED)
structures that incorporate nanoscopic conductors in su-
perconducting circuits have attracted a lot of interest
over the last few years. Several experiments have demon-
strated coupling between both single [1–3] and double
[4–9] quantum dots (DQDs) and a superconducting mi-
crowave cavity. Hybrid conductor-cavity systems have
large potential for applications in quantum information
technology [10–12] and can be used as a characterization
tool for nanoscale systems [13–15]. Moreover, they put in
prospect transport investigations as well as applications
of electron-photon interactions in the deep quantum limit
[16–20]. This includes DQD masers [21, 22, 22], entangle-
ment detection in Cooper-pair splitters [23], testbeds for
Franck-Condon physics [24], detection schemes for Majo-
rana fermions [25–27], photon emission statistics [28] and
efficient heat engines [29].

A key feature of nanoscopic conductor-cavity system
which to date has received little attention is the dynam-
ics of electron-photon excitations. Besides being of fun-
damental interest and of importance for conductor-cavity
applications, knowledge of the dynamics is instrumental
in identifying and characterizing parasitic effects respon-
sible for excitation dephasing and relaxation [30]. How-
ever, an experiment investigating the dynamics would
arguably require, in the same conductor-cavity system,
both short time excitation manipulation and detection.
Importantly, in circuit QED systems microwave photons
can be generated and controlled in real time with large
accuracy [31–33]. Moreover, time resolved counting of
electrons in quantum dot systems has been demonstrated
experimentally [34, 35].

In this letter we combine these two capacities and pro-
pose a pump-probe scheme for investigating the tran-
sient dynamics of electron-photon excitations in a hy-
brid conductor-cavity system (See Fig. 1). Single ex-
citations are pumped into the system via an externally
driven qubit coupled to the cavity. The excitations relax
by electron tunneling at the DQD, probed by monitoring
the dot occupation in real time. We analyze theoretically
the short time charge transport statistics at the DQD for

periodic pumping, and show that it provides informa-
tion on vacuum Rabi oscillations, as well as excitation
relaxation time scales. Moreover, the transport statistics
clearly displays how DQD dephasing and relaxation alter
the dynamics, key knowledge in the experimental efforts
to reach the strong conductor-cavity coupling regime.

FIG. 1: (color online) Schematic of the hybrid system. An ex-
ternally excited qubit (left) and a double quantum dot (right)
are coupled to a coplanar superconducting microwave cavity.
Further, one of the quantum dots is coupled to a lead.

System.– The system under investigation consists of
a DQD coupled to a superconducting microwave cavity,
and tunnel coupled to a single lead electrode. The DQD,
occupied with at most one excess electron, contains two
active levels. Moreover, an externally controlled super-
conducting qubit, in Fig. 1 exemplified by a transmon
[36], is coupled to the cavity. The DQD and the qubit
are coupled to the cavity with the same strength g0, and
kept at resonance with the fundamental cavity mode, at
frequency ω0. In addition the characteristic impedance
Z0 of the cavity is taken much smaller than the resis-
tance quantum RQ = h/e2. Under these conditions the
DQD-cavity-qubit system is described by the generalized
Tavis-Cummings (TC) Hamiltonian

ĤS = !ω0â
†â+

!ω0

2

(

σ̂z + d̂†ed̂e − d̂†gd̂g
)

+ !g0
[

â†(σ̂− + d̂†g d̂e) + â(σ̂+ + d̂†ed̂g)
]

. (1)

Here â† (a) is the photon creation (annihilation) opera-
tor, and d̂†e/g (d̂e/g) the electron creation (annihilation)

operators for the excited/ground (bonding/anti-bonding)
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ĤS = !ω0â
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â†(σ̂− + d̂†g d̂e) + â(σ̂+ + d̂†ed̂g)
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â†(σ̂− + d̂†g d̂e) + â(σ̂+ + d̂†ed̂g)
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System Dynamics
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FIG. 2: (color online) a) Complete excitation transfer cycle:
(I) The qubit is excited by a fast pulse. (II) The qubit decays
by emitting a photon into the cavity. (III) The dot electron
absorbs the cavity photon and tunnels out to the lead. (IV) A
lead electron tunnels into the ground state of the dot, leaving
an electron-hole pair excitation in the lead. b) Decay of vac-
uum Rabi oscillations for Γ = g0. Probabilities as a function
of time for the states |+g0⟩, |−g1⟩, |−e0⟩ shown.

states of the DQD. The qubit operators σ̂± = σ̂x ± iσ̂y

and σ̂z are expressed in Pauli matrices. In the local basis
|±⟩ denote the excited/ground state of the qubit, |e/g/0⟩
describe the DQD in the excited/ground state or unoccu-
pied and |p⟩ the cavity state with p photons. Throughout
the paper we neglect qubit decoherence and cavity losses,
a reasonable assumption based on circuit QED experi-
ments, see e.g. [37–39]. A discussion of DQD dephasing
and relaxation is deferred to the last paragraph.
Single excitation dynamics – To provide a basic picture

of the dynamics we first consider a single excitation of
the isolated DQD-cavity-qubit system. By applying an
appropriate sequence of fast pulses, on a nanosecond time
scale, the qubit is excited, see e.g. [32, 40]. This can
be described by the operator R̂ = (σ̂+ + σ̂−) /2 = σ̂x.
Starting in the system ground state, exciting the qubit
gives |− g0⟩ → |+ g0⟩. Since |+ g0⟩ is no eigenstate
of the TC-Hamiltonian, following the excitation at t =
0 the system undergoes a free, coherent time evolution
described by the wavefunction

|Ψ(t)⟩ = (1/
√
2)

[

cos2
(

g0t/
√
2
)

|+g0⟩ (2)

+ sin2
(

g0t/
√
2
)

|−e0⟩+ (i/
√
2) sin

(√
2g0t

)

|−g1⟩
]

.

This shows that the system performs vacuum Rabi os-
cillations, i.e. the excitation oscillates between the qubit
and the DQD, via the cavity, with a frequency

√
2g0.

Turning to the transport setup in Fig. 1, with the
DQD coupled to a lead electrode, the result in Eq. (2)
is modified. The lead, at thermal equilibrium with a
temperature T and chemical potential µ, is described

with the Hamiltonian ĤL =
∑

k ϵk ĉ
†
kĉk, where ĉ†k de-

notes the creation operator for an electron at energy
ϵk. We will take the detuning between levels in the
dots, forming the DQD, to be zero. For this case the
effective lead-DQD tunneling amplitudes are equal for
|e⟩ and |g⟩. The tunnel Hamiltonian is then given by
ĤT =

∑

k,α=e,g tkĉ
†
kd̂α +H.c..

We consider the sequential tunneling regime Γ ≪ !ω,
with Γ = 2π

∑

k |tk|2δ(ϵk ± !ω0/2) the DQD-tunneling
rate. Applying the Born-Markov approximation a quan-
tum master equation (QME) dρ̂/dt = Lρ̂ is derived for
the time evolution of the reduced qubit-DQD-cavity sys-
tem density operator ρ̂. By taking µ = 0 and !ω0/2 ≫
kBT the occupation of the lead at the energies at which
electrons tunnel into or out of the DQD does not depend
on the temperature. The Liouvillian L then becomes

Lρ̂ = −
i

!
[ĤS , ρ̂] +

Γ

2

[

D(ρ̂, d̂†e) +D(ρ̂, d̂g)
]

, (3)

with D(ρ̂, γ̂) = 2γ̂†ρ̂γ̂ − γ̂γ̂†ρ̂− ρ̂γ̂γ̂† for any operator γ̂.
The system dynamics after an excitation at t = 0 is

illustrated in Fig. 2. The vacuum Rabi oscillations decay,
with the excited state probabilities ∝ e−Γt/4 for Γ ≪ g0.
Hence, the system excitation is eventually transformed
into an electron-hole pair excitation in the lead as |−e0⟩ →
|−00⟩ → |−g0⟩, i.e. the DQD electron, in |e⟩, tunnels out
into the lead followed by a back tunneling into |g⟩.
Pump-probe scheme – We consider an experimentally

relevant pump-probe scheme, with a periodic pumping,
or excitation, of the qubit. Importantly, the pump period
τ constitutes a versatile tool for investigating the differ-
ent time scales of the dynamics. We focus on periodic
steady-state operation, where the state of the system is
entirely determined by the time t passed since the last
pumping, i.e. ρ̂(t+mτ) = ρ̂(t), with m = 0, 1, 2.. . The
density operator is then given by

ρ̂(t) = eLtReL(τ−t)ρ̂(t) , 0 < t < τ, (4)

where Rγ̂ = R̂γ̂R̂†.
The probe consists of a non-invasive charge detector

(not shown in Fig. 1), monitoring the individual dot-
lead tunneling events in time [34, 35]. Since tunneling
into (out of) the DQD creates a hole (an electron) exci-
tation in the lead, we here consider the statistics of elec-
tron and hole transfers into the lead per pumping cycle.
The full counting statistics for a time periodic system
can be obtained along the lines of [41]. We introduce an
electron (hole) counting field χe (χh) into the Liouvil-
lian of Eq. (3), so that L → L(χe,χh). The cumulant
generating function (CGF) over N ≥ 1 periods is

SN (χe,χh) = ln[⟨[ReL(χe,χh)τ ]N ⟩0] , (5)

where ⟨γ̂⟩0 = tr[γ̂ρ̂(0)]. From the CGF one
obtains the mean and variance of the num-
ber of electrons (holes) emitted per period as
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FIG. 2: (color online) a) Complete excitation transfer cycle:
(I) The qubit is excited by a fast pulse. (II) The qubit decays
by emitting a photon into the cavity. (III) The dot electron
absorbs the cavity photon and tunnels out to the lead. (IV) A
lead electron tunnels into the ground state of the dot, leaving
an electron-hole pair excitation in the lead. b) Decay of vac-
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states of the DQD. The qubit operators σ̂± = σ̂x ± iσ̂y

and σ̂z are expressed in Pauli matrices. In the local basis
|±⟩ denote the excited/ground state of the qubit, |e/g/0⟩
describe the DQD in the excited/ground state or unoccu-
pied and |p⟩ the cavity state with p photons. Throughout
the paper we neglect qubit decoherence and cavity losses,
a reasonable assumption based on circuit QED experi-
ments, see e.g. [37–39]. A discussion of DQD dephasing
and relaxation is deferred to the last paragraph.
Single excitation dynamics – To provide a basic picture

of the dynamics we first consider a single excitation of
the isolated DQD-cavity-qubit system. By applying an
appropriate sequence of fast pulses, on a nanosecond time
scale, the qubit is excited, see e.g. [32, 40]. This can
be described by the operator R̂ = (σ̂+ + σ̂−) /2 = σ̂x.
Starting in the system ground state, exciting the qubit
gives |− g0⟩ → |+ g0⟩. Since |+ g0⟩ is no eigenstate
of the TC-Hamiltonian, following the excitation at t =
0 the system undergoes a free, coherent time evolution
described by the wavefunction

|Ψ(t)⟩ = (1/
√
2)

[

cos2
(

g0t/
√
2
)

|+g0⟩ (2)

+ sin2
(

g0t/
√
2
)

|−e0⟩+ (i/
√
2) sin

(√
2g0t

)

|−g1⟩
]

.

This shows that the system performs vacuum Rabi os-
cillations, i.e. the excitation oscillates between the qubit
and the DQD, via the cavity, with a frequency

√
2g0.

Turning to the transport setup in Fig. 1, with the
DQD coupled to a lead electrode, the result in Eq. (2)
is modified. The lead, at thermal equilibrium with a
temperature T and chemical potential µ, is described

with the Hamiltonian ĤL =
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This shows that the system performs vacuum Rabi os-
cillations, i.e. the excitation oscillates between the qubit
and the DQD, via the cavity, with a frequency

√
2g0.

Turning to the transport setup in Fig. 1, with the
DQD coupled to a lead electrode, the result in Eq. (2)
is modified. The lead, at thermal equilibrium with a
temperature T and chemical potential µ, is described

with the Hamiltonian ĤL =
∑

k ϵk ĉ
†
kĉk, where ĉ†k de-

notes the creation operator for an electron at energy
ϵk. We will take the detuning between levels in the
dots, forming the DQD, to be zero. For this case the
effective lead-DQD tunneling amplitudes are equal for
|e⟩ and |g⟩. The tunnel Hamiltonian is then given by
ĤT =

∑

k,α=e,g tkĉ
†
kd̂α +H.c..

We consider the sequential tunneling regime Γ ≪ !ω,
with Γ = 2π

∑

k |tk|2δ(ϵk ± !ω0/2) the DQD-tunneling
rate. Applying the Born-Markov approximation a quan-
tum master equation (QME) dρ̂/dt = Lρ̂ is derived for
the time evolution of the reduced qubit-DQD-cavity sys-
tem density operator ρ̂. By taking µ = 0 and !ω0/2 ≫
kBT the occupation of the lead at the energies at which
electrons tunnel into or out of the DQD does not depend
on the temperature. The Liouvillian L then becomes

Lρ̂ = −
i

!
[ĤS , ρ̂] +

Γ

2

[

D(ρ̂, d̂†e) +D(ρ̂, d̂g)
]

, (3)

with D(ρ̂, γ̂) = 2γ̂†ρ̂γ̂ − γ̂γ̂†ρ̂− ρ̂γ̂γ̂† for any operator γ̂.
The system dynamics after an excitation at t = 0 is

illustrated in Fig. 2. The vacuum Rabi oscillations decay,
with the excited state probabilities ∝ e−Γt/4 for Γ ≪ g0.
Hence, the system excitation is eventually transformed
into an electron-hole pair excitation in the lead as |−e0⟩ →
|−00⟩ → |−g0⟩, i.e. the DQD electron, in |e⟩, tunnels out
into the lead followed by a back tunneling into |g⟩.
Pump-probe scheme – We consider an experimentally

relevant pump-probe scheme, with a periodic pumping,
or excitation, of the qubit. Importantly, the pump period
τ constitutes a versatile tool for investigating the differ-
ent time scales of the dynamics. We focus on periodic
steady-state operation, where the state of the system is
entirely determined by the time t passed since the last
pumping, i.e. ρ̂(t+mτ) = ρ̂(t), with m = 0, 1, 2.. . The
density operator is then given by

ρ̂(t) = eLtReL(τ−t)ρ̂(t) , 0 < t < τ, (4)

where Rγ̂ = R̂γ̂R̂†.
The probe consists of a non-invasive charge detector

(not shown in Fig. 1), monitoring the individual dot-
lead tunneling events in time [34, 35]. Since tunneling
into (out of) the DQD creates a hole (an electron) exci-
tation in the lead, we here consider the statistics of elec-
tron and hole transfers into the lead per pumping cycle.
The full counting statistics for a time periodic system
can be obtained along the lines of [41]. We introduce an
electron (hole) counting field χe (χh) into the Liouvil-
lian of Eq. (3), so that L → L(χe,χh). The cumulant
generating function (CGF) over N ≥ 1 periods is

SN (χe,χh) = ln[⟨[ReL(χe,χh)τ ]N ⟩0] , (5)

where ⟨γ̂⟩0 = tr[γ̂ρ̂(0)]. From the CGF one
obtains the mean and variance of the num-
ber of electrons (holes) emitted per period as
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FIG. 2: (color online) a) Complete excitation transfer cycle:
(I) The qubit is excited by a fast pulse. (II) The qubit decays
by emitting a photon into the cavity. (III) The dot electron
absorbs the cavity photon and tunnels out to the lead. (IV) A
lead electron tunnels into the ground state of the dot, leaving
an electron-hole pair excitation in the lead. b) Decay of vac-
uum Rabi oscillations for Γ = g0. Probabilities as a function
of time for the states |+g0⟩, |−g1⟩, |−e0⟩ shown.

states of the DQD. The qubit operators σ̂± = σ̂x ± iσ̂y

and σ̂z are expressed in Pauli matrices. In the local basis
|±⟩ denote the excited/ground state of the qubit, |e/g/0⟩
describe the DQD in the excited/ground state or unoccu-
pied and |p⟩ the cavity state with p photons. Throughout
the paper we neglect qubit decoherence and cavity losses,
a reasonable assumption based on circuit QED experi-
ments, see e.g. [37–39]. A discussion of DQD dephasing
and relaxation is deferred to the last paragraph.
Single excitation dynamics – To provide a basic picture

of the dynamics we first consider a single excitation of
the isolated DQD-cavity-qubit system. By applying an
appropriate sequence of fast pulses, on a nanosecond time
scale, the qubit is excited, see e.g. [32, 40]. This can
be described by the operator R̂ = (σ̂+ + σ̂−) /2 = σ̂x.
Starting in the system ground state, exciting the qubit
gives |− g0⟩ → |+ g0⟩. Since |+ g0⟩ is no eigenstate
of the TC-Hamiltonian, following the excitation at t =
0 the system undergoes a free, coherent time evolution
described by the wavefunction

|Ψ(t)⟩ = (1/
√
2)

[

cos2
(

g0t/
√
2
)

|+g0⟩ (2)

+ sin2
(

g0t/
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2
)

|−e0⟩+ (i/
√
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)

|−g1⟩
]

.

This shows that the system performs vacuum Rabi os-
cillations, i.e. the excitation oscillates between the qubit
and the DQD, via the cavity, with a frequency

√
2g0.

Turning to the transport setup in Fig. 1, with the
DQD coupled to a lead electrode, the result in Eq. (2)
is modified. The lead, at thermal equilibrium with a
temperature T and chemical potential µ, is described

with the Hamiltonian ĤL =
∑

k ϵk ĉ
†
kĉk, where ĉ†k de-

notes the creation operator for an electron at energy
ϵk. We will take the detuning between levels in the
dots, forming the DQD, to be zero. For this case the
effective lead-DQD tunneling amplitudes are equal for
|e⟩ and |g⟩. The tunnel Hamiltonian is then given by
ĤT =

∑

k,α=e,g tkĉ
†
kd̂α +H.c..

We consider the sequential tunneling regime Γ ≪ !ω,
with Γ = 2π

∑

k |tk|2δ(ϵk ± !ω0/2) the DQD-tunneling
rate. Applying the Born-Markov approximation a quan-
tum master equation (QME) dρ̂/dt = Lρ̂ is derived for
the time evolution of the reduced qubit-DQD-cavity sys-
tem density operator ρ̂. By taking µ = 0 and !ω0/2 ≫
kBT the occupation of the lead at the energies at which
electrons tunnel into or out of the DQD does not depend
on the temperature. The Liouvillian L then becomes

Lρ̂ = −
i

!
[ĤS , ρ̂] +

Γ

2

[

D(ρ̂, d̂†e) +D(ρ̂, d̂g)
]

, (3)

with D(ρ̂, γ̂) = 2γ̂†ρ̂γ̂ − γ̂γ̂†ρ̂− ρ̂γ̂γ̂† for any operator γ̂.
The system dynamics after an excitation at t = 0 is

illustrated in Fig. 2. The vacuum Rabi oscillations decay,
with the excited state probabilities ∝ e−Γt/4 for Γ ≪ g0.
Hence, the system excitation is eventually transformed
into an electron-hole pair excitation in the lead as |−e0⟩ →
|−00⟩ → |−g0⟩, i.e. the DQD electron, in |e⟩, tunnels out
into the lead followed by a back tunneling into |g⟩.
Pump-probe scheme – We consider an experimentally

relevant pump-probe scheme, with a periodic pumping,
or excitation, of the qubit. Importantly, the pump period
τ constitutes a versatile tool for investigating the differ-
ent time scales of the dynamics. We focus on periodic
steady-state operation, where the state of the system is
entirely determined by the time t passed since the last
pumping, i.e. ρ̂(t+mτ) = ρ̂(t), with m = 0, 1, 2.. . The
density operator is then given by

ρ̂(t) = eLtReL(τ−t)ρ̂(t) , 0 < t < τ, (4)

where Rγ̂ = R̂γ̂R̂†.
The probe consists of a non-invasive charge detector

(not shown in Fig. 1), monitoring the individual dot-
lead tunneling events in time [34, 35]. Since tunneling
into (out of) the DQD creates a hole (an electron) exci-
tation in the lead, we here consider the statistics of elec-
tron and hole transfers into the lead per pumping cycle.
The full counting statistics for a time periodic system
can be obtained along the lines of [41]. We introduce an
electron (hole) counting field χe (χh) into the Liouvil-
lian of Eq. (3), so that L → L(χe,χh). The cumulant
generating function (CGF) over N ≥ 1 periods is

SN (χe,χh) = ln[⟨[ReL(χe,χh)τ ]N ⟩0] , (5)

where ⟨γ̂⟩0 = tr[γ̂ρ̂(0)]. From the CGF one
obtains the mean and variance of the num-
ber of electrons (holes) emitted per period as
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FIG. 2: (color online) a) Complete excitation transfer cycle:
(I) The qubit is excited by a fast pulse. (II) The qubit decays
by emitting a photon into the cavity. (III) The dot electron
absorbs the cavity photon and tunnels out to the lead. (IV) A
lead electron tunnels into the ground state of the dot, leaving
an electron-hole pair excitation in the lead. b) Decay of vac-
uum Rabi oscillations for Γ = g0. Probabilities as a function
of time for the states |+g0⟩, |−g1⟩, |−e0⟩ shown.

states of the DQD. The qubit operators σ̂± = σ̂x ± iσ̂y

and σ̂z are expressed in Pauli matrices. In the local basis
|±⟩ denote the excited/ground state of the qubit, |e/g/0⟩
describe the DQD in the excited/ground state or unoccu-
pied and |p⟩ the cavity state with p photons. Throughout
the paper we neglect qubit decoherence and cavity losses,
a reasonable assumption based on circuit QED experi-
ments, see e.g. [37–39]. A discussion of DQD dephasing
and relaxation is deferred to the last paragraph.
Single excitation dynamics – To provide a basic picture

of the dynamics we first consider a single excitation of
the isolated DQD-cavity-qubit system. By applying an
appropriate sequence of fast pulses, on a nanosecond time
scale, the qubit is excited, see e.g. [32, 40]. This can
be described by the operator R̂ = (σ̂+ + σ̂−) /2 = σ̂x.
Starting in the system ground state, exciting the qubit
gives |− g0⟩ → |+ g0⟩. Since |+ g0⟩ is no eigenstate
of the TC-Hamiltonian, following the excitation at t =
0 the system undergoes a free, coherent time evolution
described by the wavefunction

|Ψ(t)⟩ = (1/
√
2)

[

cos2
(
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2
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|+g0⟩ (2)
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2
)
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]

.

This shows that the system performs vacuum Rabi os-
cillations, i.e. the excitation oscillates between the qubit
and the DQD, via the cavity, with a frequency

√
2g0.

Turning to the transport setup in Fig. 1, with the
DQD coupled to a lead electrode, the result in Eq. (2)
is modified. The lead, at thermal equilibrium with a
temperature T and chemical potential µ, is described

with the Hamiltonian ĤL =
∑

k ϵk ĉ
†
kĉk, where ĉ†k de-

notes the creation operator for an electron at energy
ϵk. We will take the detuning between levels in the
dots, forming the DQD, to be zero. For this case the
effective lead-DQD tunneling amplitudes are equal for
|e⟩ and |g⟩. The tunnel Hamiltonian is then given by
ĤT =

∑

k,α=e,g tkĉ
†
kd̂α +H.c..

We consider the sequential tunneling regime Γ ≪ !ω,
with Γ = 2π

∑

k |tk|2δ(ϵk ± !ω0/2) the DQD-tunneling
rate. Applying the Born-Markov approximation a quan-
tum master equation (QME) dρ̂/dt = Lρ̂ is derived for
the time evolution of the reduced qubit-DQD-cavity sys-
tem density operator ρ̂. By taking µ = 0 and !ω0/2 ≫
kBT the occupation of the lead at the energies at which
electrons tunnel into or out of the DQD does not depend
on the temperature. The Liouvillian L then becomes

Lρ̂ = −
i

!
[ĤS , ρ̂] +

Γ

2

[

D(ρ̂, d̂†e) +D(ρ̂, d̂g)
]

, (3)

with D(ρ̂, γ̂) = 2γ̂†ρ̂γ̂ − γ̂γ̂†ρ̂− ρ̂γ̂γ̂† for any operator γ̂.
The system dynamics after an excitation at t = 0 is

illustrated in Fig. 2. The vacuum Rabi oscillations decay,
with the excited state probabilities ∝ e−Γt/4 for Γ ≪ g0.
Hence, the system excitation is eventually transformed
into an electron-hole pair excitation in the lead as |−e0⟩ →
|−00⟩ → |−g0⟩, i.e. the DQD electron, in |e⟩, tunnels out
into the lead followed by a back tunneling into |g⟩.
Pump-probe scheme – We consider an experimentally

relevant pump-probe scheme, with a periodic pumping,
or excitation, of the qubit. Importantly, the pump period
τ constitutes a versatile tool for investigating the differ-
ent time scales of the dynamics. We focus on periodic
steady-state operation, where the state of the system is
entirely determined by the time t passed since the last
pumping, i.e. ρ̂(t+mτ) = ρ̂(t), with m = 0, 1, 2.. . The
density operator is then given by

ρ̂(t) = eLtReL(τ−t)ρ̂(t) , 0 < t < τ, (4)

where Rγ̂ = R̂γ̂R̂†.
The probe consists of a non-invasive charge detector

(not shown in Fig. 1), monitoring the individual dot-
lead tunneling events in time [34, 35]. Since tunneling
into (out of) the DQD creates a hole (an electron) exci-
tation in the lead, we here consider the statistics of elec-
tron and hole transfers into the lead per pumping cycle.
The full counting statistics for a time periodic system
can be obtained along the lines of [41]. We introduce an
electron (hole) counting field χe (χh) into the Liouvil-
lian of Eq. (3), so that L → L(χe,χh). The cumulant
generating function (CGF) over N ≥ 1 periods is

SN (χe,χh) = ln[⟨[ReL(χe,χh)τ ]N ⟩0] , (5)

where ⟨γ̂⟩0 = tr[γ̂ρ̂(0)]. From the CGF one
obtains the mean and variance of the num-
ber of electrons (holes) emitted per period as

t = 0 :
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FIG. 2: (color online) a) Complete excitation transfer cycle:
(I) The qubit is excited by a fast pulse. (II) The qubit decays
by emitting a photon into the cavity. (III) The dot electron
absorbs the cavity photon and tunnels out to the lead. (IV) A
lead electron tunnels into the ground state of the dot, leaving
an electron-hole pair excitation in the lead. b) Decay of vac-
uum Rabi oscillations for Γ = g0. Probabilities as a function
of time for the states |+g0⟩, |−g1⟩, |−e0⟩ shown.

states of the DQD. The qubit operators σ̂± = σ̂x ± iσ̂y

and σ̂z are expressed in Pauli matrices. In the local basis
|±⟩ denote the excited/ground state of the qubit, |e/g/0⟩
describe the DQD in the excited/ground state or unoccu-
pied and |p⟩ the cavity state with p photons. Throughout
the paper we neglect qubit decoherence and cavity losses,
a reasonable assumption based on circuit QED experi-
ments, see e.g. [37–39]. A discussion of DQD dephasing
and relaxation is deferred to the last paragraph.
Single excitation dynamics – To provide a basic picture

of the dynamics we first consider a single excitation of
the isolated DQD-cavity-qubit system. By applying an
appropriate sequence of fast pulses, on a nanosecond time
scale, the qubit is excited, see e.g. [32, 40]. This can
be described by the operator R̂ = (σ̂+ + σ̂−) /2 = σ̂x.
Starting in the system ground state, exciting the qubit
gives |− g0⟩ → |+ g0⟩. Since |+ g0⟩ is no eigenstate
of the TC-Hamiltonian, following the excitation at t =
0 the system undergoes a free, coherent time evolution
described by the wavefunction

|Ψ(t)⟩ = (1/
√
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.

This shows that the system performs vacuum Rabi os-
cillations, i.e. the excitation oscillates between the qubit
and the DQD, via the cavity, with a frequency

√
2g0.

Turning to the transport setup in Fig. 1, with the
DQD coupled to a lead electrode, the result in Eq. (2)
is modified. The lead, at thermal equilibrium with a
temperature T and chemical potential µ, is described

with the Hamiltonian ĤL =
∑

k ϵk ĉ
†
kĉk, where ĉ†k de-

notes the creation operator for an electron at energy
ϵk. We will take the detuning between levels in the
dots, forming the DQD, to be zero. For this case the
effective lead-DQD tunneling amplitudes are equal for
|e⟩ and |g⟩. The tunnel Hamiltonian is then given by
ĤT =

∑

k,α=e,g tkĉ
†
kd̂α +H.c..

We consider the sequential tunneling regime Γ ≪ !ω,
with Γ = 2π

∑

k |tk|2δ(ϵk ± !ω0/2) the DQD-tunneling
rate. Applying the Born-Markov approximation a quan-
tum master equation (QME) dρ̂/dt = Lρ̂ is derived for
the time evolution of the reduced qubit-DQD-cavity sys-
tem density operator ρ̂. By taking µ = 0 and !ω0/2 ≫
kBT the occupation of the lead at the energies at which
electrons tunnel into or out of the DQD does not depend
on the temperature. The Liouvillian L then becomes

Lρ̂ = −
i

!
[ĤS , ρ̂] +

Γ

2

[

D(ρ̂, d̂†e) +D(ρ̂, d̂g)
]

, (3)

with D(ρ̂, γ̂) = 2γ̂†ρ̂γ̂ − γ̂γ̂†ρ̂− ρ̂γ̂γ̂† for any operator γ̂.
The system dynamics after an excitation at t = 0 is

illustrated in Fig. 2. The vacuum Rabi oscillations decay,
with the excited state probabilities ∝ e−Γt/4 for Γ ≪ g0.
Hence, the system excitation is eventually transformed
into an electron-hole pair excitation in the lead as |−e0⟩ →
|−00⟩ → |−g0⟩, i.e. the DQD electron, in |e⟩, tunnels out
into the lead followed by a back tunneling into |g⟩.
Pump-probe scheme – We consider an experimentally

relevant pump-probe scheme, with a periodic pumping,
or excitation, of the qubit. Importantly, the pump period
τ constitutes a versatile tool for investigating the differ-
ent time scales of the dynamics. We focus on periodic
steady-state operation, where the state of the system is
entirely determined by the time t passed since the last
pumping, i.e. ρ̂(t+mτ) = ρ̂(t), with m = 0, 1, 2.. . The
density operator is then given by

ρ̂(t) = eLtReL(τ−t)ρ̂(t) , 0 < t < τ, (4)

where Rγ̂ = R̂γ̂R̂†.
The probe consists of a non-invasive charge detector

(not shown in Fig. 1), monitoring the individual dot-
lead tunneling events in time [34, 35]. Since tunneling
into (out of) the DQD creates a hole (an electron) exci-
tation in the lead, we here consider the statistics of elec-
tron and hole transfers into the lead per pumping cycle.
The full counting statistics for a time periodic system
can be obtained along the lines of [41]. We introduce an
electron (hole) counting field χe (χh) into the Liouvil-
lian of Eq. (3), so that L → L(χe,χh). The cumulant
generating function (CGF) over N ≥ 1 periods is

SN (χe,χh) = ln[⟨[ReL(χe,χh)τ ]N ⟩0] , (5)

where ⟨γ̂⟩0 = tr[γ̂ρ̂(0)]. From the CGF one
obtains the mean and variance of the num-
ber of electrons (holes) emitted per period as
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FIG. 2: (color online) a) Complete excitation transfer cycle:
(I) The qubit is excited by a fast pulse. (II) The qubit decays
by emitting a photon into the cavity. (III) The dot electron
absorbs the cavity photon and tunnels out to the lead. (IV) A
lead electron tunnels into the ground state of the dot, leaving
an electron-hole pair excitation in the lead. b) Decay of vac-
uum Rabi oscillations for Γ = g0. Probabilities as a function
of time for the states |+g0⟩, |−g1⟩, |−e0⟩ shown.

states of the DQD. The qubit operators σ̂± = σ̂x ± iσ̂y

and σ̂z are expressed in Pauli matrices. In the local basis
|±⟩ denote the excited/ground state of the qubit, |e/g/0⟩
describe the DQD in the excited/ground state or unoccu-
pied and |p⟩ the cavity state with p photons. Throughout
the paper we neglect qubit decoherence and cavity losses,
a reasonable assumption based on circuit QED experi-
ments, see e.g. [37–39]. A discussion of DQD dephasing
and relaxation is deferred to the last paragraph.
Single excitation dynamics – To provide a basic picture

of the dynamics we first consider a single excitation of
the isolated DQD-cavity-qubit system. By applying an
appropriate sequence of fast pulses, on a nanosecond time
scale, the qubit is excited, see e.g. [32, 40]. This can
be described by the operator R̂ = (σ̂+ + σ̂−) /2 = σ̂x.
Starting in the system ground state, exciting the qubit
gives |− g0⟩ → |+ g0⟩. Since |+ g0⟩ is no eigenstate
of the TC-Hamiltonian, following the excitation at t =
0 the system undergoes a free, coherent time evolution
described by the wavefunction
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This shows that the system performs vacuum Rabi os-
cillations, i.e. the excitation oscillates between the qubit
and the DQD, via the cavity, with a frequency

√
2g0.

Turning to the transport setup in Fig. 1, with the
DQD coupled to a lead electrode, the result in Eq. (2)
is modified. The lead, at thermal equilibrium with a
temperature T and chemical potential µ, is described

with the Hamiltonian ĤL =
∑

k ϵk ĉ
†
kĉk, where ĉ†k de-

notes the creation operator for an electron at energy
ϵk. We will take the detuning between levels in the
dots, forming the DQD, to be zero. For this case the
effective lead-DQD tunneling amplitudes are equal for
|e⟩ and |g⟩. The tunnel Hamiltonian is then given by
ĤT =

∑

k,α=e,g tkĉ
†
kd̂α +H.c..

We consider the sequential tunneling regime Γ ≪ !ω,
with Γ = 2π

∑

k |tk|2δ(ϵk ± !ω0/2) the DQD-tunneling
rate. Applying the Born-Markov approximation a quan-
tum master equation (QME) dρ̂/dt = Lρ̂ is derived for
the time evolution of the reduced qubit-DQD-cavity sys-
tem density operator ρ̂. By taking µ = 0 and !ω0/2 ≫
kBT the occupation of the lead at the energies at which
electrons tunnel into or out of the DQD does not depend
on the temperature. The Liouvillian L then becomes

Lρ̂ = −
i

!
[ĤS , ρ̂] +

Γ

2

[

D(ρ̂, d̂†e) +D(ρ̂, d̂g)
]

, (3)

with D(ρ̂, γ̂) = 2γ̂†ρ̂γ̂ − γ̂γ̂†ρ̂− ρ̂γ̂γ̂† for any operator γ̂.
The system dynamics after an excitation at t = 0 is

illustrated in Fig. 2. The vacuum Rabi oscillations decay,
with the excited state probabilities ∝ e−Γt/4 for Γ ≪ g0.
Hence, the system excitation is eventually transformed
into an electron-hole pair excitation in the lead as |−e0⟩ →
|−00⟩ → |−g0⟩, i.e. the DQD electron, in |e⟩, tunnels out
into the lead followed by a back tunneling into |g⟩.
Pump-probe scheme – We consider an experimentally

relevant pump-probe scheme, with a periodic pumping,
or excitation, of the qubit. Importantly, the pump period
τ constitutes a versatile tool for investigating the differ-
ent time scales of the dynamics. We focus on periodic
steady-state operation, where the state of the system is
entirely determined by the time t passed since the last
pumping, i.e. ρ̂(t+mτ) = ρ̂(t), with m = 0, 1, 2.. . The
density operator is then given by

ρ̂(t) = eLtReL(τ−t)ρ̂(t) , 0 < t < τ, (4)

where Rγ̂ = R̂γ̂R̂†.
The probe consists of a non-invasive charge detector

(not shown in Fig. 1), monitoring the individual dot-
lead tunneling events in time [34, 35]. Since tunneling
into (out of) the DQD creates a hole (an electron) exci-
tation in the lead, we here consider the statistics of elec-
tron and hole transfers into the lead per pumping cycle.
The full counting statistics for a time periodic system
can be obtained along the lines of [41]. We introduce an
electron (hole) counting field χe (χh) into the Liouvil-
lian of Eq. (3), so that L → L(χe,χh). The cumulant
generating function (CGF) over N ≥ 1 periods is

SN (χe,χh) = ln[⟨[ReL(χe,χh)τ ]N ⟩0] , (5)

where ⟨γ̂⟩0 = tr[γ̂ρ̂(0)]. From the CGF one
obtains the mean and variance of the num-
ber of electrons (holes) emitted per period as
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FIG. 2: (color online) a) Complete excitation transfer cycle:
(I) The qubit is excited by a fast pulse. (II) The qubit decays
by emitting a photon into the cavity. (III) The dot electron
absorbs the cavity photon and tunnels out to the lead. (IV) A
lead electron tunnels into the ground state of the dot, leaving
an electron-hole pair excitation in the lead. b) Decay of vac-
uum Rabi oscillations for Γ = g0. Probabilities as a function
of time for the states |+g0⟩, |−g1⟩, |−e0⟩ shown.

states of the DQD. The qubit operators σ̂± = σ̂x ± iσ̂y

and σ̂z are expressed in Pauli matrices. In the local basis
|±⟩ denote the excited/ground state of the qubit, |e/g/0⟩
describe the DQD in the excited/ground state or unoccu-
pied and |p⟩ the cavity state with p photons. Throughout
the paper we neglect qubit decoherence and cavity losses,
a reasonable assumption based on circuit QED experi-
ments, see e.g. [37–39]. A discussion of DQD dephasing
and relaxation is deferred to the last paragraph.
Single excitation dynamics – To provide a basic picture

of the dynamics we first consider a single excitation of
the isolated DQD-cavity-qubit system. By applying an
appropriate sequence of fast pulses, on a nanosecond time
scale, the qubit is excited, see e.g. [32, 40]. This can
be described by the operator R̂ = (σ̂+ + σ̂−) /2 = σ̂x.
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This shows that the system performs vacuum Rabi os-
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and the DQD, via the cavity, with a frequency

√
2g0.

Turning to the transport setup in Fig. 1, with the
DQD coupled to a lead electrode, the result in Eq. (2)
is modified. The lead, at thermal equilibrium with a
temperature T and chemical potential µ, is described

with the Hamiltonian ĤL =
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k ϵk ĉ
†
kĉk, where ĉ†k de-

notes the creation operator for an electron at energy
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dots, forming the DQD, to be zero. For this case the
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The system dynamics after an excitation at t = 0 is
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Pump-probe scheme – We consider an experimentally

relevant pump-probe scheme, with a periodic pumping,
or excitation, of the qubit. Importantly, the pump period
τ constitutes a versatile tool for investigating the differ-
ent time scales of the dynamics. We focus on periodic
steady-state operation, where the state of the system is
entirely determined by the time t passed since the last
pumping, i.e. ρ̂(t+mτ) = ρ̂(t), with m = 0, 1, 2.. . The
density operator is then given by

ρ̂(t) = eLtReL(τ−t)ρ̂(t) , 0 < t < τ, (4)

where Rγ̂ = R̂γ̂R̂†.
The probe consists of a non-invasive charge detector

(not shown in Fig. 1), monitoring the individual dot-
lead tunneling events in time [34, 35]. Since tunneling
into (out of) the DQD creates a hole (an electron) exci-
tation in the lead, we here consider the statistics of elec-
tron and hole transfers into the lead per pumping cycle.
The full counting statistics for a time periodic system
can be obtained along the lines of [41]. We introduce an
electron (hole) counting field χe (χh) into the Liouvil-
lian of Eq. (3), so that L → L(χe,χh). The cumulant
generating function (CGF) over N ≥ 1 periods is
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into the lead followed by a back tunneling into |g⟩.
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τ constitutes a versatile tool for investigating the differ-
ent time scales of the dynamics. We focus on periodic
steady-state operation, where the state of the system is
entirely determined by the time t passed since the last
pumping, i.e. ρ̂(t+mτ) = ρ̂(t), with m = 0, 1, 2.. . The
density operator is then given by
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where Rγ̂ = R̂γ̂R̂†.
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(not shown in Fig. 1), monitoring the individual dot-
lead tunneling events in time [34, 35]. Since tunneling
into (out of) the DQD creates a hole (an electron) exci-
tation in the lead, we here consider the statistics of elec-
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The full counting statistics for a time periodic system
can be obtained along the lines of [41]. We introduce an
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⌧ is a tool to explore different dynamics regimes
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Coherent Photon-Electron Dynamics
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And with a Real DQD?

• Quantum dot with relaxation and dephasing 
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Conclusions

Dynamics can be investigated via charge transfer


