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We study the current drag in the system of two electrostatically coupled finite 1D electron channels.

We present the perturbation theory results along with the results for two nonperturbative regimes. It
is shown that the drag can become absolute; that is, the currents in the channels are equal in a finite
window of the bias voltages. [S0031-9007(98)06648-4]

PACS numbers: 71.10.Pm, 73.23.Ad

The recent experiments with two capacitively coupled
two-dimensional electron gases (2DEG) [1] demonstrated
that, owing to Coulomb interaction, electrons moving in
one of the 2DEG drag the electrons of the adjacent 2DEG.
Therefore the system works as a dc current transformer.
The transformation coefficient is, however, much smaller
than one [2,3]. In specially designed coupled 1D arrays of
ultrasmall tunnel junctions Coulomb interaction can lead to
the absolute current drag [4]. This means that the electric
currents in two capacitively coupled circuits are equal in
magnitude in a certain region of voltages applied to the
circuits, and the system may work as a current copier. This
prediction has been recently confirmed [5] experimentally.
The mechanism of the absolute current drag in small

tunnel junctions is, however, quite different from the
momentum-transfer mechanism in the 2DEG. The aim
of the present work is to show that in the 1D electron
channels, the momentum-transfer mechanism can also lead
to the absolute current drag. We consider a system of two
channels of finite length L that are adiabatically connected
to the reservoirs of effectively noninteracting electrons
(Fig. 1). The channels are assumed to be coupled only
by the Coulomb interaction. We assume no impurities
in the channels that would cause electron backscattering.
Recent advances [6] demonstrate that such systems can be
successfully fabricated in the near future.
We stress that in the system of two wires studied

in this work the drag couples dissipative currents, and
the presence of the reservoirs is of crucial importance.
Another phenomenon, drag of persistent currents, should
occur in closed 1D loops penetrated by magnetic flux [7].
To get an intuitive feeling of how the absolute current

drag can occur in such a system, let us consider the case
of strong electron repulsion. In this case, electrons in
each channel form a rigid Wigner lattice. Provided the
channels are close to each other, the repulsion coordinates
not only the positions of electrons inside the same channel
but also the positions of neighboring electrons in the other
channel (Fig. 1). Now, if the electrons in one of the
channels move, electrons in the other channel must follow

their motion, and the electric currents in the channels
are equal.
Such a simple model says very little about realistic 1D

channels where electrons are subjected to strong quantum
fluctuations. Below we develop a consistent theory of
current drag which accounts for these fluctuations. The
main prediction of the theory is that the (almost) absolute
current drag survives quantum fluctuations. It can occur
even if the repulsive interaction is weak provided the
channels are sufficiently long.
We model each of the two coupled 1D conductors as

“Luttinger constriction” with spinless electrons, i.e., use
the standard Hamiltonian [8]
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FIG. 1. The system under consideration. Two 1D channels
are open to reservoirs and separated by insulating barrier. The
electrostatic repulsion coordinates the positions of electrons
(black circles) in the channels, the fact that can lead to the
absolute current drag.
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Coulomb-interaction-induced current (or voltage) induced in one 
system (drag) when a current is driven in a nearby system (drive)



Coulomb drag in 3D-2D-1D

1D: 
   Fermi liquid theory breaks down, Luttinger liquid paradigm.
   Simplest model: linearized bands, Tomonaga Luttinger Liquid (TLL)
   + Corrections due to finite curvature (forward scattering)110

Review of One-Dimensional Quantum Transport and 1D-1D

Coulomb Drag
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Fig. 4.11: Temperature dependence of the drag resistance within the Lut-

tinger liquid formalism with forward scattering corrections for (a) wires with

an identical density and (b) wires with a large density mismatch. For the large

density mismatch case, only forward scattering is considered as backscattering

is exponentially suppressed. For a slight density mismatch between the wires,

the drag resistance can still increase with decreasing temperature for T < T ∗

if backscattering is stronger than forward scattering.

If the temperature is lowered further so that T ∗ < T < T0, then the drag

resistance takes the form

RD ∼ ci
l0

�
T

EF

�2

, (4.46)

where ci = π2/4 in the case of negligible intra-wire electron-electron interac-

tions. When intra-wire interactions are taken into account, the general shape

of equation 4.46 remains the same, but ci ∝ g6

1+g with g defined as g =
vF
uρ
. A

plot of this temperature dependence is presented in figure 4.11 (a).

Once again, the overall behavior of the drag should be different for wires
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Experimental Situation so far

In the Coulomb drag measurement, we in-
jected a constant current I into the drive wire
and measured the voltage drop Vdrag along the
drag wire. We used a low frequency (1 to 7
Hz) alternating current (AC) lock-in technique,
but beforehand we confirmed the drag signal
itself in a direct current (DC) measurement.
The drag resistance, RD, is defined as RD 0
jVdrag/I, which is normally positive. The
current I was set to be small enough (e 1
nA) to suppress inter-subband coupling of
electrons propagating in the drive wire. In this
regime, the relationship between I and Vdrag

was linear. However, for a very small current

(order pA) the I-Vdrag relationship became
nonlinear. Both the drive and drag wires
showed a plateau-like conductance feature,
which was lower than the quantized value,
because of scattering in the lengthy wires
ESupporting Online Material (SOM) Text^.
Negative RD was observed when the conduct-
ance was lower than the flat region of the
lowest plateau for both wires. In this regime,
electrons propagate through a single-mode 1D
channel in the wire with transmission probabil-
ity less than 1, and the electron density of each
wire becomes small as the side gate voltage is
made more negative.

Typical experimental data of RD versus side
gate voltage of the drive wire, Vgdrive, measured
for a L0 0 4 mm, CW1 wire are shown in Fig.
2A. The side gate voltage of the drag wire,
Vgdrag, was fixed such that the conductance of
the drag wire, Gdrag, was around or less than the
first plateau. For a magnetic field B G 1.1 T, RD

was positive in the whole Vgdrive range, as was
the case for previous Coulomb drag experi-
ments (9). On the other hand, for B Q 1.3 T, RD

became negative in a Vgdrive range where the
drive wire conductance, Gdrive, was lower than
the lowest plateau. This negative drag became
stronger and appeared in a wider range of
Vgdrive as the magnetic field was increased. At
higher magnetic fields, a well-flattened spin-
resolved plateau of conductance appeared for
the drive wire, and then negative drag disap-
peared on this plateau but was still present
below it (SOM Text). In some samples, we
observed negative drag even at B 0 0 T for the
drive wire with very low electron density,
whereas in other samples we only observed
small or zero negative drag at B , 0 T. We
conclude that sources of positive and negative
drag, with independent origin, are competing
and, in the less-correlated high-disorder regime,
positive drag dominates. As already shown in
Fig. 2A, net negative drag occurred as long as
the drive conductance was below the first
plateau (SOM Text). In addition, in Fig. 2B
measured at B 0 7 T, negative RD appeared
only in a limited range of drag gate voltages,
i.e., j0.9 V G Vgdrag G j0.5 V. In this Vgdrag
range, Gdrag was also below the flat region of its
(spin-resolved) plateau, and accordingly the
drag wire electron density was relatively low
but, as we discuss below, not too low. The neg-
ative drag in Fig. 2B became large as temper-
ature was lowered, and interestingly the lower
threshold gate voltage (at around –0.9 V) of the
drag wire, below which the drag again becomes
positive, was temperature-independent.

Fig. 1. (A) Scanning electron microscopy (SEM) image of CW1 and experimental setup. Devices were
defined by three Schottky gates in an n-AlGaAs/GaAs 2DEG-based heterostructure (for n-AlGaAs/GaAs,
2DEG mobility was m ; 106 cm2 V–1 s–1, electron density was ns ; 3 ! 1011 cm–2, and depth of 2DEG
was 90 nm) using standard split-gate techniques. A sufficiently large negative voltage was applied to
the center gate that the interwire tunneling resistance was much higher than 100 MW. In this
condition the drag-wire voltage induced by the tunneling current is negligible. The electron density of
each wire was varied by the voltage, Vgdrive and Vgdrag, applied to the side gate of the drive and the
drag wires, respectively. (B) SEM image of CW2. (C) Schematic images of positive and negative
electron drags. Arrows indicate the direction of electron flow. In the positive drag, direction of the
electron flow in the drag wire was the same as that in the drive wire, whereas in the negative drag,
direction of the electron flow in the drag wire was opposite to that in the drive wire.

Fig. 2. (A) RD versus
Vgdrive of a CW1 sample
with L0 0 4 mm mea-
sured for Vgcenter 0
j0.9 V, Vgdrag 0
j0.92 V, and I 0 1 nA
at T 0 10 mK. The black,
red, green, blue, and
light blue lines are the
data for B values of 0.9,
1.1, 1.3, 1.5, and 1.7 T,
respectively. Negative
drag was observed for
Vgdrive G j1.0 V in a
magnetic field of 1.3 T
and forVgdrive G j0.8 V
in 1.7 T. (B) Drag resist-
ance versus Vgdrag mea-
sured at a magnetic field of 7 T for Vgcenter 0 j0.9 V, Vgdrive 0j0.8 V, and I 0 1 nA. Conductance of the drive wire was well below the first spin-resolved plateau
but not very close to the pinch-off. The negative drag became small as the temperature was raised from 200 mK (black) to 400 mK (red), 600 mK (green), and
800 mK (blue).
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Localization transition in a ballistic quantum wire
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The many-body wave function of localized states in one dimension is probed by measuring the tunneling
conductance between two parallel wires, fabricated in a GaAs/AlGaAs heterostructure. Tunneling conductance
in the presence of a magnetic field perpendicular to the plane of the wires serves as probe of the momentum
space wave function of the wires. One of the two wires is driven into the localized regime using a density
tuning gate, whereas the other wire, still in the regime of extended electronic states, serves as a momentum
spectrometer. As the electron density is lowered to a critical value, the state at the Fermi level abruptly changes
from an extended state with a well-defined momentum to a localized state with a wide range of momentum
components. The signature of the localized states appears as discrete tunneling features at resonant gate
voltages, corresponding to the depletion of single electrons and showing Coulomb-Blockade behavior. Typi-
cally 5–10 such features appear, where the one-electron state has a single-lobed momentum distribution, and
the few-electron states have double-lobed distributions with peaks at ±kF. A theoretical model suggests that for
a small number of particles !N!6", the observed state is a mixture of ground and thermally excited spin states.

DOI: 10.1103/PhysRevB.73.113307 PACS number!s": 73.21.Hb, 73.20.Qt, 73.23.Ad

Coulomb interactions in many-body quantum systems can
lead to the creation of exotic phases of matter. A prime ex-
ample is a Luttinger liquid, which describes a system of in-
teracting electrons confined to one spatial dimension.1 At
high electron densities the electron kinetic energy dominates
over the Coulomb energy and the transport properties of the
system resemble those of noninteracting electrons. In this
weakly interacting limit, conductance is quantized even in
the presence of moderate disorder.2,3 Reducing the electron
density suppresses the kinetic energy more rapidly than the
Coulomb energy, leading to the strongly interacting limit,
where charge correlations resemble those in a Wigner crys-
tal, an ordered lattice of electrons with periodicity n−1 !n is
the average electron density". In this limit, one expects the
weakest amount of disorder to pin the crystal, thereby sup-
pressing conductance at low temperatures.4 In a previous
work5 we presented tunneling measurements of a wire under-
going suppression of conductance as n is reduced below a
critical density. The electrons left in the wire are argued to be
localized. Here we focus on these localized electrons, mea-
suring their many-body wave function using tunneling spec-
troscopy between two wires, the localized wire and another
extended wire.

Momentum resolved tunneling between two quantum
wires has been shown to be an effective experimental tool in
the study of interacting one-dimensional !1D" systems. This
method uses tunneling across an extended junction between
two closely situated parallel clean quantum wires.6 An elec-
tron tunneling across the junction gets a momentum boost of
q=eBd /" !B is the magnetic field perpendicular to the plane
of the wires, d is the distance between them, as in Fig. 1".
The probability for an electron to tunnel between the wires
can be measured through the tunneling conductance GT!B"
!taken at low, but finite bias voltage VSD". At low tempera-

tures GT!B"# #$!k"#2,5,7 assuming the lower wire is uniform
and weakly interacting, where $!k" is the tunneling matrix
element

$!k" = $
−%

%

dxeikx$!x" , !1"

$!x" is a “quasiwave function” for the upper wire, defined
by: $!x"= %N−1#&!x"#N&. Here k=qB−kF

L, where kF
U ,kF

L are
the Fermi-wave number in the upper, lower wires !UW, LW".
#N& is the ground state for N particles in the UW, and &!x" is
an operator that removes an electron from point x in the
UW.8 In the absence of interactions, $!x" would be the wave
function of the Nth electron, which is a plane wave for an
infinite system. In this case we expect #$!k"#2#'!k+kF

U"

FIG. 1. !Color online" A schematic of the measurement setup
with cleave plane front, perpendicular to B. Depicted: 2 (m wide
top gates !G1, G2, and G3", 20 nm thick upper wire at the edge of
the 2DEG, 30 nm thick lower wire and 6 nm insulating AlGaAs
barrier. US!x"'UM!x"(: Schematic of UW gate-induced potentials for
single-mode !multimode" wires, EF

U is the Fermi energy of the upper
wire. Ohmic contact O1 serves as source, O2,3 as drains. Density is
controlled by gate voltage VG. Two-terminal current is marked by I,
tunneling current by IT.
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In the Coulomb drag measurement, we in-
jected a constant current I into the drive wire
and measured the voltage drop Vdrag along the
drag wire. We used a low frequency (1 to 7
Hz) alternating current (AC) lock-in technique,
but beforehand we confirmed the drag signal
itself in a direct current (DC) measurement.
The drag resistance, RD, is defined as RD 0
jVdrag/I, which is normally positive. The
current I was set to be small enough (e 1
nA) to suppress inter-subband coupling of
electrons propagating in the drive wire. In this
regime, the relationship between I and Vdrag

was linear. However, for a very small current

(order pA) the I-Vdrag relationship became
nonlinear. Both the drive and drag wires
showed a plateau-like conductance feature,
which was lower than the quantized value,
because of scattering in the lengthy wires
ESupporting Online Material (SOM) Text^.
Negative RD was observed when the conduct-
ance was lower than the flat region of the
lowest plateau for both wires. In this regime,
electrons propagate through a single-mode 1D
channel in the wire with transmission probabil-
ity less than 1, and the electron density of each
wire becomes small as the side gate voltage is
made more negative.

Typical experimental data of RD versus side
gate voltage of the drive wire, Vgdrive, measured
for a L0 0 4 mm, CW1 wire are shown in Fig.
2A. The side gate voltage of the drag wire,
Vgdrag, was fixed such that the conductance of
the drag wire, Gdrag, was around or less than the
first plateau. For a magnetic field B G 1.1 T, RD

was positive in the whole Vgdrive range, as was
the case for previous Coulomb drag experi-
ments (9). On the other hand, for B Q 1.3 T, RD

became negative in a Vgdrive range where the
drive wire conductance, Gdrive, was lower than
the lowest plateau. This negative drag became
stronger and appeared in a wider range of
Vgdrive as the magnetic field was increased. At
higher magnetic fields, a well-flattened spin-
resolved plateau of conductance appeared for
the drive wire, and then negative drag disap-
peared on this plateau but was still present
below it (SOM Text). In some samples, we
observed negative drag even at B 0 0 T for the
drive wire with very low electron density,
whereas in other samples we only observed
small or zero negative drag at B , 0 T. We
conclude that sources of positive and negative
drag, with independent origin, are competing
and, in the less-correlated high-disorder regime,
positive drag dominates. As already shown in
Fig. 2A, net negative drag occurred as long as
the drive conductance was below the first
plateau (SOM Text). In addition, in Fig. 2B
measured at B 0 7 T, negative RD appeared
only in a limited range of drag gate voltages,
i.e., j0.9 V G Vgdrag G j0.5 V. In this Vgdrag
range, Gdrag was also below the flat region of its
(spin-resolved) plateau, and accordingly the
drag wire electron density was relatively low
but, as we discuss below, not too low. The neg-
ative drag in Fig. 2B became large as temper-
ature was lowered, and interestingly the lower
threshold gate voltage (at around –0.9 V) of the
drag wire, below which the drag again becomes
positive, was temperature-independent.

Fig. 1. (A) Scanning electron microscopy (SEM) image of CW1 and experimental setup. Devices were
defined by three Schottky gates in an n-AlGaAs/GaAs 2DEG-based heterostructure (for n-AlGaAs/GaAs,
2DEG mobility was m ; 106 cm2 V–1 s–1, electron density was ns ; 3 ! 1011 cm–2, and depth of 2DEG
was 90 nm) using standard split-gate techniques. A sufficiently large negative voltage was applied to
the center gate that the interwire tunneling resistance was much higher than 100 MW. In this
condition the drag-wire voltage induced by the tunneling current is negligible. The electron density of
each wire was varied by the voltage, Vgdrive and Vgdrag, applied to the side gate of the drive and the
drag wires, respectively. (B) SEM image of CW2. (C) Schematic images of positive and negative
electron drags. Arrows indicate the direction of electron flow. In the positive drag, direction of the
electron flow in the drag wire was the same as that in the drive wire, whereas in the negative drag,
direction of the electron flow in the drag wire was opposite to that in the drive wire.

Fig. 2. (A) RD versus
Vgdrive of a CW1 sample
with L0 0 4 mm mea-
sured for Vgcenter 0
j0.9 V, Vgdrag 0
j0.92 V, and I 0 1 nA
at T 0 10 mK. The black,
red, green, blue, and
light blue lines are the
data for B values of 0.9,
1.1, 1.3, 1.5, and 1.7 T,
respectively. Negative
drag was observed for
Vgdrive G j1.0 V in a
magnetic field of 1.3 T
and forVgdrive G j0.8 V
in 1.7 T. (B) Drag resist-
ance versus Vgdrag mea-
sured at a magnetic field of 7 T for Vgcenter 0 j0.9 V, Vgdrive 0j0.8 V, and I 0 1 nA. Conductance of the drive wire was well below the first spin-resolved plateau
but not very close to the pinch-off. The negative drag became small as the temperature was raised from 200 mK (black) to 400 mK (red), 600 mK (green), and
800 mK (blue).
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Experimental Breakthrough:
Vertically Coupled 1D Wires & Independent Contacting

voltage¼20.23 V, where both wires have almost identical 1D sub-
band occupancies for a given lower plunger gate (LPL) voltage. For a
fixed UPL¼20.34 V, the wires’ sub-band occupancies differ
greatly, as depicted in Fig. 3b. These measurements demonstrate
that our design allows control of the number of occupied sub-
bands in each circuit.

In the ballistic regime, electron transmission is unhindered and∑
i¼1
N Ti¼N in the quantum transport conductance G¼

(2e2/h)
∑

i¼1
N Ti , whereas an increase in scattering along the

wire causes
∑

i¼1
N Ti,N in the non-ballistic regime. The wires pre-

sented here are in the non-ballistic regime and the spacing between
the conductance plateau features is less than 2e2/h. Correcting for
the contact resistance by subtracting a series resistance from the
quantum wires yields an even conductance spacing between the
plateau-like features, albeit one smaller than 2e2/h, as shown in
Fig. 3a,b. A 1.25 kV (5.00 kV) contact resistance was subtracted
from the lower (upper) wire conductance. This higher value of
the contact resistance is due to partial depletion of the upper
2DEG when the gates are biased for the drag measurement (see
Methods). An even conductance spacing of plateau-like features at
values lower than 2e2/h in quasi 1D structures was previously
observed20 and has been found not to affect the one-dimensional
nature of the quantum wires. We also show in Fig. 3c the derivative
of the conductance of the lower wire as a function of LPL voltage.
Plateau-like features are observed when the derivative approaches
zero, appearing as black and blue stripes in this mapping. This
tracking of the plateau-like features, combined with their even
conductance spacing, strongly supports the existence of well-
defined 1D sub-bands.

Coupling two independent electrical circuits by proximity may
lead to signals in one circuit, the origins of which are entirely
from the neighbouring circuit, such as Coulomb drag. To measure
this drag effect, a current Idrive is set in one of the (drive) circuits.
Under the condition of no current flow, a voltage Vdrag develops
across the second (drag) circuit, defining a drag resistance
RD;2Vdrag/Idrive that is a direct probe of electron–electron
interactions. Coulomb drag is distinct from rectification and ratchets
mechanisms where a voltage develops owing to a neighbouring
current flow whose I–V characteristics are highly nonlinear (with
respect to Idrive) and non-symmetric with respect to probe inversion.
In contrast, Coulomb drag is an equilibrium phenomenon that is
linear, invertible with respect to probe symmetry, mutual, and
present in ballistic and non-ballistic circuits.

The drag resistance measured in our quantum circuit is shown
in Fig. 4a, together with the conductance of each wire. Coulomb
drag peaks are observed concomitant with the opening of 1D
sub-bands in either wire (see dotted lines in Fig. 4a).
Momentum matching between both wires can explain the presence
of the positive drag peaks when the wires have similar sub-band
occupancies11, but an enhancement of the electron–hole asymme-
try as 1D channels open in the quantum wires21 appears more
likely to explain the presence of positive peaks when the wires
have different sub-band occupancies. In addition, negative
Coulomb drag is observed in two clearly distinct regimes: one at
low electronic density when the drag wire is close to or beyond
depletion, and one at higher electronic density when Ndrag. 1.
Negative Coulomb drag has been previously observed at low
density (for N, 1 in both wires)12 and attributed to 1D Wigner
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Figure 1 | Schematics of the fabrication process of the vertically coupled quantum circuits. a, Diagram of the double quantum wires device subsequent to
mesa etching, Ge–Au–Ni–Au ohmic contacts deposition and annealing. For visibility purposes, the scale bar in the x–y direction (50mm) is dramatically larger
than the one in the z-direction (1.5mm). b, Diagram showing the deposited upper pinch-off and plunger Ti–Au gates. The off-mesa section of the gates is
patterned using photolithography, and electron-beam lithography is used to define the on-mesa gates. c, Diagram after the epoxy-bond-and-stop-etch
(EBASE) procedure. Note that due to a flipping process following the new substrate bonding, the upper 2DEG is now at the bottom. Similarly, the upper
gates are now buried between the mesa and the epoxied GaAs. The original substrate has been lapped and etched down to !300 nm. d, Diagram showing
the final layout of the double quantum wires device after an Al2O3 insulating layer is deposited, vias are etched through the device to connect the upper
gates and the ohmic contacts to the surface, and another set of Ti–Au split gates is deposited. See Methods for more details.

LETTERS NATURE NANOTECHNOLOGY DOI: 10.1038/NNANO.2011.182

NATURE NANOTECHNOLOGY | VOL 6 | DECEMBER 2011 | www.nature.com/naturenanotechnology794

crystallization. Although Wigner crystallization could explain the
low-density negative drag reported in this Letter, it cannot
explain the high-density negative drag. Negative Coulomb drag has
been predicted to occur following a charge-fluctuation induced
Coulomb drag model in asymmetric mesoscopic circuits21,22, but
more work is required to assess its consistency over the whole
phase space of 1D Coulomb drag.

We show in Fig. 4b the temperature dependence between!0.4 K
and !6 K in both the high-density negative drag and the positive
drag regimes. In either case, the drag resistance shows no saturation
down to the lowest temperature probed in this experiment, confirm-
ing the thermal equilibrium of the electrons in the quantum wires
with the apparatus. The re-entrant negative drag signal disappears
at T≈ 1.2 K, which is consistent with the system leaving the meso-
scopic regime as the temperature length LT¼ hvF/kBT is lowered
from !5.5 mm at 0.33 K to !1.5 mm at 1.2 K, and becomes
shorter than the system size. Figure 4c,d shows the linearity of
the drag voltage with drive current (for small enough drive voltages,
that is, empirically for eVdrive/Kb! 3 K) and the probe symmetry of
the drag signal, confirming that the signals observed are consistent
with Coulomb drag. For wires with a similar sub-band occupancy
presented in Fig. 4a, the drag effect is !2% of the drive voltage
value. However, in wires with significantly different sub-band occu-
pancy, this effect can be as large as 25%.

Coulomb drag between nanoelectronic circuits will become
increasingly important as nanocircuitry becomes coupled by proxi-
mity. As nanostructure cross-sections become comparable to the
three-dimensional screening length, the effective 1D screening
length is expected to become large1. Using typical doping values
for silicon nanowires23, the bulk Thomas–Fermi screening length
lf¼

!!!!!!!!!!!!
eEF/6pe2n

√
, where e is the electron change, n is the electron

density, e is the silicon dielectric constant and EF is the Fermi
energy, is estimated to be !4 nm. Therefore, as nanowire diameter

approaches this length scale, the previously screened Coulomb
interactions will induce Coulomb drag signals in circuit elements
located in close proximity. This drag effect is found to be as large
as 25% of the drive voltage value, or up to 10 mV, for the structures
presented in this Letter, which is far from negligible. An under-
standing of 1D Coulomb drag phenomena in model systems such
as quantum wires will ultimately prove to be an essential asset to
understanding the coupling between independently addressed
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Figure 2 | Split gates design generating the double quantum wire
structure. a, Schematic of the active part of the double quantum wires
device. The EBASE process causes the lower gates and lower 2DEG to be
above the upper gates and 2DEG. b, Schematic of the active part of the
device when a suitable bias is applied on all four split gates, effectively
coupling both circuits solely through 1D regions. The T-shaped pinch-off
gates are simultaneously adjusted to deplete their respective 2DEG,
effectively preventing any current flow in the section of the layer underneath
(above) the lower wire (upper wire) and creating two independently
contacted 2DEGs. Using the plunger gates, two quantum wires are then
formed. c, Scanning electron microscope images of the device. The LPL and
pinch-off gates are visible on the surface of the device. d, Zoom-in on the
interacting region of the device. See Methods for more details.
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Figure 3 | Characterization of the non-ballistic quantum wires.
a,b, Conductance (grey) and corrected conductance (black) in the lower
wire (left axis) and in the upper wire (blue and dark blue curves respectively,
right axis) as a function of LPL voltage for fixed UPL¼20.23 V and similar
sub-band occupancies in both wires (a) and fixed UPL¼20.34 V and
significantly different sub-band occupancies in both wires (b). For the
corrected conductance, 1.25 kV (5.00 kV) series resistance was subtracted
from the lower (upper) wire conductance. c, Derivative of the lower wire
conductance as a function of LPL voltage. Conductance plateau-like features
appear as black and blue stripes in the figure.
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crystallization. Although Wigner crystallization could explain the
low-density negative drag reported in this Letter, it cannot
explain the high-density negative drag. Negative Coulomb drag has
been predicted to occur following a charge-fluctuation induced
Coulomb drag model in asymmetric mesoscopic circuits21,22, but
more work is required to assess its consistency over the whole
phase space of 1D Coulomb drag.

We show in Fig. 4b the temperature dependence between!0.4 K
and !6 K in both the high-density negative drag and the positive
drag regimes. In either case, the drag resistance shows no saturation
down to the lowest temperature probed in this experiment, confirm-
ing the thermal equilibrium of the electrons in the quantum wires
with the apparatus. The re-entrant negative drag signal disappears
at T≈ 1.2 K, which is consistent with the system leaving the meso-
scopic regime as the temperature length LT¼ hvF/kBT is lowered
from !5.5 mm at 0.33 K to !1.5 mm at 1.2 K, and becomes
shorter than the system size. Figure 4c,d shows the linearity of
the drag voltage with drive current (for small enough drive voltages,
that is, empirically for eVdrive/Kb! 3 K) and the probe symmetry of
the drag signal, confirming that the signals observed are consistent
with Coulomb drag. For wires with a similar sub-band occupancy
presented in Fig. 4a, the drag effect is !2% of the drive voltage
value. However, in wires with significantly different sub-band occu-
pancy, this effect can be as large as 25%.

Coulomb drag between nanoelectronic circuits will become
increasingly important as nanocircuitry becomes coupled by proxi-
mity. As nanostructure cross-sections become comparable to the
three-dimensional screening length, the effective 1D screening
length is expected to become large1. Using typical doping values
for silicon nanowires23, the bulk Thomas–Fermi screening length
lf¼

!!!!!!!!!!!!
eEF/6pe2n

√
, where e is the electron change, n is the electron

density, e is the silicon dielectric constant and EF is the Fermi
energy, is estimated to be !4 nm. Therefore, as nanowire diameter

approaches this length scale, the previously screened Coulomb
interactions will induce Coulomb drag signals in circuit elements
located in close proximity. This drag effect is found to be as large
as 25% of the drive voltage value, or up to 10 mV, for the structures
presented in this Letter, which is far from negligible. An under-
standing of 1D Coulomb drag phenomena in model systems such
as quantum wires will ultimately prove to be an essential asset to
understanding the coupling between independently addressed
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Figure 2 | Split gates design generating the double quantum wire
structure. a, Schematic of the active part of the double quantum wires
device. The EBASE process causes the lower gates and lower 2DEG to be
above the upper gates and 2DEG. b, Schematic of the active part of the
device when a suitable bias is applied on all four split gates, effectively
coupling both circuits solely through 1D regions. The T-shaped pinch-off
gates are simultaneously adjusted to deplete their respective 2DEG,
effectively preventing any current flow in the section of the layer underneath
(above) the lower wire (upper wire) and creating two independently
contacted 2DEGs. Using the plunger gates, two quantum wires are then
formed. c, Scanning electron microscope images of the device. The LPL and
pinch-off gates are visible on the surface of the device. d, Zoom-in on the
interacting region of the device. See Methods for more details.
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Figure 3 | Characterization of the non-ballistic quantum wires.
a,b, Conductance (grey) and corrected conductance (black) in the lower
wire (left axis) and in the upper wire (blue and dark blue curves respectively,
right axis) as a function of LPL voltage for fixed UPL¼20.23 V and similar
sub-band occupancies in both wires (a) and fixed UPL¼20.34 V and
significantly different sub-band occupancies in both wires (b). For the
corrected conductance, 1.25 kV (5.00 kV) series resistance was subtracted
from the lower (upper) wire conductance. c, Derivative of the lower wire
conductance as a function of LPL voltage. Conductance plateau-like features
appear as black and blue stripes in the figure.
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measurements in both wires for sample 2-L and
2-C, respectively. Steps are observed in the con-
ductance of the wires, but as the wires are non-
ballistic, the conductance is not exactly quantized
in units of 2e2=h, where e is the elctronic charge
and h is Planck’s contant. Such plateau-like fea-
tures at reduced conductance G < 2e2=h! N ,

with N the number of quantum-mechanical chan-
nels, have been observed previously (24), and it
was found that well-defined 1D subbands were
still formed in the wires. Three main features are
observed in the 1D-1D drag (22): (i) peaks in the
drag signal concomitant with the opening of
1D subbands, (ii) negative Coulomb drag at low

density when the conductance in the drag wire
is nearly depleted, and (iii) a negative Coulomb
drag occurring between peaks in the drag signal
(at a higher subband occupancy). We reproduced
these qualitative features of the drag signal in
several devices over numerous cooldowns (see,
e.g., Fig. 2A); the features are consistent with

Fig. 1. Design of the vertically integrated quan-
tum wire device. (A) Schematic of the active part
of the double quantum wires device. The epoxy bond
and stop-etch (EBASE) process causes the lower gates
and two-dimensional electron gas (2DEG) to be above
the upper gates and 2DEG. (B) In the interacting
region of the device, two independent quantum wires
are created, and superimposed vertically, andCoulomb
drag measurements are performed. (C) Scanning elec-
tronmicrograph of the device. The lower plunger (LPL)
and pinch-off gate are visible on top of the device. The
upper plunger (UPL) and pinch-off gate are also
visible underneath the lower gates. After process-
ing, the electron density in the upper (lower) layer
is 1.1 (1.4) × 1011 cm−2. (D) Typical conductance
data of the lower quantum wire (green curve, left
axis) and of the upper quantum wire (blue curve,
right axis) from sample 2-C for fixed UPL = –0.23 V.
Because each gate is capacitively coupled to both
wires, varying the voltage in a single gate affects the
conductance of both wires.

Fig. 2. Coulomb drag measurements in vertically
integrated quantum wires. (A) Drag resistance at
T = 75 mK (red curve, left axis) versus gate voltage,
along with the conductance in the upper and lower
quantum wires (blue and green curves, respectively;
right axis) for sample 2-L for fixed UPL = –0.15 V. (B)
Drag resistance at T = 330 mK (black curve, left axis)
versus gate voltage, along with the conductance in
the upper and lower quantum wires (blue and green
curves, respectively; right axis) for sample 2-C for fixed
UPL = –0.23 V. (C) Temperature dependence of the
Coulomb drag signal in sample 2-C for quantum wires
with a single subband occupied (black curve), less than a
full subband occupied (green curve), and slightly more
than a single subband occupied (gray curve). The drag signal changes
drastically with the wire’s subband occupancy, or 1D density. (D) Expected
behavior of the drag resistance versus temperature based on TLL theory,
including corrections from forward scattering. [Cartoon reprinted with
permission from (10). Copyright (2003) by the American Physical Society.]
Here, T0 = ℏvFd−1, d is the interwire separation, vF is the Fermi velocity, and
eF is the Fermi energy. (E) Temperature dependence of the drag signal for
samples 2-L, 2-C, and 3-R. For samples 2-L and 2-C, the temperature

dependence was taken with no more than one 1D subband occupancy in each
wire [highlighted by a gray stripe in (A) and (B), respectively], whereas the
number of 1D subbands occupied in sample 3-R is bounded by 0 < Ndrive ≤ 2
and 0 ≤ Ndrag ≤ 3. The magnitude of the drag resistance in sample 2-L is
divided by 200 for visibility; the large difference in magnitude of the drag
signal between devices is likely caused by slight differences in the density
mismatch of the pair of wires from sample to sample, as RD is expected to
decrease exponentially with increasing density mismatch.
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Results I: 
Demonstration of independent control of the wires

measurements in both wires for sample 2-L and
2-C, respectively. Steps are observed in the con-
ductance of the wires, but as the wires are non-
ballistic, the conductance is not exactly quantized
in units of 2e2=h, where e is the elctronic charge
and h is Planck’s contant. Such plateau-like fea-
tures at reduced conductance G < 2e2=h! N ,

with N the number of quantum-mechanical chan-
nels, have been observed previously (24), and it
was found that well-defined 1D subbands were
still formed in the wires. Three main features are
observed in the 1D-1D drag (22): (i) peaks in the
drag signal concomitant with the opening of
1D subbands, (ii) negative Coulomb drag at low

density when the conductance in the drag wire
is nearly depleted, and (iii) a negative Coulomb
drag occurring between peaks in the drag signal
(at a higher subband occupancy). We reproduced
these qualitative features of the drag signal in
several devices over numerous cooldowns (see,
e.g., Fig. 2A); the features are consistent with

Fig. 1. Design of the vertically integrated quan-
tum wire device. (A) Schematic of the active part
of the double quantum wires device. The epoxy bond
and stop-etch (EBASE) process causes the lower gates
and two-dimensional electron gas (2DEG) to be above
the upper gates and 2DEG. (B) In the interacting
region of the device, two independent quantum wires
are created, and superimposed vertically, andCoulomb
drag measurements are performed. (C) Scanning elec-
tronmicrograph of the device. The lower plunger (LPL)
and pinch-off gate are visible on top of the device. The
upper plunger (UPL) and pinch-off gate are also
visible underneath the lower gates. After process-
ing, the electron density in the upper (lower) layer
is 1.1 (1.4) × 1011 cm−2. (D) Typical conductance
data of the lower quantum wire (green curve, left
axis) and of the upper quantum wire (blue curve,
right axis) from sample 2-C for fixed UPL = –0.23 V.
Because each gate is capacitively coupled to both
wires, varying the voltage in a single gate affects the
conductance of both wires.

Fig. 2. Coulomb drag measurements in vertically
integrated quantum wires. (A) Drag resistance at
T = 75 mK (red curve, left axis) versus gate voltage,
along with the conductance in the upper and lower
quantum wires (blue and green curves, respectively;
right axis) for sample 2-L for fixed UPL = –0.15 V. (B)
Drag resistance at T = 330 mK (black curve, left axis)
versus gate voltage, along with the conductance in
the upper and lower quantum wires (blue and green
curves, respectively; right axis) for sample 2-C for fixed
UPL = –0.23 V. (C) Temperature dependence of the
Coulomb drag signal in sample 2-C for quantum wires
with a single subband occupied (black curve), less than a
full subband occupied (green curve), and slightly more
than a single subband occupied (gray curve). The drag signal changes
drastically with the wire’s subband occupancy, or 1D density. (D) Expected
behavior of the drag resistance versus temperature based on TLL theory,
including corrections from forward scattering. [Cartoon reprinted with
permission from (10). Copyright (2003) by the American Physical Society.]
Here, T0 = ℏvFd−1, d is the interwire separation, vF is the Fermi velocity, and
eF is the Fermi energy. (E) Temperature dependence of the drag signal for
samples 2-L, 2-C, and 3-R. For samples 2-L and 2-C, the temperature

dependence was taken with no more than one 1D subband occupancy in each
wire [highlighted by a gray stripe in (A) and (B), respectively], whereas the
number of 1D subbands occupied in sample 3-R is bounded by 0 < Ndrive ≤ 2
and 0 ≤ Ndrag ≤ 3. The magnitude of the drag resistance in sample 2-L is
divided by 200 for visibility; the large difference in magnitude of the drag
signal between devices is likely caused by slight differences in the density
mismatch of the pair of wires from sample to sample, as RD is expected to
decrease exponentially with increasing density mismatch.
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crystallization. Although Wigner crystallization could explain the
low-density negative drag reported in this Letter, it cannot
explain the high-density negative drag. Negative Coulomb drag has
been predicted to occur following a charge-fluctuation induced
Coulomb drag model in asymmetric mesoscopic circuits21,22, but
more work is required to assess its consistency over the whole
phase space of 1D Coulomb drag.

We show in Fig. 4b the temperature dependence between!0.4 K
and !6 K in both the high-density negative drag and the positive
drag regimes. In either case, the drag resistance shows no saturation
down to the lowest temperature probed in this experiment, confirm-
ing the thermal equilibrium of the electrons in the quantum wires
with the apparatus. The re-entrant negative drag signal disappears
at T≈ 1.2 K, which is consistent with the system leaving the meso-
scopic regime as the temperature length LT¼ hvF/kBT is lowered
from !5.5 mm at 0.33 K to !1.5 mm at 1.2 K, and becomes
shorter than the system size. Figure 4c,d shows the linearity of
the drag voltage with drive current (for small enough drive voltages,
that is, empirically for eVdrive/Kb! 3 K) and the probe symmetry of
the drag signal, confirming that the signals observed are consistent
with Coulomb drag. For wires with a similar sub-band occupancy
presented in Fig. 4a, the drag effect is !2% of the drive voltage
value. However, in wires with significantly different sub-band occu-
pancy, this effect can be as large as 25%.

Coulomb drag between nanoelectronic circuits will become
increasingly important as nanocircuitry becomes coupled by proxi-
mity. As nanostructure cross-sections become comparable to the
three-dimensional screening length, the effective 1D screening
length is expected to become large1. Using typical doping values
for silicon nanowires23, the bulk Thomas–Fermi screening length
lf¼

!!!!!!!!!!!!
eEF/6pe2n

√
, where e is the electron change, n is the electron

density, e is the silicon dielectric constant and EF is the Fermi
energy, is estimated to be !4 nm. Therefore, as nanowire diameter

approaches this length scale, the previously screened Coulomb
interactions will induce Coulomb drag signals in circuit elements
located in close proximity. This drag effect is found to be as large
as 25% of the drive voltage value, or up to 10 mV, for the structures
presented in this Letter, which is far from negligible. An under-
standing of 1D Coulomb drag phenomena in model systems such
as quantum wires will ultimately prove to be an essential asset to
understanding the coupling between independently addressed
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Figure 2 | Split gates design generating the double quantum wire
structure. a, Schematic of the active part of the double quantum wires
device. The EBASE process causes the lower gates and lower 2DEG to be
above the upper gates and 2DEG. b, Schematic of the active part of the
device when a suitable bias is applied on all four split gates, effectively
coupling both circuits solely through 1D regions. The T-shaped pinch-off
gates are simultaneously adjusted to deplete their respective 2DEG,
effectively preventing any current flow in the section of the layer underneath
(above) the lower wire (upper wire) and creating two independently
contacted 2DEGs. Using the plunger gates, two quantum wires are then
formed. c, Scanning electron microscope images of the device. The LPL and
pinch-off gates are visible on the surface of the device. d, Zoom-in on the
interacting region of the device. See Methods for more details.
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Figure 3 | Characterization of the non-ballistic quantum wires.
a,b, Conductance (grey) and corrected conductance (black) in the lower
wire (left axis) and in the upper wire (blue and dark blue curves respectively,
right axis) as a function of LPL voltage for fixed UPL¼20.23 V and similar
sub-band occupancies in both wires (a) and fixed UPL¼20.34 V and
significantly different sub-band occupancies in both wires (b). For the
corrected conductance, 1.25 kV (5.00 kV) series resistance was subtracted
from the lower (upper) wire conductance. c, Derivative of the lower wire
conductance as a function of LPL voltage. Conductance plateau-like features
appear as black and blue stripes in the figure.
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Results II: 
Drag resistance

measurements in both wires for sample 2-L and
2-C, respectively. Steps are observed in the con-
ductance of the wires, but as the wires are non-
ballistic, the conductance is not exactly quantized
in units of 2e2=h, where e is the elctronic charge
and h is Planck’s contant. Such plateau-like fea-
tures at reduced conductance G < 2e2=h! N ,

with N the number of quantum-mechanical chan-
nels, have been observed previously (24), and it
was found that well-defined 1D subbands were
still formed in the wires. Three main features are
observed in the 1D-1D drag (22): (i) peaks in the
drag signal concomitant with the opening of
1D subbands, (ii) negative Coulomb drag at low

density when the conductance in the drag wire
is nearly depleted, and (iii) a negative Coulomb
drag occurring between peaks in the drag signal
(at a higher subband occupancy). We reproduced
these qualitative features of the drag signal in
several devices over numerous cooldowns (see,
e.g., Fig. 2A); the features are consistent with

Fig. 1. Design of the vertically integrated quan-
tum wire device. (A) Schematic of the active part
of the double quantum wires device. The epoxy bond
and stop-etch (EBASE) process causes the lower gates
and two-dimensional electron gas (2DEG) to be above
the upper gates and 2DEG. (B) In the interacting
region of the device, two independent quantum wires
are created, and superimposed vertically, andCoulomb
drag measurements are performed. (C) Scanning elec-
tronmicrograph of the device. The lower plunger (LPL)
and pinch-off gate are visible on top of the device. The
upper plunger (UPL) and pinch-off gate are also
visible underneath the lower gates. After process-
ing, the electron density in the upper (lower) layer
is 1.1 (1.4) × 1011 cm−2. (D) Typical conductance
data of the lower quantum wire (green curve, left
axis) and of the upper quantum wire (blue curve,
right axis) from sample 2-C for fixed UPL = –0.23 V.
Because each gate is capacitively coupled to both
wires, varying the voltage in a single gate affects the
conductance of both wires.

Fig. 2. Coulomb drag measurements in vertically
integrated quantum wires. (A) Drag resistance at
T = 75 mK (red curve, left axis) versus gate voltage,
along with the conductance in the upper and lower
quantum wires (blue and green curves, respectively;
right axis) for sample 2-L for fixed UPL = –0.15 V. (B)
Drag resistance at T = 330 mK (black curve, left axis)
versus gate voltage, along with the conductance in
the upper and lower quantum wires (blue and green
curves, respectively; right axis) for sample 2-C for fixed
UPL = –0.23 V. (C) Temperature dependence of the
Coulomb drag signal in sample 2-C for quantum wires
with a single subband occupied (black curve), less than a
full subband occupied (green curve), and slightly more
than a single subband occupied (gray curve). The drag signal changes
drastically with the wire’s subband occupancy, or 1D density. (D) Expected
behavior of the drag resistance versus temperature based on TLL theory,
including corrections from forward scattering. [Cartoon reprinted with
permission from (10). Copyright (2003) by the American Physical Society.]
Here, T0 = ℏvFd−1, d is the interwire separation, vF is the Fermi velocity, and
eF is the Fermi energy. (E) Temperature dependence of the drag signal for
samples 2-L, 2-C, and 3-R. For samples 2-L and 2-C, the temperature

dependence was taken with no more than one 1D subband occupancy in each
wire [highlighted by a gray stripe in (A) and (B), respectively], whereas the
number of 1D subbands occupied in sample 3-R is bounded by 0 < Ndrive ≤ 2
and 0 ≤ Ndrag ≤ 3. The magnitude of the drag resistance in sample 2-L is
divided by 200 for visibility; the large difference in magnitude of the drag
signal between devices is likely caused by slight differences in the density
mismatch of the pair of wires from sample to sample, as RD is expected to
decrease exponentially with increasing density mismatch.
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conductors at the nanoscale, for example coupled nanowires for
nanoprocessing24.

Methods
Device fabrication. The wires were patterned on an n-doped GaAs/AlGaAs
electron bilayer heterostructure with two 18-nm-wide quantum wells separated by a
15-nm-wide Al0.3Ga0.7As barrier. After a mesa-structure was wet-etched using
phosphoric acid into the double quantum well heterostructure, Ge–Au–Ni–Au
ohmic contacts were deposited on the structure (Fig. 1a). Following an annealing at
420 8C for 60 s, a set of two Ti–Au split gates, consisting of a T-shaped pinch-off gate
and a plunger gate, was defined on the surface of the heterostructure. The off-mesa
patterning was defined using photolithography and electron-beam lithography was
used to pattern the gates on-mesa (Fig. 1b). The thickness of the gates was 160 nm
off-mesa and 60 nm on-mesa. A set of four alignment marks was also patterned
simultaneously to the patterning of the electron-beam lithography-defined top gates.
These marks were used to align the lower gates to the upper ones. Once the upper
side processing was complete, bare GaAs was glued on top of the substrate and the
sample flipped, mechanically lapped and chemically etched until the lower 2DEG
was only!150 nm away from the lower surface (now on top of the device, as show in
Fig. 1c), following an EBASE technique19. Two stop-etch layers were incorporated in
the original heterostructure: a larger AlGaAs stop-etch layer and a thinner GaAs
stop-etch layer. The purpose of the AlGaAs stop-etch layer was to flatten out the
unevenness arising from the lapping process during the subsequent citric wet-
etching. Indeed, the citric acid etch rate is greatly reduced in AlGaAs compared to
GaAs, allowing the surface of the device to be smoothed after mechanical lapping.
After the citric etch, the remainder of the AlGaAs stop-etch layer was etched using
hydrofluoric acid, leaving only the thin GaAs stop-etch layer, which was grown to
prevent over-etching during the hydrofluoric etch. To ensure that no off-mesa
leakage occurred between the upper and lower gates, a thin 60 nm layer of Al2O3 was
deposited on the top of the device using atomic layer deposition. Using phosphoric
acid, vias were then etched through the surface to enable electrical connection to the
ohmic contacts and to the upper split gates on the buried surface of the device.
Finally, using a combination of photolithography and electron-beam lithography,

another set of two Ti–Au split gates was defined on the lower side of the sample and
aligned with the upper gates using the previously deposited alignment marks buried
underneath the surface. It is possible to observe these marks using a scanning
electron microscope or an electron-beam lithography tool with an accelerated
voltage greater than or equal to 30 keV, and therefore precisely align the lower and
upper gates. The end result is presented in Fig. 1d.

Device operation. The pinch-off gates were first adjusted so that they principally
deplete the 2DEG closest to them. While each pinch-off gate can deplete both
2DEGs for sufficiently large applied negative voltage, a 0.3 V (0.15 V) wide
plateau (where the conductance across the device is roughly constant) is observed
when sweeping the upper (lower) pinch-off gate. On this plateau, the 2DEG
closest to the gate is fully depleted whereas the other one is only partially depleted.
For the device presented in this Letter, the lower gates create a larger partial
depletion than the upper gates, causing the contact resistance to the upper wire to be
larger than the contact resistance of the lower wire. The positioning within the
plateau is adjusted such that the tunnelling resistance between both layers is larger
than 25 MV. In such experimental configuration, there is minimal tunnelling
between the upper and lower layer contacts. Indeed, the depletion mechanism of the
pinch-off gates results in a coupling of each side of the device to a single layer,
allowing simultaneous and independent measurement of both layers, unlike in the
device presented by Bielejec et al.13 Subsequently, adjusting both the LPL and UPL
voltages allows for independent tuning of the sub-band occupancy in each
independent wire.

Device characterization. Measurements performed on the sample post-processing
with the split gates grounded yielded an electronic density of 1.1 (1.4)× 1011 cm22

for the upper (lower) 2DEG, and a combined mobility of 4.0× 105 cm2 V s21.
Transport measurements on individual quantum wires were performed in a 3He
refrigerator at a temperature of 330 mK using a constant 50 mV excitation at 9 Hz in
the lower wire and 13 Hz in the upper wire in a two-contact configuration. The
Coulomb drag measurements were performed in a constant-current mode where
4.5 nA at 9 Hz was sent through the drive wire. In this configuration, the
out-of-phase current was always much smaller than the in-phase current.
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measurements in both wires for sample 2-L and
2-C, respectively. Steps are observed in the con-
ductance of the wires, but as the wires are non-
ballistic, the conductance is not exactly quantized
in units of 2e2=h, where e is the elctronic charge
and h is Planck’s contant. Such plateau-like fea-
tures at reduced conductance G < 2e2=h! N ,

with N the number of quantum-mechanical chan-
nels, have been observed previously (24), and it
was found that well-defined 1D subbands were
still formed in the wires. Three main features are
observed in the 1D-1D drag (22): (i) peaks in the
drag signal concomitant with the opening of
1D subbands, (ii) negative Coulomb drag at low

density when the conductance in the drag wire
is nearly depleted, and (iii) a negative Coulomb
drag occurring between peaks in the drag signal
(at a higher subband occupancy). We reproduced
these qualitative features of the drag signal in
several devices over numerous cooldowns (see,
e.g., Fig. 2A); the features are consistent with

Fig. 1. Design of the vertically integrated quan-
tum wire device. (A) Schematic of the active part
of the double quantum wires device. The epoxy bond
and stop-etch (EBASE) process causes the lower gates
and two-dimensional electron gas (2DEG) to be above
the upper gates and 2DEG. (B) In the interacting
region of the device, two independent quantum wires
are created, and superimposed vertically, andCoulomb
drag measurements are performed. (C) Scanning elec-
tronmicrograph of the device. The lower plunger (LPL)
and pinch-off gate are visible on top of the device. The
upper plunger (UPL) and pinch-off gate are also
visible underneath the lower gates. After process-
ing, the electron density in the upper (lower) layer
is 1.1 (1.4) × 1011 cm−2. (D) Typical conductance
data of the lower quantum wire (green curve, left
axis) and of the upper quantum wire (blue curve,
right axis) from sample 2-C for fixed UPL = –0.23 V.
Because each gate is capacitively coupled to both
wires, varying the voltage in a single gate affects the
conductance of both wires.

Fig. 2. Coulomb drag measurements in vertically
integrated quantum wires. (A) Drag resistance at
T = 75 mK (red curve, left axis) versus gate voltage,
along with the conductance in the upper and lower
quantum wires (blue and green curves, respectively;
right axis) for sample 2-L for fixed UPL = –0.15 V. (B)
Drag resistance at T = 330 mK (black curve, left axis)
versus gate voltage, along with the conductance in
the upper and lower quantum wires (blue and green
curves, respectively; right axis) for sample 2-C for fixed
UPL = –0.23 V. (C) Temperature dependence of the
Coulomb drag signal in sample 2-C for quantum wires
with a single subband occupied (black curve), less than a
full subband occupied (green curve), and slightly more
than a single subband occupied (gray curve). The drag signal changes
drastically with the wire’s subband occupancy, or 1D density. (D) Expected
behavior of the drag resistance versus temperature based on TLL theory,
including corrections from forward scattering. [Cartoon reprinted with
permission from (10). Copyright (2003) by the American Physical Society.]
Here, T0 = ℏvFd−1, d is the interwire separation, vF is the Fermi velocity, and
eF is the Fermi energy. (E) Temperature dependence of the drag signal for
samples 2-L, 2-C, and 3-R. For samples 2-L and 2-C, the temperature

dependence was taken with no more than one 1D subband occupancy in each
wire [highlighted by a gray stripe in (A) and (B), respectively], whereas the
number of 1D subbands occupied in sample 3-R is bounded by 0 < Ndrive ≤ 2
and 0 ≤ Ndrag ≤ 3. The magnitude of the drag resistance in sample 2-L is
divided by 200 for visibility; the large difference in magnitude of the drag
signal between devices is likely caused by slight differences in the density
mismatch of the pair of wires from sample to sample, as RD is expected to
decrease exponentially with increasing density mismatch.
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tinger liquid formalism with forward scattering corrections for (a) wires with

an identical density and (b) wires with a large density mismatch. For the large

density mismatch case, only forward scattering is considered as backscattering

is exponentially suppressed. For a slight density mismatch between the wires,

the drag resistance can still increase with decreasing temperature for T < T ∗

if backscattering is stronger than forward scattering.

If the temperature is lowered further so that T ∗ < T < T0, then the drag

resistance takes the form

RD ∼ ci
l0

�
T

EF

�2

, (4.46)

where ci = π2/4 in the case of negligible intra-wire electron-electron interac-

tions. When intra-wire interactions are taken into account, the general shape

of equation 4.46 remains the same, but ci ∝ g6

1+g with g defined as g =
vF
uρ
. A

plot of this temperature dependence is presented in figure 4.11 (a).

Once again, the overall behavior of the drag should be different for wires

measurements in both wires for sample 2-L and
2-C, respectively. Steps are observed in the con-
ductance of the wires, but as the wires are non-
ballistic, the conductance is not exactly quantized
in units of 2e2=h, where e is the elctronic charge
and h is Planck’s contant. Such plateau-like fea-
tures at reduced conductance G < 2e2=h! N ,

with N the number of quantum-mechanical chan-
nels, have been observed previously (24), and it
was found that well-defined 1D subbands were
still formed in the wires. Three main features are
observed in the 1D-1D drag (22): (i) peaks in the
drag signal concomitant with the opening of
1D subbands, (ii) negative Coulomb drag at low

density when the conductance in the drag wire
is nearly depleted, and (iii) a negative Coulomb
drag occurring between peaks in the drag signal
(at a higher subband occupancy). We reproduced
these qualitative features of the drag signal in
several devices over numerous cooldowns (see,
e.g., Fig. 2A); the features are consistent with

Fig. 1. Design of the vertically integrated quan-
tum wire device. (A) Schematic of the active part
of the double quantum wires device. The epoxy bond
and stop-etch (EBASE) process causes the lower gates
and two-dimensional electron gas (2DEG) to be above
the upper gates and 2DEG. (B) In the interacting
region of the device, two independent quantum wires
are created, and superimposed vertically, andCoulomb
drag measurements are performed. (C) Scanning elec-
tronmicrograph of the device. The lower plunger (LPL)
and pinch-off gate are visible on top of the device. The
upper plunger (UPL) and pinch-off gate are also
visible underneath the lower gates. After process-
ing, the electron density in the upper (lower) layer
is 1.1 (1.4) × 1011 cm−2. (D) Typical conductance
data of the lower quantum wire (green curve, left
axis) and of the upper quantum wire (blue curve,
right axis) from sample 2-C for fixed UPL = –0.23 V.
Because each gate is capacitively coupled to both
wires, varying the voltage in a single gate affects the
conductance of both wires.

Fig. 2. Coulomb drag measurements in vertically
integrated quantum wires. (A) Drag resistance at
T = 75 mK (red curve, left axis) versus gate voltage,
along with the conductance in the upper and lower
quantum wires (blue and green curves, respectively;
right axis) for sample 2-L for fixed UPL = –0.15 V. (B)
Drag resistance at T = 330 mK (black curve, left axis)
versus gate voltage, along with the conductance in
the upper and lower quantum wires (blue and green
curves, respectively; right axis) for sample 2-C for fixed
UPL = –0.23 V. (C) Temperature dependence of the
Coulomb drag signal in sample 2-C for quantum wires
with a single subband occupied (black curve), less than a
full subband occupied (green curve), and slightly more
than a single subband occupied (gray curve). The drag signal changes
drastically with the wire’s subband occupancy, or 1D density. (D) Expected
behavior of the drag resistance versus temperature based on TLL theory,
including corrections from forward scattering. [Cartoon reprinted with
permission from (10). Copyright (2003) by the American Physical Society.]
Here, T0 = ℏvFd−1, d is the interwire separation, vF is the Fermi velocity, and
eF is the Fermi energy. (E) Temperature dependence of the drag signal for
samples 2-L, 2-C, and 3-R. For samples 2-L and 2-C, the temperature

dependence was taken with no more than one 1D subband occupancy in each
wire [highlighted by a gray stripe in (A) and (B), respectively], whereas the
number of 1D subbands occupied in sample 3-R is bounded by 0 < Ndrive ≤ 2
and 0 ≤ Ndrag ≤ 3. The magnitude of the drag resistance in sample 2-L is
divided by 200 for visibility; the large difference in magnitude of the drag
signal between devices is likely caused by slight differences in the density
mismatch of the pair of wires from sample to sample, as RD is expected to
decrease exponentially with increasing density mismatch.
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standard Coulomb drag tests such as frequency
and drive-current independence (22). The wires’
subband occupancy (or 1D density) has a tre-
mendous impact on the general behavior of the
temperature dependence of the Coulomb drag
signal (Fig. 2C). We now focus on the regime in
which only one single 1D subband is occupied in
each wire to probe electron-electron interaction
in the true 1D regime.

Figure 2E shows our main result, where the
temperature dependence of 1D-1D Coulomb drag
is shownwhen only a single 1D subband is present
in both wires (25). Notably, a transition from a
high-temperature regimewhere 1DCoulomb drag
decreases with decreasing temperature, to a low-
temperature regime where the Coulomb drag
diverges as T → 0, is observed. This crossover
occurs at a temperature in the vicinity of T! ≃ 1:6 K
in two samples, whereas the low-temperature be-
havior of the drag signal has been reproduced in
three distinct samples. This upturn in the 1D-1D
drag resistance is theoretically expected to occur
for identical wires with relatively large interwire

separation (kFd > 1, where kF is the Fermi wave
vector) (10, 15). In a 1D system of length L, fluc-
tuations preclude the existence of any long-range
order, and instead, the electronic system should be
described to lowest order by the TTL theory (3)
with an effective Hamiltonian H ¼ Hr þ Hs sep-
arating charge (r) and spin components (s) with

Hi ¼ ðℏ=2pÞ ∫
L

0
dz½ð∂zfiÞ

2ui=Ki þ Kiuið∂zqiÞ2'

where the phases fðzÞi and qðzÞi are defined in
terms of the second quantized electron field op-
erator and i ¼ r,s stands for the charge and the
spin components, respectively. Its low-energy
modes have dispersion eiðkÞ ¼ ℏuik, where ui
is the velocity of the charge or spin component
and is related to the underlying many-body ef-
fective interaction parameters Ki. Assuming a
system with spin-rotation symmetry for which
Ks ¼ 1, the Luttinger charge parameter Kr tunes
the system from attractive interactions ðKr > 1Þ
to repulsive interactions ðKr < 1Þ.

Using a TLLmodel for identical wires (9) and
accounting for the forward momentum-transfer
corrections (10), an upturn temperature T ! was

calculated to beT ! ∼ eFe
−kFd

1 − K −
r . The many-body

Luttinger liquid parameter K −
r here is the rel-

ative interaction parameter for antisymmetric
charge displacement. It is defined as the differ-
ence between small-momentum intra- and inter-
wire interaction parameters (9), yielding K −

r ¼ 1
for Fermi-liquid like systems. Within this mod-
el, backscattering should be the main source of
the Coulomb drag signal for T < T!, leading
to the formation of interlocked charge density
waves in the wires. At temperatures much larger
than T !, forward scattering should dominate,
leading to a transition between an exponential
dependence to a power-law dependence on
temperature provided that 1< kFd ∼ 2:2 and
L> L! ∼ ℏvF=T! ¼ 0:5mm, as is the case in our
samples. Here, L! is a critical length such that,
for L > L!, an exponential increase in drag
resistance is expected asT → 0. Using our best
estimate for the electronic density in the wires
from n1D ¼ ffiffiffiffiffiffiffi

n2D
p

, and an interwire distance
d ≃ 40 nm (corresponding to the barrier width
plus half of both well widths, and the wire align-
ment uncertainty), we estimateK −

r ≃ 0:16 T 0:02
ðK −

r ≃ 0:08 T 0:02Þ from the observed upturn
temperatures in the ≃1:3 to 1:5 K (1.7 to 1.9 K)
range for the wires in sample 2-C (3-R). Al-
though it is possible for backscattering alone to
create such an upturn in the temperature depen-
dence of Coulomb drag between identical wires
when K −

r > 0:5 (9), our wires appear to not be
in this regime and also are not exactly matched.
For density-mismatched wires, backscattering
alone can theoretically induce an upturn in the
temperature dependence, regardless of the value
of K −

r , given a suitable density imbalance be-
tween the wires (16). Such an upturn has also
been predicted to occur in the spin-incoherent
regime of the Luttinger liquid where the spin
exchange energy J ¼ eFe−2:9=

ffiffiffiffiffiffi
naB

p
is suppressed

(15), where aB ¼ eℏ2=m!e2 is the Bohr radius, e
is the dielectric constant, and m! is the electron
effective mass. This regime is expected to occur
for naB ≪ 1 andT! < J < T < eF. In ourwires,
we estimate J ∼ 150 mK < T ! and naB ∼ 0:4,
and therefore it is unikely that our data fall into
this regime.

In Fig. 3, the drag signal is shown versus
temperatures for samples 2-C and 3-R on a linear,
a log-log, and an Arrhenius plot. At temperatures
T > T !, dependence of the drag signal appears
consistent with a power law given by RD ∼ T g,
withg givenby g ¼ 1:9 T 0:1 and g ¼ 3:0 T 0:1
for sample 2-C and 3-R, respectively. This power
law is expected from LL models, including cor-
rections from forward scattering with a theoret-
ical exponent g ¼ 2. We caution, however, that
this model considers Coulomb drag between
wires with identical 1D densities. This is unlikely
to be the case in our system because the parent

Fig. 3. Upturn in the drag resistance and TLL analysis. Drag resistance as a function of temperature
for sample 2-C in a linear scale (A), log-log scale (C), and Arrhenius scale (E) and for sample 3-R in a linear
scale (B), log-log scale (D), and Arrhenius scale (F). For both samples, the log-log and the Arrhenius scales appear
to be linear at high temperature (red dotted line) and deviate from linearity at low temperature. The analytic
form is RDºaTg for the log-log plot and RDºbe−T1=T for the Arrhenius plot. For sample 2-C, the fits yield,
respectively, a = 14:5 T 1:3 W=Kg, g = 1:9 T 0:1, and b = 600 T 60 W, T1 = 4:8 T 0:4 K. For sample
3-R, the fits yield a = 0:12 T 0:01 W=Kg, g = 3:0 T 0:1, and b = 120 T 10 W, T1 = 10:7 T 0:4 K.
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measurements in both wires for sample 2-L and
2-C, respectively. Steps are observed in the con-
ductance of the wires, but as the wires are non-
ballistic, the conductance is not exactly quantized
in units of 2e2=h, where e is the elctronic charge
and h is Planck’s contant. Such plateau-like fea-
tures at reduced conductance G < 2e2=h! N ,

with N the number of quantum-mechanical chan-
nels, have been observed previously (24), and it
was found that well-defined 1D subbands were
still formed in the wires. Three main features are
observed in the 1D-1D drag (22): (i) peaks in the
drag signal concomitant with the opening of
1D subbands, (ii) negative Coulomb drag at low

density when the conductance in the drag wire
is nearly depleted, and (iii) a negative Coulomb
drag occurring between peaks in the drag signal
(at a higher subband occupancy). We reproduced
these qualitative features of the drag signal in
several devices over numerous cooldowns (see,
e.g., Fig. 2A); the features are consistent with

Fig. 1. Design of the vertically integrated quan-
tum wire device. (A) Schematic of the active part
of the double quantum wires device. The epoxy bond
and stop-etch (EBASE) process causes the lower gates
and two-dimensional electron gas (2DEG) to be above
the upper gates and 2DEG. (B) In the interacting
region of the device, two independent quantum wires
are created, and superimposed vertically, andCoulomb
drag measurements are performed. (C) Scanning elec-
tronmicrograph of the device. The lower plunger (LPL)
and pinch-off gate are visible on top of the device. The
upper plunger (UPL) and pinch-off gate are also
visible underneath the lower gates. After process-
ing, the electron density in the upper (lower) layer
is 1.1 (1.4) × 1011 cm−2. (D) Typical conductance
data of the lower quantum wire (green curve, left
axis) and of the upper quantum wire (blue curve,
right axis) from sample 2-C for fixed UPL = –0.23 V.
Because each gate is capacitively coupled to both
wires, varying the voltage in a single gate affects the
conductance of both wires.

Fig. 2. Coulomb drag measurements in vertically
integrated quantum wires. (A) Drag resistance at
T = 75 mK (red curve, left axis) versus gate voltage,
along with the conductance in the upper and lower
quantum wires (blue and green curves, respectively;
right axis) for sample 2-L for fixed UPL = –0.15 V. (B)
Drag resistance at T = 330 mK (black curve, left axis)
versus gate voltage, along with the conductance in
the upper and lower quantum wires (blue and green
curves, respectively; right axis) for sample 2-C for fixed
UPL = –0.23 V. (C) Temperature dependence of the
Coulomb drag signal in sample 2-C for quantum wires
with a single subband occupied (black curve), less than a
full subband occupied (green curve), and slightly more
than a single subband occupied (gray curve). The drag signal changes
drastically with the wire’s subband occupancy, or 1D density. (D) Expected
behavior of the drag resistance versus temperature based on TLL theory,
including corrections from forward scattering. [Cartoon reprinted with
permission from (10). Copyright (2003) by the American Physical Society.]
Here, T0 = ℏvFd−1, d is the interwire separation, vF is the Fermi velocity, and
eF is the Fermi energy. (E) Temperature dependence of the drag signal for
samples 2-L, 2-C, and 3-R. For samples 2-L and 2-C, the temperature

dependence was taken with no more than one 1D subband occupancy in each
wire [highlighted by a gray stripe in (A) and (B), respectively], whereas the
number of 1D subbands occupied in sample 3-R is bounded by 0 < Ndrive ≤ 2
and 0 ≤ Ndrag ≤ 3. The magnitude of the drag resistance in sample 2-L is
divided by 200 for visibility; the large difference in magnitude of the drag
signal between devices is likely caused by slight differences in the density
mismatch of the pair of wires from sample to sample, as RD is expected to
decrease exponentially with increasing density mismatch.
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electronic densities in the two 2D layers differ
by ~20%, and even a slight density imbalance
of less than 2.5% between the wires might have
strong effect on the temperature dependence
of the drag signal (10). Defining a measure of
density imbalance T1 ¼ kFdðvÞ, where dðvÞ is
the difference between the Fermi velocities in
both wires, the drag resistance is expected to
be suppressed as RDº T

T1
e−T1=T , provided

T1 ≥ T ≥ 450 mK. In our samples, the 1D den-
sity imbalance can be as large as 12%, giving
T1 ∼ 5:4 K.Therefore, rather than a simple power-
law dependence, the drag signal should behave
as a convolution between this exponential decay
and a power law, offering a pathway of ex-
planation for the discrepancy between the ex-
ponent g in the two samples. Extracting the
experimental value of T1 from a linear fit of the
Arrhenius plots in the high-temperature regime,
we obtain T1 ¼ 4:8 T 0:4K ðT1 ¼ 10:7 T 0:4KÞ
for sample 2-C (3-R). These extracted T1 val-
ues are comparable to the calculatedT1 ¼ 5:4K
value from the estimated density imbalance in
our wires. Despite this apparent agreement
with a TLL model for Coulomb drag, including
forward-scattering corrections, we stress that we
cannot entirely discriminate between scenarios
involving backscattering alone because it also
predicts an exponential decrease of RD with
decreasing temperature for T > T $ (16). Finite-
length effects could also modify the tempera-
ture dependence of the drag resistance. These
effects are expected to be notable at low tem-
perature and large drive bias voltage, i.e, for
u=q ¼ Vdrive

VL
=T
TL

¼ eVdrive=T ≫ 1, where VL and
TL are determined from the plasmon frequency
of the system (26). For our wires, we estimate
u=q ∼ 1:2=T , and thus finite-length effects are ex-
pected to become negligible for T > 0:6 K, and
so unlikely to modify the drag signal in the high-
temperature regime, as well as the observed upturn.

At temperatures below T $, the drag signal is
expected theoretically to diverge with decreasing
T in the T → 0 limit, with the exact form of the
signal depending on the mismatch conditions be-
tween the wires (16). This increase in drag re-
sistance is a consequence of forward scattering
dying out at the lowest temperatures and of al-
gebraic decaying correlations of a TLL. Although
we unambiguously observe a drag signal in-
creasing with decreasing temperature down to
T ≃ 75 mK (Fig. 2E, sample 2-L), the present
data do not allow us to extract the exact functional
dependence upon temperature of the drag signal
below T$. We also note that mesoscopic fluctu-
ations and finite-size effects (26–28) could con-
tribute to a nonmonotonic temperature dependence
of the drag resistance in the low-temperature re-
gime. Future work is required to further explore
the physics of 1D-1D drag in the T → 0 limit.

As is well known, the conductance of a
quantum wire in the ballistic regime only pos-
sesses a very weak temperature dependence.
On the contrary, the 1D-1D drag signal depends
heavily on temperature, as well as on subband

occupancy. Our observation of an upturn in the
1D-1D Coulomb drag signal confirms, at least
qualitatively, an important prediction of Luttinger
liquid models of quantum wires and potentially
support theories accounting for the nonlinearity
in the electron dispersion. The understanding
of physics of interacting 1D systems is still in its
infancy, and as such, little is known regarding
interacting Luttinger liquids. In the future, it may
be possible to study in similarly fabricated devices
interacting Luttinger liquids formed of interacting
electron and holes, with different effective masses.
Such devices might also be used to determine the
existence of a nuclear spin helix, a recently pre-
dicted novel quantum state of matter (29).
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Although the effects of kinetics on crystal growth are well understood, the role of substrate curvature
is not yet established. We studied rigid, two-dimensional colloidal crystals growing on spherical
droplets to understand how the elastic stress induced by Gaussian curvature affects the growth pathway.
In contrast to crystals grown on flat surfaces or compliant crystals on droplets, these crystals formed
branched, ribbon-like domains with large voids and no topological defects. We show that this
morphology minimizes the curvature-induced elastic energy. Our results illustrate the effects of
curvature on the ubiquitous process of crystallization, with practical implications for nanoscale
disorder-order transitions on curved manifolds, including the assembly of viral capsids, phase
separation on vesicles, and crystallization of tetrahedra in three dimensions.

Since Nicolaus Steno’s pioneering work on
crystal growth in the 17th century (1), it
has been established that the shape of a

crystal is a vestige of its growth pathway. Near
equilibrium, crystals grown from the melt form

compact, faceted structures that minimize inter-
facial area and energy (2, 3); further from equi-
librium, kinetic instabilities (4) permit the formation
of crystals with much larger interfacial areas, such
as dendrites and snowflakes (5).
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electronic densities in the two 2D layers differ
by ~20%, and even a slight density imbalance
of less than 2.5% between the wires might have
strong effect on the temperature dependence
of the drag signal (10). Defining a measure of
density imbalance T1 ¼ kFdðvÞ, where dðvÞ is
the difference between the Fermi velocities in
both wires, the drag resistance is expected to
be suppressed as RDº T

T1
e−T1=T , provided

T1 ≥ T ≥ 450 mK. In our samples, the 1D den-
sity imbalance can be as large as 12%, giving
T1 ∼ 5:4 K.Therefore, rather than a simple power-
law dependence, the drag signal should behave
as a convolution between this exponential decay
and a power law, offering a pathway of ex-
planation for the discrepancy between the ex-
ponent g in the two samples. Extracting the
experimental value of T1 from a linear fit of the
Arrhenius plots in the high-temperature regime,
we obtain T1 ¼ 4:8 T 0:4K ðT1 ¼ 10:7 T 0:4KÞ
for sample 2-C (3-R). These extracted T1 val-
ues are comparable to the calculatedT1 ¼ 5:4K
value from the estimated density imbalance in
our wires. Despite this apparent agreement
with a TLL model for Coulomb drag, including
forward-scattering corrections, we stress that we
cannot entirely discriminate between scenarios
involving backscattering alone because it also
predicts an exponential decrease of RD with
decreasing temperature for T > T $ (16). Finite-
length effects could also modify the tempera-
ture dependence of the drag resistance. These
effects are expected to be notable at low tem-
perature and large drive bias voltage, i.e, for
u=q ¼ Vdrive

VL
=T
TL

¼ eVdrive=T ≫ 1, where VL and
TL are determined from the plasmon frequency
of the system (26). For our wires, we estimate
u=q ∼ 1:2=T , and thus finite-length effects are ex-
pected to become negligible for T > 0:6 K, and
so unlikely to modify the drag signal in the high-
temperature regime, as well as the observed upturn.

At temperatures below T $, the drag signal is
expected theoretically to diverge with decreasing
T in the T → 0 limit, with the exact form of the
signal depending on the mismatch conditions be-
tween the wires (16). This increase in drag re-
sistance is a consequence of forward scattering
dying out at the lowest temperatures and of al-
gebraic decaying correlations of a TLL. Although
we unambiguously observe a drag signal in-
creasing with decreasing temperature down to
T ≃ 75 mK (Fig. 2E, sample 2-L), the present
data do not allow us to extract the exact functional
dependence upon temperature of the drag signal
below T$. We also note that mesoscopic fluctu-
ations and finite-size effects (26–28) could con-
tribute to a nonmonotonic temperature dependence
of the drag resistance in the low-temperature re-
gime. Future work is required to further explore
the physics of 1D-1D drag in the T → 0 limit.

As is well known, the conductance of a
quantum wire in the ballistic regime only pos-
sesses a very weak temperature dependence.
On the contrary, the 1D-1D drag signal depends
heavily on temperature, as well as on subband

occupancy. Our observation of an upturn in the
1D-1D Coulomb drag signal confirms, at least
qualitatively, an important prediction of Luttinger
liquid models of quantum wires and potentially
support theories accounting for the nonlinearity
in the electron dispersion. The understanding
of physics of interacting 1D systems is still in its
infancy, and as such, little is known regarding
interacting Luttinger liquids. In the future, it may
be possible to study in similarly fabricated devices
interacting Luttinger liquids formed of interacting
electron and holes, with different effective masses.
Such devices might also be used to determine the
existence of a nuclear spin helix, a recently pre-
dicted novel quantum state of matter (29).
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Elastic Instability of a Crystal Growing
on a Curved Surface
Guangnan Meng,1 Jayson Paulose,2 David R. Nelson,1,2 Vinothan N. Manoharan2,1*

Although the effects of kinetics on crystal growth are well understood, the role of substrate curvature
is not yet established. We studied rigid, two-dimensional colloidal crystals growing on spherical
droplets to understand how the elastic stress induced by Gaussian curvature affects the growth pathway.
In contrast to crystals grown on flat surfaces or compliant crystals on droplets, these crystals formed
branched, ribbon-like domains with large voids and no topological defects. We show that this
morphology minimizes the curvature-induced elastic energy. Our results illustrate the effects of
curvature on the ubiquitous process of crystallization, with practical implications for nanoscale
disorder-order transitions on curved manifolds, including the assembly of viral capsids, phase
separation on vesicles, and crystallization of tetrahedra in three dimensions.

Since Nicolaus Steno’s pioneering work on
crystal growth in the 17th century (1), it
has been established that the shape of a

crystal is a vestige of its growth pathway. Near
equilibrium, crystals grown from the melt form

compact, faceted structures that minimize inter-
facial area and energy (2, 3); further from equi-
librium, kinetic instabilities (4) permit the formation
of crystals with much larger interfacial areas, such
as dendrites and snowflakes (5).
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