8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	Tunneling of $e/2$ quasiparticles
0000000		

Time-Reversal-Invariant Z₄ Fractional Josephson Effect

Fan Zhang and C. L. Kane - arXiv:1404.1072

We study the Josephson junction mediated by the quantum spin Hall edge states and show that electron-electron interactions lead to a dissipationless fractional Josephson effect in the presence of time-reversal symmetry. Surprisingly, the periodicity is 8π , corresponding to a Josephson frequency $eV/2\hbar$. We estimate the magnitude of interaction induced many-body level splitting responsible for this effect and argue that it can be measured using tunneling spectroscopy. For strong interactions we show that the Josephson effect is associated with the weak tunneling of charge e/2 quasiparticles between the superconductors. Our theory describes a fourfold ground state degeneracy that is similar to that of coupled "fractional" Majorana modes, but is protected by time reversal symmetry.

April 8, 2014

- 4 同 ト - 4 目 ト - 4 目 ト

Layout

8π Josephson effect
 Single particle spectrum
 Many-body spectrum

2 Phase dependence of the tunneling spectrum of ABSs

Ring geometry Ring geometry

3 Tunneling of e/2 quasiparticles

Formalism Hamiltonian in the degenerate ground state

8π Josephson effect ●00 ○000000	Phase dependence of the tunneling spectrum of ABSs o o	
Single particle spectrum		

•
$$\mathcal{H}_{BdG} = \tau^z (-i\hbar v_F \sigma^z \partial_x - \mu) + \Delta_1(x) \tau^x + \Delta_2(x) \tau^y$$
,

- ∢ ⊒ →

- $\mathcal{H}_{BdG} = \tau^z (-i\hbar v_F \sigma^z \partial_x \mu) + \Delta_1(x) \tau^x + \Delta_2(x) \tau^y$,
- $\vec{\sigma}$ ($\vec{\tau}$) are Pauli matrices in spin (particle-hole) space and $\Delta = \Delta_1 + i\Delta_2$ is the proximity induced pair potential

•
$$\mathcal{H}_{BdG} = \tau^z (-i\hbar v_F \sigma^z \partial_x - \mu) + \Delta_1(x) \tau^x + \Delta_2(x) \tau^y$$
,

• $\vec{\sigma}$ ($\vec{\tau}$) are Pauli matrices in spin (particle-hole) space and $\Delta = \Delta_1 + i\Delta_2$ is the proximity induced pair potential

•
$$\Delta(x < -L/2) = \Delta_0$$
, $\Delta(x > L/2) = \Delta_0 e^{i\phi}$, and $\Delta(|x| < L/2) = 0$

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	
Single particle spectrum		0

Time-Reversal-Invariant Z₄ Fractional Josephson Effect

Fan Zhang and C. L. Kane - arXiv:1404.1072

8π Josephson effect Pha	ase dependence of the tunneling spectrum of ABSs	Tunneling of $e/2$ quasiparticles
Single particle spectrum		

• And reev bound states (ABS) spectrum \to solving $\mathcal{H}_{BdG},$ with appropriate boundary conditions

8π Josephson effect ⊙●○ ○○○○○○○	Phase dependence of the tunneling spectrum of ABSs o o	
Single particle spectrum		

- And reev bound states (ABS) spectrum \to solving $\mathcal{H}_{BdG},$ with appropriate boundary conditions
- $L > h v_F / (4 \Delta_0) \Rightarrow$ at least one pair of excited bound states

 $\phi = \pi$

 2π

Figure: (b) The single-particle BdG spectrum of the junction as a function of ϕ , with Kramers degeneracies at $\phi = 0$ and π .

0

•
$$\psi_{n,\sigma} = \begin{pmatrix} u_{n,\sigma} \\ v_{n,\sigma} \end{pmatrix} = \mathcal{A}_n(x) \begin{pmatrix} (-1)^n e^{i\sigma\bar{E}_n\bar{\ell}(x)} \\ -i\sigma e^{-i\sigma\bar{E}_n\bar{\ell}(x)} \end{pmatrix},$$

 $\mathcal{A}_n(x) = 1\sqrt{2L + 2\xi(1-\bar{E}_n^2)^{-1/2}} e^{i\sigma\bar{\mu}\bar{x}-\sqrt{1-\bar{E}_n^2}|\bar{x}-\bar{\ell}(x)|}$

Time-Reversal-Invariant Z₄ Fractional Josephson Effect

◆□ → < ∂ → < ≧ → < ≧ → ≥ < ○ へ</p>
Fan Zhang and C. L. Kane - arXiv:1404.1072

•
$$\psi_{n,\sigma} = \begin{pmatrix} u_{n,\sigma} \\ v_{n,\sigma} \end{pmatrix} = \mathcal{A}_n(x) \begin{pmatrix} (-1)^n e^{i\sigma \bar{E}_n \bar{\ell}(x)} \\ -i\sigma e^{-i\sigma \bar{E}_n \bar{\ell}(x)} \end{pmatrix}$$
,
 $\mathcal{A}_n(x) = 1\sqrt{2L + 2\xi(1 - \bar{E}_n^2)^{-1/2}} e^{i\sigma \bar{\mu}\bar{x} - \sqrt{1 - \bar{E}_n^2}|\bar{x} - \bar{\ell}(x)|}$
• $\bar{E}_n \equiv E_n/\Delta_0$, $\bar{L} \equiv L/\xi = L\Delta_0/\hbar v_F$, $\bar{\ell}(x) = sgn(x)\bar{L}/2$ in central region, and x/ξ elsewhere, $\bar{\mu} = \mu/\Delta$, $\bar{x} = x/\xi$

•
$$\psi_{n,\sigma} = \begin{pmatrix} u_{n,\sigma} \\ v_{n,\sigma} \end{pmatrix} = \mathcal{A}_n(x) \begin{pmatrix} (-1)^n e^{i\sigma \bar{E}_n \bar{\ell}(x)} \\ -i\sigma e^{-i\sigma \bar{E}_n \bar{\ell}(x)} \end{pmatrix}$$
,
 $\mathcal{A}_n(x) = 1\sqrt{2L + 2\xi(1 - \bar{E}_n^2)^{-1/2}} e^{i\sigma \bar{\mu}\bar{x} - \sqrt{1 - \bar{E}_n^2}|\bar{x} - \bar{\ell}(x)|}$
• $\bar{E}_n \equiv E_n/\Delta_0, \ \bar{L} \equiv L/\xi = L\Delta_0/\hbar v_F, \ \bar{\ell}(x) = sgn(x)\bar{L}/2 \text{ in central region, and } x/\xi \text{ elsewhere, } \bar{\mu} = \mu/\Delta, \ \bar{x} = x/\xi$
• $E_{-n} = -E_n \text{ and } \psi_{-n,\sigma} = -i\tau^y \psi_{n,\sigma} \ (n > 0)$

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	Tunneling of $e/2$ quasiparticles
000 ●000000		
Many-body spectrum		

 The lowest state corresponds to the many-body ground state with all positive (negative) energy single-particle states in (b) empty (occupied), whereas higher states are excitations with one or more quasiparticles excited.

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	
000 0 00000		
Many-body spectrum		

• ABS:
$$b_{-n,\sigma} = \sigma b_{n,-\sigma}^{\dagger}$$
 $(n > 0)$ and $b_{0,+} = i b_{0,-}^{\dagger}$

Time-Reversal-Invariant Z₄ Fractional Josephson Effect

Fan Zhang and C. L. Kane - arXiv:1404.1072

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	Tunneling of $e/2$ quasiparticles
000		
000000		
Many-body spectrum		

• ABS:
$$b_{-n,\sigma} = \sigma b_{n,-\sigma}^{\dagger}$$
 $(n > 0)$ and $b_{0,+} = i b_{0,-\sigma}^{\dagger}$

•
$$H(\phi) \mid \Phi_n(\phi) \rangle = \epsilon_n(\phi) \mid \Phi_n(\phi) \rangle$$
, $\epsilon_n(\phi) = \sum_m E_m(\phi)(n_m - \frac{1}{2})$

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	Tunneling of $e/2$ quasiparticles
000		
000000		
Many-body spectrum		

• ABS:
$$b_{-n,\sigma} = \sigma b_{n,-\sigma}^{\dagger}$$
 $(n > 0)$ and $b_{0,+} = i b_{0,-\sigma}^{\dagger}$

•
$$H(\phi) \mid \Phi_n(\phi) \rangle = \epsilon_n(\phi) \mid \Phi_n(\phi) \rangle$$
, $\epsilon_n(\phi) = \sum_m E_m(\phi)(n_m - \frac{1}{2})$

• $| \Phi_n(\phi) \rangle = b_N^{\dagger n_N} \dots b_1^{\dagger n_1} | 0 \rangle$, $n_m = \{0, 1\} \equiv \text{occupation}$ probability of mth ABS

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	
Many-body spectrum	0	0

•
$$\epsilon_n(\phi) = \sum_m E_m(\phi)(n_m - \frac{1}{2}), \ E_{-n} = -E_n$$

Time-Reversal-Invariant Z₄ Fractional Josephson Effect

Fan Zhang and C. L. Kane - arXiv:1404.1072

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	
Many-body spectrum	0	0

•
$$\epsilon_n(\phi) = \sum_m E_m(\phi)(n_m - \frac{1}{2}), \ E_{-n} = -E_n$$

• Calculate ground state many body energy $\epsilon_0(\phi=0)$

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	
000 000000		
Many-body spectrum		

•
$$\epsilon_n(\phi) = \sum_m E_m(\phi)(n_m - \frac{1}{2}), \ E_{-n} = -E_n$$

- Calculate ground state many body energy $\epsilon_0(\phi=0)$
- Now, ground state many body energy $\epsilon_0(\phi=\pi/2,3\pi/2)$

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	
000 000000		
Many-body spectrum		

•
$$\epsilon_n(\phi) = \sum_m E_m(\phi)(n_m - \frac{1}{2}), \ E_{-n} = -E_n$$

- Calculate ground state many body energy $\epsilon_0(\phi=0)$
- Now, ground state many body energy $\epsilon_0(\phi=\pi/2,3\pi/2)$
- Solid and dashed \equiv different local fermion parity

8π Josephson effect ○○○ ○○○●○○○	Phase dependence of the tunneling spectrum of ABSs o o	
Many-body spectrum		

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	Tunneling of $e/2$ quasiparticles
000 000•000		
Many-body spectrum		

• In the presence of electron-electron interactions it splits into two Kramers doublets, each of which has two many-body states with opposite fermion parity.

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	
000 000000		
Many-body spectrum		

- In the presence of electron-electron interactions it splits into two Kramers doublets, each of which has two many-body states with opposite fermion parity.
- It takes four cycles to return to the original ground state, leading to an 8π periodicity in the current phase relation

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	Tunneling of <i>e</i> /2 quasiparticles
0000000		
Many-body spectrum		

•
$$\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_I$$
, $\mathcal{H}_I = \lambda \int_{-L/2}^{L/2} n(x)^2$

Time-Reversal-Invariant Z₄ Fractional Josephson Effect

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	Tunneling of <i>e</i> /2 quasiparticles
0000000		
Many-body spectrum		

•
$$\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_I$$
, $\mathcal{H}_I = \lambda \int_{-L/2}^{L/2} n(x)^2$

•
$$n(x) = \sum_{\sigma} c_{\sigma}^{\dagger} c_{\sigma}$$
 is the charge density

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	Tunneling of <i>e</i> /2 quasiparticles
0000000		
Many-body spectrum		

•
$$\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_I$$
, $\mathcal{H}_I = \lambda \int_{-L/2}^{L/2} n(x)^2$

- $n(x) = \sum_{\sigma} c_{\sigma}^{\dagger} c_{\sigma}$ is the charge density
- Evaluate matrix elements of \mathcal{H}_I between degenerate many-body states

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	Tunneling of <i>e</i> /2 quasiparticles
0000000		
Many-body spectrum		

•
$$\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_I$$
, $\mathcal{H}_I = \lambda \int_{-L/2}^{L/2} n(x)^2$

- $n(x) = \sum_{\sigma} c_{\sigma}^{\dagger} c_{\sigma}$ is the charge density
- Evaluate matrix elements of \mathcal{H}_I between degenerate many-body states

•
$$c_{\sigma}(x) = u_{0,\sigma}b_{0,\sigma} + \sum_{n>0} u_{n,\sigma}b_{n,\sigma} - v_{n,\sigma}\sigma b_{n,\sigma}^{\dagger}$$

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	Tunneling of e/2 quasiparticles
000 00000●0		
Many-body spectrum		

• 4 degenerate many body states are $|\mu,\sigma\rangle=b_{1,\sigma}^{\dagger}|\mu
angle_{0}$

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	Tunneling of e/2 quasiparticles
000 00000●0		
Many-body spectrum		

- 4 degenerate many body states are $|\mu, \sigma\rangle = b_{1,\sigma}^{\dagger} |\mu\rangle_0$
- $|\mu\rangle_0$ is many body ground state $b^{\dagger}_{n,\sigma}b_{n,\sigma}|\mu\rangle_0 = 0$ (n > 0)

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	Tunneling of e/2 quasiparticles
000 00000●0		
Many-body spectrum		

- 4 degenerate many body states are $|\mu, \sigma\rangle = b_{1,\sigma}^{\dagger} |\mu\rangle_0$
- $|\mu\rangle_0$ is many body ground state $b_{n,\sigma}^{\dagger}b_{n,\sigma}|\mu\rangle_0 = 0$ (n > 0)
- $\mu = (-1)^{b^{\dagger}_{0,+}b_{0,+}}$ is the fermion parity

• At $\phi = \pi$, the splitting due to \mathcal{H}_{I} becomes $\delta \sim 2\lambda \int_{-L/2}^{L/2} dx |u_{1,+}^{*} u_{0,-} - iu_{-1,-} u_{0,+}^{*}|^{2} = \frac{\lambda}{\xi} \left(\frac{1}{\sqrt{1-\overline{E}_{1}^{2}}} + \overline{L} \right)^{-1}$

• At $\phi = \pi$, the splitting due to \mathcal{H}_{I} becomes $\delta \sim 2\lambda \int_{-L/2}^{L/2} dx |u_{1,+}^{*}u_{0,-} - iu_{-1,-}u_{0,+}^{*}|^{2} = \frac{\lambda}{\xi} \left(\frac{1}{\sqrt{1-\tilde{E}_{1}^{2}}} + \tilde{L}\right)^{-1}$ • $\tilde{L} \sim 2.6, \ \delta \sim 0.23\lambda/\xi, \ \lambda = (e^{2}/\epsilon) \log(R_{s}/R)$

- At $\phi = \pi$, the splitting due to \mathcal{H}_{I} becomes $\delta \sim 2\lambda \int_{-L/2}^{L/2} dx |u_{1,+}^{*}u_{0,-} - iu_{-1,-}u_{0,+}^{*}|^{2} = \frac{\lambda}{\xi} \left(\frac{1}{\sqrt{1-\bar{E}_{1}^{2}}} + \bar{L}\right)^{-1}$
- $\bar{L}\sim 2.6,~\delta\sim 0.23\lambda/\xi,~\lambda=(e^2/\epsilon)\log(R_s/R)$
- $R, R_s \equiv$ penetration and screening radius of the edge states

• At $\phi = \pi$, the splitting due to \mathcal{H}_{I} becomes $\delta \sim 2\lambda \int_{-L/2}^{L/2} dx |u_{1,+}^{*} u_{0,-} - iu_{-1,-} u_{0,+}^{*}|^{2} = \frac{\lambda}{\xi} \left(\frac{1}{\sqrt{1-\bar{E}_{1}^{2}}} + \bar{L}\right)^{-1}$ • $\bar{L} \sim 2.6, \ \delta \sim 0.23\lambda/\xi, \ \lambda = (e^{2}/\epsilon) \log(R_{s}/R)$ • $R, R_{s} \equiv$ penetration and screening radius of the edge states • $\epsilon = 20, \xi = 100 \text{ nm}, \text{ and } \log(R_{s}/R) = 1 \Rightarrow \delta \sim 0.17 \text{meV}$

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	Tunneling of $e/2$ quasiparticles

Layout

8π Josephson effect
 Single particle spectrum
 Many-body spectrum

2 Phase dependence of the tunneling spectrum of ABSs

Ring geometry Ring geometry

3 Tunneling of e/2 quasiparticles

Formalism Hamiltonian in the degenerate ground state

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	Tunneling of <i>e</i> /2 quasiparticles
Ring geometry		

Figure: At low temperatures, weakly coupled tunnel junction probes the local tunneling density of states $dI/dV \propto \rho(E = eV)$

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	Tunneling of <i>e</i> /2 quasiparticles
Ring geometry		

Figure: At low temperatures, weakly coupled tunnel junction probes the local tunneling density of states $dI/dV \propto \rho(E = eV)$

•
$$\rho(E) = \sum_{N,\sigma} |\langle N | c_{\sigma}^{\dagger} | 0 \rangle|^2 \delta(E - E_N + E_0)$$

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	Tunneling of <i>e</i> /2 quasiparticles
Ring geometry		

Figure: At low temperatures, weakly coupled tunnel junction probes the local tunneling density of states $dI/dV \propto \rho(E = eV)$

•
$$\rho(E) = \sum_{N,\sigma} |\langle N | c_{\sigma}^{\dagger} | 0 \rangle|^2 \delta(E - E_N + E_0)$$

• c_{σ}^{\dagger} is the creation operator for an electron with spin σ in the junction and $|N\rangle$ are the many-body states

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	Tunneling of <i>e</i> /2 quasiparticles
000000	•	
Ring geometry		

- Selection rule: |N
angle has opposite parity as compared to |0
angle

- Selection rule: $|N\rangle$ has opposite parity as compared to $|0\rangle$
- dI/dV must consist of peaks at $eV = \epsilon_N \epsilon_0$

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	Tunneling of <i>e</i> /2 quasiparticles
000		
Ring geometry		

- Selection rule: $|N\rangle$ has opposite parity as compared to $|0\rangle$
- dI/dV must consist of peaks at $eV = \epsilon_N \epsilon_0$

8π Josephson effect 000 0000000	Phase dependence of the tunneling spectrum of ABSs \circ	
Ring geometry		

- Selection rule: $|N\rangle$ has opposite parity as compared to $|0\rangle$
- dI/dV must consist of peaks at $eV = \epsilon_N \epsilon_0$

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	Tunneling of <i>e</i> /2 quasiparticles
000		
Ring geometry		

- Selection rule: $|N\rangle$ has opposite parity as compared to $|0\rangle$
- dI/dV must consist of peaks at $eV = \epsilon_N \epsilon_0$

• Singularity lowest peak goes to zero

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	Tunneling of <i>e</i> /2 quasiparticles
000		
Ring geometry		

- Selection rule: $|N\rangle$ has opposite parity as compared to $|0\rangle$
- dI/dV must consist of peaks at $eV = \epsilon_N \epsilon_0$

- Singularity lowest peak goes to zero
- TRS breaking shifts this singularity

Layout

8π Josephson effect
 Single particle spectrum
 Many-body spectrum

2 Phase dependence of the tunneling spectrum of ABSs

Ring geometry Ring geometry

3 Tunneling of e/2 quasiparticles

Formalism Hamiltonian in the degenerate ground state

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	Tunneling of $e/2$ quasiparticles
000000		ō
Formalism		

• Pair backscattering term $\propto c^{\dagger}_{L\downarrow}c^{\dagger}_{L\downarrow}c_{R\uparrow}c_{R\uparrow}$

8π Josephson effect 000 0000000	Phase dependence of the tunneling spectrum of ABSs o o	Tunneling of e/2 quasiparticles ● ○
Formalism		
Pair baMoment	ickscattering term $\propto c^\dagger_{L\downarrow}c^\dagger_{L\downarrow}c_{R\uparrow}c_{R\uparrow}$ ntum conserving process at $\mu=0$	

8π Josephson effect 000 0000000	Phase dependence of the tunneling spectrum of ABSs 0 0	Tunneling of <i>e</i> /2 quasiparticles ● ○
Formalism		
 Pair b Mome Boson [φ(x), 	ackscattering term $\propto c^{\dagger}_{L\downarrow}c^{\dagger}_{L\downarrow}c_{R\uparrow}c_{R\uparrow}$ ntum conserving process at $\mu = 0$ ization $c^{\dagger}_{R\uparrow(L\downarrow)} \propto e^{i(\varphi\pm\theta)}$ where $\theta(x')] = i\pi\Theta(x - x')$	

8π Josephson effect 000 0000000	Phase dependence of the tunneling spectrum of ABS 0 0	Ss Tunneling of <i>e</i> /2 quasiparticles ● ○
Formalism		
 Pair back Momentu Bosonizat [φ(x), θ(x) H = H₀ - 	Ascattering term $\propto c_{L\downarrow}^{\dagger} c_{L\downarrow}^{\dagger} c_{R\uparrow} c_{R\uparrow}$ in conserving process at $\mu = 0$ tion $c_{R\uparrow(L\downarrow)}^{\dagger} \propto e^{i(\varphi \pm \theta)}$ where $[x')] = i\pi\Theta(x - x')$ $+ \mathcal{H}_I + \mathcal{H}_{\theta} + \mathcal{H}_{\varphi}$	

8π Josephson effect 000 0000000	Phase dependence of the tunneling spectrum of Al o	SS Tunneling of <i>e</i> /2 quasiparticles
Formalism		
 Pair back Momentu Bosonizar [φ(x), θ(x) H = H₀ H₀ + H₁ 	escattering term $\propto c_{L\downarrow}^{\dagger} c_{L\downarrow}^{\dagger} c_{R\uparrow} c_{H}$ in conserving process at $\mu = 0$ tion $c_{R\uparrow(L\downarrow)}^{\dagger} \propto e^{i(\varphi \pm \theta)}$ where $\epsilon')] = i\pi\Theta(x - x')$ $+ \mathcal{H}_{I} + \mathcal{H}_{\theta} + \mathcal{H}_{\varphi}$ $= \frac{v_{F}}{2\pi} \left[(\partial_{x}\theta)^{2} + (\partial_{x}\varphi)^{2} \right] + \frac{\lambda(x)}{\pi^{2}}$	$\frac{2}{(\partial_x \theta)^2}$

8π Josephson effect 000 0000000	Phase dependence of the tunneling spe o o		Tunneling of $e/2$ quasiparticles
Formalism			
• Pair back • Momentu • Bosoniza $[\varphi(x), \theta(x)]$ • $\mathcal{H} = \mathcal{H}_0$ • $\mathcal{H}_0 + \mathcal{H}_1$ • $\mathcal{H}_{\varphi} = u_0$	escattering term $\propto c_{L\downarrow}^{\dagger} c_{L\downarrow}^{\dagger} c_{L\downarrow}^{\dagger}$ um conserving process a tion $c_{R\uparrow(L\downarrow)}^{\dagger} \propto e^{i(\varphi \pm \theta)}$ w $x')] = i\pi\Theta(x - x')$ $+ \mathcal{H}_{I} + \mathcal{H}_{\theta} + \mathcal{H}_{\varphi}$ $= \frac{v_{F}}{2\pi} \left[(\partial_{x}\theta)^{2} + (\partial_{x}\varphi)^{2} \right]$ $\left[\Theta(-\frac{L}{2} - x) \cos 2\varphi + \Theta \right]$	$f_{\perp}^{\dagger} C_{R\uparrow} C_{R\uparrow}$ t $\mu = 0$ there $\left[+ \frac{\lambda(x)}{\pi^2} (\partial_x \theta)^2 + \frac{\lambda(x)}{\pi^2} (\partial_x (2\varphi)^2 + \frac{L}{2}) \cos(2\varphi) \right]$	$-\phi)]$

8π Josephson effect 000 0000000	Phase dependence of the tunneling spectrum of ABSs o o	Tunneling of <i>e</i> /2 quasiparticles ● ○
Formalism		
• Pair back • Momentu • Bosoniza $[\varphi(x), \theta(x)]$ • $\mathcal{H} = \mathcal{H}_0$ • $\mathcal{H}_0 + \mathcal{H}_1$ • $\mathcal{H}_{\varphi} = u_0$ • $\mathcal{H}_{\theta} = v_0$	Ascattering term $\propto c_{L\downarrow}^{\dagger} c_{L\downarrow} c_{R\uparrow} c_{R\uparrow}$ Jum conserving process at $\mu = 0$ tion $c_{R\uparrow(L\downarrow)}^{\dagger} \propto e^{i(\varphi \pm \theta)}$ where $x')] = i\pi\Theta(x - x')$ $+ \mathcal{H}_{I} + \mathcal{H}_{\theta} + \mathcal{H}_{\varphi}$ $= \frac{v_{F}}{2\pi} \left[(\partial_{x}\theta)^{2} + (\partial_{x}\varphi)^{2} \right] + \frac{\lambda(x)}{\pi^{2}} (\partial_{x}\theta)^{2}$ $\left[\Theta(-\frac{L}{2} - x) \cos 2\varphi + \Theta(x - \frac{L}{2}) \cos \Theta(\frac{L}{2} - x) \cos 4\theta \right]$	$(2\varphi - \phi)$]

8π Josephson effect 000 0000000	Phase dependence of the tunneling spectrum o O O		Tunneling of $e/2$ quasiparticles
Formalism			
• Pair back • Momentu • Bosonizat $[\varphi(x), \theta(x)]$ • $\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_1$ • $\mathcal{H}_{\varphi} = u_0$ • $\mathcal{H}_{\theta} = v_0 + \mathcal{H}_0$	Excattering term $\propto c_{L\downarrow}^{\dagger} c_{L\downarrow}^{\dagger} c_{R\uparrow}$ function conserving process at $\mu = 1$ tion $c_{R\uparrow(L\downarrow)}^{\dagger} \propto e^{i(\varphi \pm \theta)}$ where $\kappa')] = i\pi\Theta(x - x')$ $+ \mathcal{H}_{I} + \mathcal{H}_{\theta} + \mathcal{H}_{\varphi}$ $= \frac{v_{F}}{2\pi} \left[(\partial_{x}\theta)^{2} + (\partial_{x}\varphi)^{2} \right] + \frac{2}{2\pi} \left[\Theta(-\frac{L}{2} - x)\cos 2\varphi + \Theta(x - \theta) \right]$ $\Theta(\frac{L}{2} - x)\cos 4\theta$	$\int_{\pi}^{C_{R\uparrow}} C_{R\uparrow} = 0$ $\frac{A(x)}{\pi^{2}} (\partial_{x}\theta)^{2}$ $\frac{L}{2} \cos(2\varphi)$	$-\phi)]$
• For large	v_0, θ is pinned in <i>four</i> distinction	nct deep w	ells of the
cosine po	tential		

8π Josephson effect 000 0000000	Phase dependence of the tunneling spectrum of A o o	ABSs Tunneling of <i>e</i> /2 quasiparticles ● ○
Formalism		
• Pair back • Momentu • Bosonizat $[\varphi(x), \theta(x)]$ • $\mathcal{H} = \mathcal{H}_0$ • $\mathcal{H}_0 + \mathcal{H}_1$ • $\mathcal{H}_{\varphi} = u_0$ • $\mathcal{H}_{\theta} = v_0 \Theta$	scattering term $\propto c_{L\downarrow}^{\dagger} c_{L\downarrow}^{\dagger} c_{R\uparrow} c_{L\downarrow} \approx e^{i(\varphi \pm \theta)}$ where cion $c_{R\uparrow(L\downarrow)}^{\dagger} \propto e^{i(\varphi \pm \theta)}$ where $c')] = i\pi\Theta(x - x')$ $+ \mathcal{H}_{I} + \mathcal{H}_{\theta} + \mathcal{H}_{\varphi}$ $= \frac{v_{F}}{2\pi} \left[(\partial_{x}\theta)^{2} + (\partial_{x}\varphi)^{2} \right] + \frac{\lambda(y)}{\pi^{2}}$ $\left[\Theta(-\frac{L}{2} - x) \cos 2\varphi + \Theta(x - \frac{L}{2}) + \Theta(x - \frac{L}{2}) \right]$	$\begin{bmatrix} R \uparrow \\ 0 \\ \hline \\ \frac{x}{2} \end{bmatrix} (\partial_x \theta)^2 \\ \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \cos(2\varphi - \phi) \end{bmatrix}$
 For large cosine po 	v_0 , θ is pinned in <i>four</i> distinction tential	t deep wells of the
Quantum couple th	tunneling between the 4 min e ground states, lifting their c	imas (finite <i>v</i> 0, <i>T</i>) will legeneracy with a

characteristic pattern

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	Tunneling of e/2 quasiparticles	
		•	
Hamiltonian in the degenerate ground state			

(a) Strong interactions pin the charge between the superconductors and lead to a fourfold ground state degeneracy. Charge e/2 or charge e tunneling processes lift the degeneracy, with an 8π periodicity in φ, as shown in (b) for t_e = 0 and (c) for t_e = 2t_{e/2}. Solid and dashed lines correspond to states with opposite fermion parity.

- ∢ 🗇 🕨

-∢ ≣ →

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	Tunneling of e/2 quasiparticles	
		•	
Hamiltonian in the degenerate ground state			

(a) Strong interactions pin the charge between the superconductors and lead to a fourfold ground state degeneracy. Charge e/2 or charge e tunneling processes lift the degeneracy, with an 8π periodicity in ϕ , as shown in (b) for $t_e = 0$ and (c) for $t_e = 2t_{e/2}$. Solid and dashed lines correspond to states with opposite fermion parity.

• $|n\rangle$ denotes the state $\theta = n\pi/2$, (with *n* defined modulo 4)

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	Tunneling of e/2 quasiparticles
		•
Hamiltonian in the degenerate ground state		

(a) Strong interactions pin the charge between the superconductors and lead to a fourfold ground state degeneracy. Charge e/2 or charge e tunneling processes lift the degeneracy, with an 8π periodicity in φ, as shown in (b) for t_e = 0 and (c) for t_e = 2t_{e/2}. Solid and dashed lines correspond to states with opposite fermion parity.

• |n
angle denotes the state $heta=n\pi/2$, (with n defined modulo 4)

•
$$H = \sum_{n=1}^{4} \left(-t_{e/2} e^{i\frac{\phi}{4}} |n\rangle \langle n+1| - t_e e^{i\frac{\phi}{2}} |n\rangle \langle n+2| + \text{h.c.} \right)$$

- ∢ ⊒ →

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	Tunneling of e/2 quasiparticles
		•
Hamiltonian in the degenerate ground state		

(a) Strong interactions pin the charge between the superconductors and lead to a fourfold ground state degeneracy. Charge e/2 or charge e tunneling processes lift the degeneracy, with an 8π periodicity in φ, as shown in (b) for t_e = 0 and (c) for t_e = 2t_{e/2}. Solid and dashed lines correspond to states with opposite fermion parity.

- $|n\rangle$ denotes the state $\theta = n\pi/2$, (with *n* defined modulo 4)
- $H = \sum_{n=1}^{4} (-t_{e/2} e^{i\frac{\phi}{4}} |n\rangle \langle n+1| t_e e^{i\frac{\phi}{2}} |n\rangle \langle n+2| + \text{h.c.})$
- t_{e/2} represents tunneling of a domain wall between two degenerate magnetic states

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	Tunneling of e/2 quasiparticles
		•
Hamiltonian in the degenerate ground state		

(a) Strong interactions pin the charge between the superconductors and lead to a fourfold ground state degeneracy. Charge e/2 or charge e tunneling processes lift the degeneracy, with an 8π periodicity in φ, as shown in (b) for t_e = 0 and (c) for t_e = 2t_{e/2}. Solid and dashed lines correspond to states with opposite fermion parity.

• $|n\rangle$ denotes the state $\theta = n\pi/2$, (with *n* defined modulo 4)

•
$$H = \sum_{n=1}^{4} (-t_{e/2} e^{i\frac{\phi}{4}} |n\rangle \langle n+1| - t_e e^{i\frac{\phi}{2}} |n\rangle \langle n+2| + \text{h.c.})$$

t_{e/2} represents tunneling of a domain wall between two degenerate magnetic states

•
$$E_{m=1,2,3,4} = -2t_{e/2}\cos[(\phi - 2\pi m)/4] - 2t_e\cos[(\phi - 2\pi m)/2]$$

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	Tunneling of e/2 quasiparticles
		•
Hamiltonian in the degenerate ground state		

(a) Strong interactions pin the charge between the superconductors and lead to a fourfold ground state degeneracy. Charge e/2 or charge e tunneling processes lift the degeneracy, with an 8π periodicity in ϕ , as shown in (b) for $t_e = 0$ and (c) for $t_e = 2t_{e/2}$. Solid and dashed lines correspond to states with opposite fermion parity.

• |n
angle denotes the state $heta=n\pi/2$, (with n defined modulo 4)

•
$$H = \sum_{n=1}^{4} (-t_{e/2} e^{i\frac{\phi}{4}} |n\rangle \langle n+1| - t_e e^{i\frac{\phi}{2}} |n\rangle \langle n+2| + \text{h.c.})$$

t_{e/2} represents tunneling of a domain wall between two degenerate magnetic states

•
$$E_{m=1,2,3,4} = -2t_{e/2}\cos[(\phi - 2\pi m)/4] - 2t_e\cos[(\phi - 2\pi m)/2]$$

• Guarantees an 8π periodicity when ϕ is advanced adiabatically

- 4 同 6 4 日 6 4 日 6

8π Josephson effect	Phase dependence of the tunneling spectrum of ABSs	Tunneling of e/2 quasiparticles
		•
Hamiltonian in the degenerate ground state		

(a) Strong interactions pin the charge between the superconductors and lead to a fourfold ground state degeneracy. Charge e/2 or charge e tunneling processes lift the degeneracy, with an 8π periodicity in ϕ , as shown in (b) for $t_e = 0$ and (c) for $t_e = 2t_{e/2}$. Solid and dashed lines correspond to states with opposite fermion parity.

• |n
angle denotes the state $heta=n\pi/2$, (with n defined modulo 4)

•
$$H = \sum_{n=1}^{4} (-t_{e/2} e^{i\frac{\phi}{4}} |n\rangle \langle n+1| - t_e e^{i\frac{\phi}{2}} |n\rangle \langle n+2| + \text{h.c.})$$

t_{e/2} represents tunneling of a domain wall between two degenerate magnetic states

•
$$E_{m=1,2,3,4} = -2t_{e/2}\cos[(\phi - 2\pi m)/4] - 2t_e\cos[(\phi - 2\pi m)/2]$$

- Guarantees an 8π periodicity when ϕ is advanced adiabatically
- Thank you: Comments + Questions ???