

Time-Reversal-Invariant Z_4 Fractional Josephson Effect

Fan Zhang and C. L. Kane - arXiv:1404.1072

We study the Josephson junction mediated by the quantum spin Hall edge states and show that electron-electron interactions lead to a dissipationless fractional Josephson effect in the presence of time-reversal symmetry. Surprisingly, the periodicity is 8π , corresponding to a Josephson frequency eV/2 \hbar . We estimate the magnitude of interaction induced many-body level splitting responsible for this effect and argue that it can be measured using tunneling spectroscopy. For strong interactions we show that the Josephson effect is associated with the weak tunneling of charge e/2 quasiparticles between the superconductors. Our theory describes a fourfold ground state degeneracy that is similar to that of coupled "fractional" Majorana modes, but is protected by time reversal symmetry.

April 8, 2014

つくへ

∢ロト ∢母ト ∢ヨト ∢ヨト

Layout

 18π [Josephson effect](#page-1-0) [Single particle spectrum](#page-2-0) [Many-body spectrum](#page-12-0)

2 [Phase dependence of the tunneling spectrum of ABSs](#page-34-0)

[Ring geometry](#page-35-0) [Ring geometry](#page-38-0)

\bullet Tunneling of $e/2$ quasiparticles

[Formalism](#page-45-0) [Hamiltonian in the degenerate ground state](#page-54-0)

つくへ

•
$$
\mathcal{H}_{BdG} = \tau^z (-i\hbar v_F \sigma^z \partial_x - \mu) + \Delta_1(x) \tau^x + \Delta_2(x) \tau^y,
$$

Time-Reversal-Invariant Z₄ [Fractional Josephson Effect](#page-0-0) Fan Zhang and C. L. Kane - arXiv:1404.1072

- $\mathcal{H}_{BdG} = \tau^z(-i\hbar v_F \sigma^z \partial_x \mu) + \Delta_1(x)\tau^x + \Delta_2(x)\tau^y,$
- • $\vec{\sigma}$ ($\vec{\tau}$) are Pauli matrices in spin (particle-hole) space and $\Delta = \Delta_1 + i \Delta_2$ is the proximity induced pair potential

•
$$
\mathcal{H}_{BdG} = \tau^z (-i\hbar v_F \sigma^z \partial_x - \mu) + \Delta_1(x) \tau^x + \Delta_2(x) \tau^y,
$$

• $\vec{\sigma}$ ($\vec{\tau}$) are Pauli matrices in spin (particle-hole) space and $\Delta = \Delta_1 + i \Delta_2$ is the proximity induced pair potential

•
$$
\Delta(x < -L/2) = \Delta_0
$$
, $\Delta(x > L/2) = \Delta_0 e^{i\phi}$, and $\Delta(|x| < L/2) = 0$

Time-Reversal-Invariant Z₄ [Fractional Josephson Effect](#page-0-0) Fan Zhang and C. L. Kane - arXiv:1404.1072

• Andreev bound states (ABS) spectrum \rightarrow solving \mathcal{H}_{BdG} , with appropriate boundary conditions

つくへ

- Andreev bound states (ABS) spectrum \rightarrow solving \mathcal{H}_{BdG} , with appropriate boundary conditions
- $L > h\nu_F/(4\Delta_0) \Rightarrow$ at least one pair of excited bound states

つくへ

•
$$
\psi_{n,\sigma} = \begin{pmatrix} u_{n,\sigma} \\ v_{n,\sigma} \end{pmatrix} = \mathcal{A}_n(x) \begin{pmatrix} (-1)^n e^{i\sigma \overline{E}_n \overline{\ell}(x)} \\ -i\sigma e^{-i\sigma \overline{E}_n \overline{\ell}(x)} \end{pmatrix},
$$

 $\mathcal{A}_n(x) = 1 \sqrt{2L + 2\xi (1 - \overline{E}_n^2)^{-1/2}} e^{i\sigma \overline{\mu} \overline{x} - \sqrt{1 - \overline{E}_n^2} |\overline{x} - \overline{\ell}(x)|}$

Time-Reversal-Invariant Z₄ [Fractional Josephson Effect](#page-0-0) Fan Zhang and C. L. Kane - arXiv:1404.1072

 \mathbf{p}

4.重

∢ Bi

 \leftarrow

 $\phi = \pi$

 2π

Figure: (b) The single-particle BdG spectrum of the junction as a function of ϕ , with Kramers degeneracies at $\phi = 0$ and π .

 Ω

 E_s

\n- \n
$$
\psi_{n,\sigma} = \begin{pmatrix} u_{n,\sigma} \\ v_{n,\sigma} \end{pmatrix} = \mathcal{A}_n(x) \begin{pmatrix} (-1)^n e^{i\sigma \bar{E}_n \bar{\ell}(x)} \\ -i\sigma e^{-i\sigma \bar{E}_n \bar{\ell}(x)} \end{pmatrix},
$$
\n
$$
\mathcal{A}_n(x) = 1 \sqrt{2L + 2\xi (1 - \bar{E}_n^2)^{-1/2}} e^{i\sigma \bar{\mu} \bar{x} - \sqrt{1 - \bar{E}_n^2} |\bar{x} - \bar{\ell}(x)|}
$$
\n
\n- \n
$$
\bar{E}_n \equiv E_n / \Delta_0, \ \bar{L} \equiv L/\xi = L \Delta_0 / \hbar v_F, \ \bar{\ell}(x) = \text{sgn}(x) \bar{L}/2 \text{ in}
$$
\n central region, and x/ξ elsewhere, $\bar{\mu} = \mu / \Delta, \ \bar{x} = x/\xi$ \n
\n

4.重

∢ Bi

 \leftarrow

 $\phi = \pi$

 2π

Figure: (b) The single-particle BdG spectrum of the junction as a function of ϕ , with Kramers degeneracies at $\phi = 0$ and π .

 $\boldsymbol{0}$

 E_s

•
$$
\psi_{n,\sigma} = \begin{pmatrix} u_{n,\sigma} \\ v_{n,\sigma} \end{pmatrix} = \mathcal{A}_n(x) \begin{pmatrix} (-1)^n e^{i\sigma \bar{E}_n \bar{\ell}(x)} \\ -i\sigma e^{-i\sigma \bar{E}_n \bar{\ell}(x)} \end{pmatrix},
$$

\n $\mathcal{A}_n(x) = 1 \sqrt{2L + 2\xi (1 - \bar{E}_n^2)^{-1/2}} e^{i\sigma \bar{\mu} \bar{x} - \sqrt{1 - \bar{E}_n^2} |\bar{x} - \bar{\ell}(x)|}$
\n• $\bar{E}_n \equiv E_n/\Delta_0$, $\bar{L} \equiv L/\xi = L\Delta_0/\hbar v_F$, $\bar{\ell}(x) = sgn(x)\bar{L}/2$ in
\ncentral region, and x/ξ elsewhere, $\bar{\mu} = \mu/\Delta$, $\bar{x} = x/\xi$
\n• $E_{-n} = -E_n$ and $\psi_{-n,\sigma} = -i\tau^y \psi_{n,\sigma}$ ($n > 0$)

• The lowest state corresponds to the many-body ground state with all positive (negative) energy single-particle states in (b) empty (occupied), whereas higher states are excitations with one or more quasiparticles excited.

• ABS:
$$
b_{-n,\sigma} = \sigma b_{n,-\sigma}^{\dagger}
$$
 $(n > 0)$ and $b_{0,+} = ib_{0,-}^{\dagger}$

• ABS:
$$
b_{-n,\sigma} = \sigma b_{n,-\sigma}^{\dagger}
$$
 $(n > 0)$ and $b_{0,+} = ib_{0,-}^{\dagger}$

•
$$
H(\phi) | \Phi_n(\phi) \rangle = \epsilon_n(\phi) | \Phi_n(\phi) \rangle
$$
, $\epsilon_n(\phi) = \sum_m E_m(\phi) (n_m - \frac{1}{2})$

• ABS: $b_{-n,\sigma} = \sigma b_n^{\dagger}$ $\phi^\dagger_{n,-\sigma}$ $(n>0)$ and $b_{0,+} = i b^\dagger_{0,-}$

•
$$
H(\phi) | \Phi_n(\phi) \rangle = \epsilon_n(\phi) | \Phi_n(\phi) \rangle
$$
, $\epsilon_n(\phi) = \sum_m E_m(\phi) (n_m - \frac{1}{2})$

 $\bullet\,\mid \Phi_{n}(\phi)\rangle=b_{N}^{\dagger n_{N}}\dots b_{1}^{\dagger n_{1}}\mid 0\rangle ,\ n_{m}=\{0,1\}\equiv \text{occupation}$ probability of m^{th} ABS

•
$$
\epsilon_n(\phi) = \sum_m E_m(\phi)(n_m - \frac{1}{2}), E_{-n} = -E_n
$$

Time-Reversal-Invariant Z₄ [Fractional Josephson Effect](#page-0-0) Fan Zhang and C. L. Kane - arXiv:1404.1072

•
$$
\epsilon_n(\phi) = \sum_m E_m(\phi)(n_m - \frac{1}{2}), E_{-n} = -E_n
$$

• Calculate ground state many body energy $\epsilon_0(\phi = 0)$

つくへ

•
$$
\epsilon_n(\phi) = \sum_m E_m(\phi)(n_m - \frac{1}{2}), E_{-n} = -E_n
$$

- Calculate ground state many body energy $\epsilon_0(\phi = 0)$
- • Now, ground state many body energy $\epsilon_0(\phi = \pi/2, 3\pi/2)$

•
$$
\epsilon_n(\phi) = \sum_m E_m(\phi)(n_m - \frac{1}{2}), E_{-n} = -E_n
$$

- Calculate ground state many body energy $\epsilon_0(\phi = 0)$
- Now, ground state many body energy $\epsilon_0(\phi = \pi/2, 3\pi/2)$
- Solid and dashed \equiv different local fermion parity

つくへ

Time-Reversal-Invariant Z₄ [Fractional Josephson Effect](#page-0-0) Fan Zhang and C. L. Kane - arXiv:1404.1072

• In the presence of electron-electron interactions it splits into two Kramers doublets, each of which has two many-body states with opposite fermion parity.

- In the presence of electron-electron interactions it splits into two Kramers doublets, each of which has two many-body states with opposite fermion parity.
- • It takes four cycles to return to the original ground state, leading to an 8π periodicity in the current phase relation

•
$$
\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_1, \mathcal{H}_1 = \lambda \int_{-L/2}^{L/2} n(x)^2
$$

Time-Reversal-Invariant Z₄ [Fractional Josephson Effect](#page-0-0) Fan Zhang and C. L. Kane - arXiv:1404.1072

•
$$
\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_1, \mathcal{H}_1 = \lambda \int_{-L/2}^{L/2} n(x)^2
$$

•
$$
n(x) = \sum_{\sigma} c_{\sigma}^{\dagger} c_{\sigma}
$$
 is the charge density

•
$$
\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_1, \mathcal{H}_1 = \lambda \int_{-L/2}^{L/2} n(x)^2
$$

- $\bullet~~ n(x)=\sum_{\sigma}c_{\sigma}^{\dagger}c_{\sigma}^{}$ is the charge density
- • Evaluate matrix elements of \mathcal{H}_I between degenerate many-body states

•
$$
\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_1, \ \mathcal{H}_1 = \lambda \int_{-L/2}^{L/2} n(x)^2
$$

- $\bullet~~ n(x)=\sum_{\sigma}c_{\sigma}^{\dagger}c_{\sigma}^{}$ is the charge density
- Evaluate matrix elements of \mathcal{H}_I between degenerate many-body states

•
$$
c_{\sigma}(x) = u_{0,\sigma} b_{0,\sigma} + \sum_{n>0} u_{n,\sigma} b_{n,\sigma} - v_{n,\sigma} \sigma b_{n,-\sigma}^{\dagger}
$$

 $\bullet\,$ 4 degenerate many body states are $\mid\mu,\sigma\rangle = b_{1,\sigma}^{\dagger}|\mu\rangle_{0}$

つくへ

- $\bullet\,$ 4 degenerate many body states are $\mid\mu,\sigma\rangle = b_{1,\sigma}^{\dagger}|\mu\rangle_{0}$
- $\bullet \ \vert \mu\rangle_0$ is many body ground state $b_{n,\sigma}^{\dagger}b_{n,\sigma} | \mu\rangle_0 = 0$ $(n > 0)$

- $\bullet\,$ 4 degenerate many body states are $\mid\mu,\sigma\rangle = b_{1,\sigma}^{\dagger}|\mu\rangle_{0}$
- $\bullet \ \vert \mu\rangle_0$ is many body ground state $b_{n,\sigma}^{\dagger}b_{n,\sigma} | \mu\rangle_0 = 0$ $(n > 0)$
- \bullet $\mu=(-1)^{b_{0,+}^{\dagger}b_{0,+}}$ is the fermion parity

• At $\phi = \pi$, the splitting due to \mathcal{H}_I becomes $\delta \sim 2\lambda \int_{-L/2}^{L/2} dx |u_{1,+}^* u_{0,-} - i u_{-1,-} u_{0,+}^*|^2 = \frac{\lambda}{\xi}$ ξ $\left(\frac{1}{\sqrt{2}}\right)$ $\frac{1}{1-\bar{E}_1^2}+\bar{L}\biggr)^{-1}$

つくへ

• At $\phi = \pi$, the splitting due to \mathcal{H}_I becomes $\delta \sim 2\lambda \int_{-L/2}^{L/2} dx |u_{1,+}^* u_{0,-} - i u_{-1,-} u_{0,+}^*|^2 = \frac{\lambda}{\xi}$ ξ $\left(\frac{1}{\sqrt{2}}\right)$ $\frac{1}{1-\bar{E}_1^2}+\bar{L}\biggr)^{-1}$ $\bullet~~\bar{L} \sim$ 2.6, $\delta \sim$ 0.23 $\lambda/\xi,~\lambda = (e^2/\epsilon)\log(R_{\mathsf{s}}/R)$

- At $\phi = \pi$, the splitting due to \mathcal{H}_I becomes $\delta \sim 2\lambda \int_{-L/2}^{L/2} dx |u_{1,+}^* u_{0,-} - i u_{-1,-} u_{0,+}^*|^2 = \frac{\lambda}{\xi}$ ξ $\left(\frac{1}{\sqrt{2}}\right)$ $\frac{1}{1-\bar{E}_1^2}+\bar{L}\biggr)^{-1}$
- $\bullet~~\bar{L} \sim$ 2.6, $\delta \sim$ 0.23 $\lambda/\xi,~\lambda = (e^2/\epsilon)\log(R_{\mathsf{s}}/R)$
- • $R, R_s \equiv$ penetration and screening radius of the edge states

• At $\phi = \pi$, the splitting due to \mathcal{H}_I becomes $\delta \sim 2\lambda \int_{-L/2}^{L/2} dx |u_{1,+}^* u_{0,-} - i u_{-1,-} u_{0,+}^*|^2 = \frac{\lambda}{\xi}$ ξ $\left(\frac{1}{\sqrt{2}}\right)$ $\frac{1}{1-\bar{E}_1^2}+\bar{L}\biggr)^{-1}$ $\bullet~~\bar{L} \sim$ 2.6, $\delta \sim$ 0.23 $\lambda/\xi,~\lambda = (e^2/\epsilon)\log(R_{\mathsf{s}}/R)$ • $R, R_s \equiv$ penetration and screening radius of the edge states • $\epsilon = 20, \xi = 100$ n[m](#page-34-0), and $\log(R_s/R) = 1 \Rightarrow \delta \sim 0.17$ $\log(R_s/R) = 1 \Rightarrow \delta \sim 0.17$ m[e](#page-0-0)[V](#page-1-0)

 299

Layout

 18π [Josephson effect](#page-1-0) [Single particle spectrum](#page-2-0) [Many-body spectrum](#page-12-0)

2 [Phase dependence of the tunneling spectrum of ABSs](#page-34-0)

[Ring geometry](#page-35-0) [Ring geometry](#page-38-0)

\bullet Tunneling of $e/2$ quasiparticles

[Formalism](#page-45-0) [Hamiltonian in the degenerate ground state](#page-54-0)

つくへ

Figure: At low temperatures, weakly coupled tunnel junction probes the local tunneling density of states $dI/dV \propto \rho(E = eV)$

 \rightarrow \equiv \rightarrow \sim

 \leftarrow

Figure: At low temperatures, weakly coupled tunnel junction probes the local tunneling density of states $dI/dV \propto \rho(E = eV)$

•
$$
\rho(E) = \sum_{N,\sigma} |\langle N | c_{\sigma}^{\dagger} | 0 \rangle|^2 \delta(E - E_N + E_0)
$$

 \rightarrow \equiv \rightarrow \sim

 \leftarrow

Figure: At low temperatures, weakly coupled tunnel junction probes the local tunneling density of states $dI/dV \propto \rho(E = eV)$

•
$$
\rho(E) = \sum_{N,\sigma} |\langle N | c_{\sigma}^{\dagger} | 0 \rangle|^2 \delta(E - E_N + E_0)
$$

 $\bullet \ \ c^\dagger_\sigma$ is the creation operator for an electron with spin σ in the junction and $|N\rangle$ are the many-body states

• Selection rule: $|N\rangle$ has opposite parity as compared to $|0\rangle$

4 0 8 \overline{A} $\,$ 299

- Selection rule: $|N\rangle$ has opposite parity as compared to $|0\rangle$
- dI/dV must consist of peaks at $eV = \epsilon_N \epsilon_0$

 \leftarrow

- 61 \sim 2990

- Selection rule: $|N\rangle$ has opposite parity as compared to $|0\rangle$
- • dI/dV must consist of peaks at $eV = \epsilon_N - \epsilon_0$

- Selection rule: $|N\rangle$ has opposite parity as compared to $|0\rangle$
- dI/dV must consist of peaks at $eV = \epsilon_N \epsilon_0$

- Selection rule: $|N\rangle$ has opposite parity as compared to $|0\rangle$
- dI/dV must consist of peaks at $eV = \epsilon_N \epsilon_0$

• Singularity lowest peak goes to zero

- Selection rule: $|N\rangle$ has opposite parity as compared to $|0\rangle$
- dl/dV must consist of peaks at $eV = \epsilon_N \epsilon_0$

- Singularity lowest peak goes to zero
- • TRS breaking shifts this singularity

Layout

 18π [Josephson effect](#page-1-0) [Single particle spectrum](#page-2-0) [Many-body spectrum](#page-12-0)

2 [Phase dependence of the tunneling spectrum of ABSs](#page-34-0)

[Ring geometry](#page-35-0) [Ring geometry](#page-38-0)

\bullet Tunneling of $e/2$ quasiparticles

[Formalism](#page-45-0) [Hamiltonian in the degenerate ground state](#page-54-0)

つくへ

• Pair backscattering term $\propto c_l^\dagger$ $\stackrel{\dagger}{\iota}_{\downarrow}$ c $\stackrel{\dagger}{\iota}_{\lambda}$ L^{\dagger}_{\downarrow} CR↑CR↑

Time-Reversal-Invariant Z₄ [Fractional Josephson Effect](#page-0-0) Fan Zhang and C. L. Kane - arXiv:1404.1072

 $\mathbf{A} \equiv \mathbf{A} \times \mathbf{A} \equiv \mathbf{A}$

 299

• Momentum conserving process at $\mu = 0$

 299

э

- Momentum conserving process at $\mu = 0$
- \bullet Bosonization $c^{\dagger}_{R \uparrow (L \downarrow)} \propto e^{i (\varphi \pm \theta)}$ where $[\varphi(x), \theta(x')] = i\pi \Theta(x - x')$

The South

- \bullet Bosonization $c^{\dagger}_{R \uparrow (L \downarrow)} \propto e^{i (\varphi \pm \theta)}$ where $[\varphi(x), \theta(x')] = i\pi \Theta(x - x')$
- $\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_1 + \mathcal{H}_{\theta} + \mathcal{H}_{\varphi}$

 \rightarrow \equiv \rightarrow

∢ 重 下

- \bullet Bosonization $c^{\dagger}_{R \uparrow (L \downarrow)} \propto e^{i (\varphi \pm \theta)}$ where $[\varphi(x), \theta(x')] = i\pi \Theta(x - x')$
- $\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_1 + \mathcal{H}_{\theta} + \mathcal{H}_{\varphi}$
- $\bullet \;\; \mathcal{H}_0 + \mathcal{H}_I = \frac{\nu_F}{2\pi} \left[(\partial_{\mathsf{x}} \theta)^2 + (\partial_{\mathsf{x}} \varphi)^2 \right] + \frac{\lambda({\mathsf{x}})}{\pi^2} (\partial_{\mathsf{x}} \theta)^2$

 $=$

and the second

 200

- $\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_1 + \mathcal{H}_{\theta} + \mathcal{H}_{\varphi}$
- $\bullet \;\; \mathcal{H}_0 + \mathcal{H}_I = \frac{\nu_F}{2\pi} \left[(\partial_{\mathsf{x}} \theta)^2 + (\partial_{\mathsf{x}} \varphi)^2 \right] + \frac{\lambda({\mathsf{x}})}{\pi^2} (\partial_{\mathsf{x}} \theta)^2$
- $\mathcal{H}_{\varphi} = u_0 \big[\Theta(-\frac{L}{2} x) \cos 2\varphi + \Theta(x \frac{L}{2}) \big]$ $(\frac{L}{2})$ cos $(2\varphi - \phi)$

|④ 重 |→ |④ 重 |→ | 三重

•
$$
\mathcal{H}_{\theta} = v_0 \Theta(\frac{L}{2} - |x|) \cos 4\theta
$$

• For large v_0 , θ is pinned in *four* distinct deep wells of the cosine potential

ALCOHOL:

- cosine potential
- Quantum tunneling between the 4 minimas (finite v_0 , T) will couple the ground states, lifting their degeneracy with a characteristic pattern

つくへ

(a) Strong interactions pin the charge between the superconductors and lead to a fourfold ground state degeneracy. Charge $e/2$ or charge e tunneling processes lift the degeneracy, with an 8π periodicity in ϕ , as shown in (b) for $t_e=0$ and (c) for $t_e=2t_{e/2}.$ Solid and dashed lines correspond to states with opposite fermion parity.

 \leftarrow

(a) Strong interactions pin the charge between the superconductors and lead to a fourfold ground state degeneracy. Charge $e/2$ or charge e tunneling processes lift the degeneracy, with an 8π periodicity in ϕ , as shown in (b) for $t_e=0$ and (c) for $t_e=2t_{e/2}.$ Solid and dashed lines correspond to states with opposite fermion parity.

• $|n\rangle$ denotes the state $\theta = n\pi/2$, (with *n* defined modulo 4)

(a) Strong interactions pin the charge between the superconductors and lead to a fourfold ground state degeneracy. Charge e/2 or charge e tunneling processes lift the degeneracy, with an 8π periodicity in ϕ , as shown in (b) for $t_e=0$ and (c) for $t_e=2t_{e/2}.$ Solid and dashed lines correspond to states with opposite fermion parity.

- $|n\rangle$ denotes the state $\theta = n\pi/2$, (with *n* defined modulo 4)
- $H = \sum_{n=1}^{4} (-t_{e/2}e^{i\frac{\phi}{4}}|n\rangle\langle n+1| t_{e}e^{i\frac{\phi}{2}}|n\rangle\langle n+2| + \text{h.c.})$

つくへ

(a) Strong interactions pin the charge between the superconductors and lead to a fourfold ground state degeneracy. Charge e/2 or charge e tunneling processes lift the degeneracy, with an 8π periodicity in ϕ , as shown in (b) for $t_e=0$ and (c) for $t_e=2t_{e/2}.$ Solid and dashed lines correspond to states with opposite fermion parity.

- $|n\rangle$ denotes the state $\theta = n\pi/2$, (with *n* defined modulo 4)
- $H = \sum_{n=1}^{4} (-t_{e/2}e^{i\frac{\phi}{4}}|n\rangle\langle n+1| t_{e}e^{i\frac{\phi}{2}}|n\rangle\langle n+2| + \text{h.c.})$
- \bullet $t_{e/2}$ represents tunneling of a domain wall between two degenerate magnetic states

 200

(a) Strong interactions pin the charge between the superconductors and lead to a fourfold ground state degeneracy. Charge e/2 or charge e tunneling processes lift the degeneracy, with an 8π periodicity in ϕ , as shown in (b) for $t_e=0$ and (c) for $t_e=2t_{e/2}.$ Solid and dashed lines correspond to states with opposite fermion parity.

- $|n\rangle$ denotes the state $\theta = n\pi/2$, (with *n* defined modulo 4)
- $H = \sum_{n=1}^{4} (-t_{e/2}e^{i\frac{\phi}{4}}|n\rangle\langle n+1| t_{e}e^{i\frac{\phi}{2}}|n\rangle\langle n+2| + \text{h.c.})$
- \bullet $t_{e/2}$ represents tunneling of a domain wall between two degenerate magnetic states

•
$$
E_{m=1,2,3,4} = -2t_{e/2} \cos[(\phi - 2\pi m)/4] - 2t_e \cos[(\phi - 2\pi m)/2]
$$

(a) Strong interactions pin the charge between the superconductors and lead to a fourfold ground state degeneracy. Charge e/2 or charge e tunneling processes lift the degeneracy, with an 8π periodicity in ϕ , as shown in (b) for $t_e=0$ and (c) for $t_e=2t_{e/2}.$ Solid and dashed lines correspond to states with opposite fermion parity.

- $|n\rangle$ denotes the state $\theta = n\pi/2$, (with *n* defined modulo 4)
- $H = \sum_{n=1}^{4} (-t_{e/2}e^{i\frac{\phi}{4}}|n\rangle\langle n+1| t_{e}e^{i\frac{\phi}{2}}|n\rangle\langle n+2| + \text{h.c.})$
- \bullet $t_{e/2}$ represents tunneling of a domain wall between two degenerate magnetic states

•
$$
E_{m=1,2,3,4} = -2t_{e/2} \cos[(\phi - 2\pi m)/4] - 2t_e \cos[(\phi - 2\pi m)/2]
$$

• Guarantees an 8π periodicity when ϕ is advanced adiabatically

 Ω

∢ ロ ▶ (何) ((手) (手) ()

(a) Strong interactions pin the charge between the superconductors and lead to a fourfold ground state degeneracy. Charge e/2 or charge e tunneling processes lift the degeneracy, with an 8π periodicity in ϕ , as shown in (b) for $t_e=0$ and (c) for $t_e=2t_{e/2}.$ Solid and dashed lines correspond to states with opposite fermion parity.

- $|n\rangle$ denotes the state $\theta = n\pi/2$, (with *n* defined modulo 4)
- $H = \sum_{n=1}^{4} (-t_{e/2}e^{i\frac{\phi}{4}}|n\rangle\langle n+1| t_{e}e^{i\frac{\phi}{2}}|n\rangle\langle n+2| + \text{h.c.})$
- \bullet $t_{e/2}$ represents tunneling of a domain wall between two degenerate magnetic states

•
$$
E_{m=1,2,3,4} = -2t_{e/2} \cos[(\phi - 2\pi m)/4] - 2t_e \cos[(\phi - 2\pi m)/2]
$$

- Guarantees an 8π periodicity when ϕ is advanced adiabatically
- • Thank you: Comments $+$ Questions [?](#page-59-0)??