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Interacting System

Introduce a perturbation s.th. 1
3 -Laughlin state is the exact GS!

V =
∫
d2x d2y Ψ†(x)Ψ†(y)V (x − y)Ψ(y)Ψ(x)

Insert a mode expansion:

Ψ†(x) =
∑

k c†k Ψ∗k(x) with {c†k , c`} = δk,`

We find

H =
∑

i

∑
r>s Ur ,sc

†
i+sc

†
i+rci+r+sci .

Now choose V (x) ∝ ∇2
xδ(x) as the ” 1

3 -Laughlin-Potential”:

Ur ,s = (r2 − s2) e
−2π2 (r2+s2)

L2
x .
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Thin Torus Limit

Now assume that Lx << `B = 1. This is the Thin Torus Limit!

Most relevant are the U1,0- and U2,0-terms:

H ≈∑i U1,0 nini+1 + U2,0 nini+2 with ni := c†i ci .

Physically this limit means that the single-particle wavefunctions
Ψm(x , y) and Ψm+1(x , y) have hardly any overlap:

/ 1

Lx| |

y
| m+1|| m|

9 of 29



images/comlab.pdf

Thin Torus Limit

Now assume that Lx << `B = 1. This is the Thin Torus Limit!

Most relevant are the U1,0- and U2,0-terms:

H ≈∑i U1,0 nini+1 + U2,0 nini+2 with ni := c†i ci .

Physically this limit means that the single-particle wavefunctions
Ψm(x , y) and Ψm+1(x , y) have hardly any overlap:

/ 1

Lx| |

y
| m+1|| m|

9 of 29



images/comlab.pdf

Thin Torus Limit

Now assume that Lx << `B = 1. This is the Thin Torus Limit!

Most relevant are the U1,0- and U2,0-terms:

H ≈∑i U1,0 nini+1 + U2,0 nini+2 with ni := c†i ci .

Physically this limit means that the single-particle wavefunctions
Ψm(x , y) and Ψm+1(x , y) have hardly any overlap:

/ 1

Lx| |

y
| m+1|| m|

9 of 29



images/comlab.pdf

Ground States in the Thin Torus Limit

Thin Torus Hamiltonian:

H ≈∑i U1,0 nini+1 + U2,0 nini+2 with ni := c†i ci .

The ground state is threefold degenerate:

|GS1〉 = |100100100 · · · 〉 ≡ [100]
|GS2〉 = |010010010 · · · 〉 ≡ [010]
|GS3〉 = |001001001 · · · 〉 ≡ [001]
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Excited States in the Thin Torus Limit

Place two ground states next to each other to generate an excited
state. The excitations are localized at the domain walls!

1 0 0 1 0 0 1 0 0 1 0 00 1 0 0 1 0

(+e/3) � excitation
(�e/3) � excitation

No energy cost! Energy cost = U2 = Bulk gap

What is the charge of the excitation?

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0

6 e�

7 e�
(�e

3
) � charge at the domain wall!

|GSi 〉 →
∣∣GS(i+k)mod 3

〉
gives charge q = k e

3 .
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Bilayer System

Consider the following ν = 1
3 -bilayer system with interlayer-tunneling:

H = H↑ +H↓ +Ht

Hσ =
∑

i U1,0 ni ,σni+1,σ + U2,0 ni ,σni+2,σ with σ ∈ {↑, ↓}
Ht = −t∑i c

†
i↑ci↓ + h.c.

Assumptions:

• No interlayer interactions (i.e. no terms ∝ ni↑ni+1↓,etc.)

• Only ”vertical tunneling” (i.e. no term ∝ c†i↑ci+1↓,etc.)

• Intralayer interactions are of the same strength

Also note the global Z2-layer exchange symmetry (ci↑ ↔ ci↓)!
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Weak tunneling limit (t � U2 � U1)

Ht is an irrelevant perturbation. So we have 2 decoupled layers.

Ground States: |GS〉i ,j with i , j = 1, 2, 3.

For example:

[
100
100

]

The Ground State degeneracy is 9!

Excited States: |GSi ,j〉 →
∣∣GS(i+k)mod 3,j

〉
gives charge q↑ = k e

3

|GSi ,j〉 →
∣∣GSi ,(j+k)mod 3

〉
gives charge q↓ = k e

3
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Strong tunneling limit (U2 � U1 � t)

We treat H↑ +H↓ as a perturbation to Ht .

Low-energy effective theory: Ht is diagonal in the basis

ci ,+ :=
ci↑+ci↓√

2
at E = −t

ci ,− :=
ci↑−ci↓√

2
at E = +t

We drop the high-energy degrees of freedom ci ,−: ciσ → ci ,+

Heff = −∑i U1,0nini+1 + U2,0nini+2 with ni := c†i ,+ci ,+

This Hamiltonian describes the particle-hole conjugate of the
ν = 1

3 -state, which is the ν = 2
3 -state!
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Intermediate tunneling regime (U2 � t � U1)

The phase transition at t = tC is of Ising type!

2nd Order Perturbation theory: U1 is the dominant energy scale.
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Intermediate tunneling regime (U2 � t � U1)

Ground States in the Thick Torus limit:

Z2-symmetric states:
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100
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Intermediate tunneling regime (U2 � t � U1)

Neutral excited states:

To create an excitation with a (+e/3) charge in in one layer and a
(-e/3) in the other layer we need to place the following patterns next
to each other:

2 0 0 2 0 0 2 0 0... ... 0 1 1 0 1 1 0 1 1... ...

0 1 1 0 1 1 0 1 1... ... 2 0 0 2 0 0 2 0 0... ...

0 1 1 0 1 1 0 1 1... ... 2 0 0 2 0 0 2 0 0... ...
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Intermediate tunneling regime (U2 � t � U1)

Neutral excited states:

The patterns that create neutral excitations are encoded in an
Adjacency Matrix:

[020]

[002]

[110]

[101]

[200] [020] [002] [110] [101] [011]

[200]

[011]

Ae/3,�e/3 =

2
6666664

0 1 0 0 0 0
1 1 0 0 0 0
0 0 0 1 0 0
0 0 1 1 0 0
0 0 0 0 0 1
0 0 0 0 1 1

3
7777775

A⌧=(e/3,�e/3)

Fact: i × j =
∑

k(Ai )jk k ⇒ τ × τ = 1 + τ
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Intermediate tunneling regime (U2 � t � U1)

Overview of all excited states:

Label Charge (mod e) Topological Spin Quantum Dim.

1 V0 0 0 1
2 V1 2e/3 1/3 1
3 V2 e/3 1/3 1
4 τ 0 ±2/5 F
5 V1τ 2e/3 1/3± 2/5 F
6 V2τ e/3 1/3± 2/5 F

20 of 29



images/comlab.pdf

Intermediate tunneling regime (U2 � t � U1)

Overview of all excited states:

Label Charge (mod e) Topological Spin Quantum Dim.

1 V0 0 0 1
2 V1 2e/3 1/3 1
3 V2 e/3 1/3 1
4 τ 0 ±2/5 F
5 V1τ 2e/3 1/3± 2/5 F
6 V2τ e/3 1/3± 2/5 F

20 of 29



images/comlab.pdf

Outline

Overview

Method 1: Thin Torus Limit
Non-Interacting System
Interacting System
Thin Torus Limit of the Single Layer System
Thin Torus Limit of the Bilayer System

Method 2: The Parton Construction
Review of the Parton Construction
The Parton Construction for a Bilayer System
The Higgs Transition

21 of 29



images/comlab.pdf

Parton Construction

Idea: Understanding the FHQE from the IQHE
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Parton Construction

Uses:

• The low-energy effective theory is a Chern Simons Theory

• Finding Wavefunctions
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Parton Construction

Write the electron operator as c = f1f2f3 for (e/3)-partons fi .

A single parton in a magnetic field generated by ~A is described by

L′ = i f †a ∂t fa + 1
2m f †a (∂i − iQpAi )

2 fa

Problem: The ”Parton Hilbert Space” is bigger than the ”Physical
Hilbert Space”

e.g. fa |vac〉 /∈ Hphys .

To dismiss the ”unphysical states” we implement a ”gauge
constraint”.
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Parton Construction

Step 1: Consider

fa 7→Wabfb with W ∈ U(3)

This type of transformation should leave the electron operator c
invariant!

c = 1
3!ε

abc fafbfc 7→ det(W ) 1
3!ε

abc fafbfc

So we require det(W ) = 1 and hence W ∈ SU(3).

We want to construct a parton Lagrangian that is invariant under
SU(3) gauge transformations.
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Parton Construction

Step 2: Introduce some gauge field

aµ(x) ∈ Lie(SU(3)) = Traceless Hermitian Matrices

and define a new theory

L = i f †a (δab∂t − i(a0)ab) fb + 1
2m f †a (∂i − iQpAi − iai )

2
ab fb

Integrating out the partons yields an effectively Lagrangian

Leff =
εµνλ
4π tr

[
aµ∂νaλ + 2

3aµaνaλ
]

+~j ·~a + Terms that couple to ~A

So for a ν = 1/3 bilayer system we get a SU(3)1 × SU(3)1 CS theory:

L =
εµνλ
4π

∑
σ tr

[
Aσµ∂νA

σ
λ + 2

3A
σ
µA

σ
νA

σ
λ

]
+ jσ · Aσ
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Higgs transition

For sufficiently large t the system can be tuned through a Higgs transition

δHt = −tc†↑c↓ + h.c . = −t⊥(f1↑f2↑f3↑)†f1↓f2↓f3↓ + H.c .

= −t 1

3!

1

3!
εabcεa′b′c′

χaa′χbb′χcc′ with χij := f †i↑fj↓

�ij carries (+1) � SU(3)" � charge

�ij carries (�1) � SU(3)# � charge

�ij is charged under A" � A#
�ij is neutral under A" � A#

If 〈χij〉 6= 0 condenses A↑ − A↓ will turn into a massive gauge boson.

At low energies: ∝ (A↑ − A↓)2-term ≈ 0 ⇒ A := A↑ = A↓

L = 2
εµνλ

4π tr
[
Aµ∂νAλ + 2

3AµAνAλ

]

The low energy effective theory after the transition is a SU(3)2-CS theory.
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Higgs transition

Consequences:

• There is a continuous quantum phase transition between the
abelian 1/3-bilayer state and a non-abelian state described by a
SU(3)2-CS-Theory.

• The fusion rules on the thin torus coincide with those of the
quasiparticles in a SU(3)2-CS-Theory.
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