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Non-Interacting System

Single-Particle-Problem of Electrons in a Magnetic Field:

H= (_ijm:'f\)z with A= (—y,0)and i=c=e=B=1

Y
Geometry:  Cylinder @I

Spectrum:  E = (n+ 3) with n€ N

Ground State Wavefunction (n=1):
2mk —yo(k)?
). e~ itk k € Z and yo(k) = _am

Lx

Vi (x,y) x e’ (
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Many-Particle-Problem of Electrons in a Magnetic Field:
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Non-Interacting System

Many-Particle-Problem of Electrons in a Magnetic Field:

Y
Geometry:  Cylinder CDI

Many Body Ground State Wavefunction (n=1):

Number of Electrons

~

N,
AY

W) oo D an e k) @ ® [Ty,

ki,....kEn, ,4 t
] \
'I \‘
fully antisymmetrized | ..nN_1, Ng, N1 ... >

either 0 or 1
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Geometry:  Torus
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Geometry:  Torus

Single Particle Ground State Wavefunction (n=1):

(y=10(K)?

. 27
Wi, y) o 5, e (EEEM) = OOR gy 2n iy o)

Notice that k € Z/NsZ with Ng = L;iy the # of single particle states.

Many Body Picture:

0/1\
00101 > 10010 ~ | 0

1
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Interacting System

Introduce a perturbation s.th. %—Laughlin state is the exact GS!
V= [dx &y WI)WI(y)V(x - y)W(y)¥(x)

Insert a mode expansion:
Wi(x) =3, o Wi(x) with {c], e/} = drs
We find

— T
H= Zi Zr>s U,75C,-+5Ci+rCi+r+sCi-

Now choose V/(x) o« V24(x) as the " 3-Laughlin-Potential”:
o2 (r2+s2)
Us=(r?—s%)e "B
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Thin Torus Limit

Now assume that L, << g = 1. This is the Thin Torus Limit!

Most relevant are the Uy o- and U o-terms:
H =Y. Uio niniy1 + Uz g ninjyo with n; := c;fc,-.

Physically this limit means that the single-particle wavefunctions
V,(x,y) and W1 1(x, y) have hardly any overlap:

1
x —

‘W| LII?

|\Ij'm‘ ‘\Ilerl |
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Ground States in the Thin Torus Limit

Thin Torus Hamiltonian:
H~ Y. Uio niniy1 + Uz g ninjyo with n; := c;fc,-.
The ground state is threefold degenerate:

|GS;) = |100100100 - - - ) = [100]
|GS,) = 010010010 - - - ) = [010]
|GS3) = |001001001 - - - ) = [001]
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Excited States in the Thin Torus Limit

Place two ground states next to each other to generate an excited
state. The excitations are localized at the domain walls!
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Excited States in the Thin Torus Limit

Place two ground states next to each other to generate an excited
state. The excitations are localized at the domain walls!

(+€/3) — excitation ===, I (—e/3) — excitation

\ \
100100“010010“100100
A

<

Jo enerey cost! == ~
No energy cost! Energy cost = U = Bulk gap

What is the charge of the excitation?

6e¢"™100100100100100100 . )
=======Pp (— ) — charge at the domain wall!
7¢-—100011000110001100 3
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Excited States in the Thin Torus Limit

Place two ground states next to each other to generate an excited
state. The excitations are localized at the domain walls!

o (—e/3) — excitation

(+¢/3) 7cxcitaﬁ(>u--~* {
100100[010010[ 100100
A

<

Jo enerey cost! == ~
No energy cost! Energy cost = U = Bulk gap

What is the charge of the excitation?

6e¢"™100100100100100100 . )
=======Pp (— ) — charge at the domain wall!
7¢-—100011000110001100 3

|GS;) — ‘GS(,Jrk)mod 3> gives charge g = k5.
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Bilayer System

Consider the following v = %—bilayer system with interlayer-tunneling:

H= HT + Hi + H;
Ho =D ; U0 nighiti,e + Uag nignizas with o€ {1,1}
He=—t>; C,'TTCfi +h.c
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Consider the following v = %—bilayer system with interlayer-tunneling:
H= HT + Hi + H;

Ho =D ; U0 nighiti,e + Uag nignizas with o€ {1,1}
He=—t>; C,'TTCfi +h.c

Assumptions:

* No interlayer interactions (i.e. no terms o njnjy1),etc.)

e Only "vertical tunneling” (i.e. no term o< ciTTc;jLu,etc.)

e Intralayer interactions are of the same strength

Also note the global Z,-layer exchange symmetry (cip <+ ¢i|)!
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Weak tunneling limit (t < U, < U;)

H: is an irrelevant perturbation. So we have 2 decoupled layers.
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Weak tunneling limit (t < U, < U;)

H: is an irrelevant perturbation. So we have 2 decoupled layers.

Ground States: |GS); ; with i,j =1,2,3.

For example: { 100 ]

100
The Ground State degeneracy is 9!
Excited States: |GS; ;) — ’GS(iJrk)mod 37j> gives charge gy = k§

GSij) — ‘Gsi,(j+k)mod 3> gives charge q, = k3
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Strong tunneling limit (U, < U; < t)

We treat H4 + H as a perturbation to H;.
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Strong tunneling limit (U, < U; < t)

We treat H4 + H as a perturbation to H;.
Low-energy effective theory: H; is diagonal in the basis

Cittciy

Cit 1= = 5 at E=—t
i = C"T\};’i at E =+t
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Strong tunneling limit (U, < U; < t)

We treat H4 + H as a perturbation to H;.

Low-energy effective theory: H; is diagonal in the basis

Ci+ ::% at E=—t
ci— ::C"T;\ﬁc"l at E = +t

We drop the high-energy degrees of freedom ¢; _: ¢jz — ¢j +
Her = — Zi U170ﬁ,'ﬁ,'+1 + Uz,oﬁ,'ﬁ,urg with 7; == CI+Ci,+
This Hamiltonian describes the particle-hole conjugate of the

V= %—state, which is the v = %—state!
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Intermediate tunneling regime (U, < t < U;)

GSD =9 GSD =6 GSD =6 GSD =3
\ ' ¥
I i >

t=20 to

Zy — antisymmetrized (|A;))

~
-
%
.
2y — symmetric (|D;)) e 3
y ———— A7 - :
9 < - I
< - P
< o 1 Thick Torus
— - Ll
v

Zy — symmetrized  (|0;))
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Intermediate tunneling regime (U, < t < U;)

GSD =9 GSD =6 GSD =6 GSD =3
U { \
: : >1
t=20 to
Zy — antisymmetrized (|A;))
ol :
Z — symmetric (|D;)) e .
------ : ad ———— 3
9 < L
b W ::_ 1 Thick Torus

Z, — antisymmetric (|4) " T~~a__ - v 3 3

Zy — symmetrized  (|0;))

Note: Even for t < t. the states
100 010 001
are not effected by tunneling and split from the states {|A;)}.
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Intermediate tunneling regime (U, < t < U;)

The phase transition at t = t¢ is of Ising type!
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279 QOrder Perturbation theory: U is the dominant energy scale.

[ 100 | 010
Hiow = {\ 1= { 010 } = { 100 }} Only these states
{ { 110 } { 000 } } can be ”connected”
Hhigh = )

000 110 by vertical tunneling
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279 QOrder Perturbation theory: U is the dominant energy scale.

_ | 100 _ | 010
Hiow = {‘ n= { 010 } 1= { 100 }} Only these states
y - 110 000 can be? ’ connecte.td'

high = 000 | * | 110 by vertical tunneling
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279 QOrder Perturbation theory: U is the dominant energy scale.

_ | 100 _ | 010
Hiow = {‘ n= { 010 } 1= { 100 }} Only these states
Y 110 000 can be? ’ connecte.td'

high = 000 | * | 110 by vertical tunneling

HU1 |\UL0W> =0 , HU1 ‘\UHigh> =U |\UHigh>
Integrating out the high-energy deg. of freedom vyields to 2" order:

Hop = —J 3, S — 05,5252 +1,  J =412 /Ui,

16 of 29




Intermediate tunneling regime (U, < t < U;)

The phase transition at t = t¢ is of Ising type!

279 QOrder Perturbation theory: U is the dominant energy scale.

_ | 100 _ | 010
Hiow = {‘ n= { 010 } 1= { 100 }} Only these states
Y 110 000 can be? ’ connecte.td'

high = 000 | * | 110 by vertical tunneling

HU1 |\UL0W> =0 , HU1 ‘\UHigh> =U |\UHigh>
Integrating out the high-energy deg. of freedom vyields to 2" order:

Hop = —J 3, S — 05,5252 +1,  J =412 /Ui,
\T) + )
[, 1) . ="
: : >t
Ferromagnet Paramagnet
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Intermediate tunneling regime (U, < t < U;)

Ground States in the Thick Torus limit:
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Intermediate tunneling regime (U, < t < U;)

Ground States in the Thick Torus limit:

Zp-symmetric states:

[ 100 ]
| 100 |

D) =

Lo
[01) =
102) =

|03) =

17 of 29

-symm

[ 100 ]

010

[ 100 |

001
010
001

_|_

+

+

100

[ 001 ]

100

[ 001
| 010

= [200] 102} = |

etrized states:

[ 010

= [110]
= [101]

= [011]

o ] = [020] |D3) = [ o } = [002]



Intermediate tunneling regime (U, < t < U;)

Neutral excited states:
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Intermediate tunneling regime (U, < t < U;)

Neutral excited states:

To create an excitation with a (4€/3) charge in in one layer and a
(-e/3) in the other layer we need to place the following patterns next
to each other:

2
2
p

o= 011011011

<o
> 3
> <3

= 2200200200 -

(e}
[
[
(aw]
—
—
(ew]
[

-011011011++=»+--200200200 -~

18 of 29 _



Intermediate tunneling regime (U, < t < U;)

Neutral excited states:
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Intermediate tunneling regime (U, < t < U;)

Neutral excited states:

The patterns that create neutral excitations are encoded in an
Adjacency Matrix:

[200] [020] [002] [110] [101] [011]

01 0 0 0 O] [0
110 0 0 0o
A oo o0 1 0 ofon
=3B = 00 001 1 0 0] Mo
00 0 0 0 1|mnoy
0 0 0 0 1 1]

FaCt:iX_j:Zk(Ai)jkk = TX7=1+4T71
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Intermediate tunneling regime (U, < t < U;)

Overview of all excited states:
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Intermediate tunneling regime (U, < t < U;)

Overview of all excited states:

Label Charge (mod e) Topological Spin  Quantum Dim.

1 Vo 0 0 1
2 Vi 2e/3 1/3 1
3V e/3 1/3 1
4 T 0 +2/5 F
5 Wi 2e/3 1/3+2/5 F
6 \Vor e/3 1/3+2/5 F
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Method 2: The Parton Construction
Review of the Parton Construction
The Parton Construction for a Bilayer System
The Higgs Transition
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Parton Construction

Idea: Understanding the FHQE from the IQHE
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Parton Construction

Uses:

e The low-energy effective theory is a Chern Simons Theory
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Parton Construction

Uses:

e The low-energy effective theory is a Chern Simons Theory
e Finding Wavefunctions

Uy ({21(1)}) Wy— ({27(2)}) U, ({zfg)})
~ 11 (251) _ Z§1>) 11 (252’ - zj?)) 1} (2§3) _ Z;s))

i
¥,_1 ({z}) NH (zi — 2)°

1<J
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Parton Construction

Write the electron operator as ¢ = fif2f3 for (e/3)-partons f;.

24 of 29



Parton Construction

Write the electron operator as ¢ = fif2f3 for (e/3)-partons f;.
A single parton in a magnetic field generated by A is described by

L =i (o + 25 £ (8 — iQuA) fy

24 of 29



Parton Construction

Write the electron operator as ¢ = fif2f3 for (e/3)-partons f;.
A single parton in a magnetic field generated by A is described by

L =i (o + 25 £ (8 — iQuA) fy

Problem: The " Parton Hilbert Space” is bigger than the " Physical
Hilbert Space”

e.g. falvac) ¢ Hpnys.
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Parton Construction

Write the electron operator as ¢ = fif2f3 for (e/3)-partons f;.
A single parton in a magnetic field generated by A is described by
L= i foh,+ 5 £ (05— iQA) fy
Problem: The " Parton Hilbert Space” is bigger than the " Physical
Hilbert Space”
e.g. falvac) ¢ Hpnys.

To dismiss the "unphysical states” we implement a "gauge
constraint”.

24 of 29



Parton Construction

Step 1: Consider
fo = Wopfp with W e U(3)
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invariant!
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Parton Construction

Step 1: Consider
fo = Wopfp with W e U(3)

This type of transformation should leave the electron operator ¢
invariant!

¢ = Leeh fuf, s det(W) Leber,fyf.

So we require det(W) =1 and hence W € SU(3).

We want to construct a parton Lagrangian that is invariant under
SU(3) gauge transformations.
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Parton Construction

Step 2: Introduce some gauge field
au(x) € Lie(SU(3)) = Traceless Hermitian Matrices
and define a new theory

L= f; (5ab8t - i(ao)ab) fb + ﬁ f; (8, — iQpA; - ia,-)gb fb

26 of 29



Parton Construction

Step 2: Introduce some gauge field
au(x) € Lie(SU(3)) = Traceless Hermitian Matrices
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Integrating out the partons yields an effectively Lagrangian

Lo = E‘ijftr [auc'?l,aA + %aﬂayaA] +j_"- 3 + Terms that couple to A
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Parton Construction

Step 2: Introduce some gauge field
au(x) € Lie(SU(3)) = Traceless Hermitian Matrices
and define a new theory
L=if (820 — i(a0)ab) fo + o fa (3 — IQpA; — iai), o

Integrating out the partons yields an effectively Lagrangian

Letr = “”tr [aﬂc'? ay + aﬂayaA} —I-_] 3 + Terms that couple to A

So for a v = 1/3 bilayer system we get a SU(3)1 x SU(3)1 CS theory:

L="%25 tr[AT9,A + SATATAS] + jo - A°
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Higgs transition

For sufficiently large t the system can be tuned through a Higgs transition
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Higgs transition

For sufficiently large t the system can be tuned through a Higgs transition

OH, = —tc;ci + h.c. = —t-(frfarfar) i By By + Hec.

11 Lo
7€abc a'b'c
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11 Lo
7€abc a'b'c
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1 1 N . ]
=t g 3 e Wi = 16
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For sufficiently large t the system can be tuned through a Higgs transition

0He = —tcfey + h.c. = —tH(Arfarfar) Ay fo iy + H.c.

1 1 N . ]
=t g 3 e Wi = 16
Xij carries (+1) — SU(3)4 — charge Xij is charged under Ay — A

» .
Xij; carries (—1) — SU(3), — charge Xij is neutral under Ay + Ay
If (xij) # 0 condenses A — A will turn into a massive gauge boson.

At low energies: o (Ar — Ay)>-term ~ 0 = A:= Ay = A}

L= 294240 [A,0,Ax + 2AAA]
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Higgs transition

For sufficiently large t the system can be tuned through a Higgs transition

0He = —tcfey + h.c. = —tH(Arfarfar) Ay fo iy + H.c.

11 Lo
7€abc a'b'c

=—t 5 3l € Xaa’ Xbb' X cc’ with Xij = f}ﬂi

Xij carries (+1) — SU(3)4 — charge Xij is charged under Ay — A

» .
Xij carries (—1) — SU(3), — charge Xi; is neutral under A4 + A
If (xji) # 0 condenses Ay — A} will turn into a massive gauge boson.

At low energies: o (Ar — Ay)>-term ~ 0 = A:= Ay = A}
L=2%24r [A,0,A + SALALA)]

The low energy effective theory after the transition is a SU(3),-CS theory.
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Higgs transition

Consequences:
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Higgs transition

Consequences:

e There is a continuous quantum phase transition between the
abelian 1/3-bilayer state and a non-abelian state described by a
SU(3)2-CS-Theory.

28 of 29



Higgs transition

Consequences:

e There is a continuous quantum phase transition between the
abelian 1/3-bilayer state and a non-abelian state described by a
SU(3)2-CS-Theory.

e The fusion rules on the thin torus coincide with those of the
quasiparticles in a SU(3)2-CS-Theory.
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