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When interacting spin systems possess non-zero magnetization or topological entanglement en-
tropy below the transition temperature, they often serve as classical or quantum self-correcting
memory. In particular, their memory time grows exponentially in the system size due to polynomi-
ally growing energy barrier, as in the 2D Ising model and 4D Toric code. Here, we argue that this
is not always the case. We demonstrate that memory time of classical clock model (a generalization
of ferromagnet to g-state spins) may be polynomially long even when the system possesses finite
magnetization. This weak violation of the Arrhenius law occurs above the percolation temperature,
but below the transition temperature, a regime where excitation droplets percolate the entire lat-
tice, yet the system retains a finite magnetization. We present numerical evidences for polynomial
scaling as well as analytical argument showing that energy barrier is effectively suppressed and is
only logarithmically divergent. We also suggest an intriguing possibility of experimentally observing
the precession of magnetization vectors at experimentally relevant time scale.



Self-Correcting memories

 This paper considers self correcting memories

 Typically, these are interacting spin systems with a degenerate ground state
 Information (classical or guantum) is stored in the ground states

« System is then left for time t, subject to thermal errors

» System is then measured

* The final state is used to guess the initial state, and so retrieve stored info

« Lifetime of the memory is defined such that retrieval works with almost certainty when
(<t

« System is considered to be self-correcting when

T>O(L")



Energy Barrier

 This paper considers the relationship between the lifetime and the energy barrier

 This is defined using a set of single spin operators [Ut] such that
[[ulo=lt
* The energy after only the first T operations are applied is E .

[T ulo

* The energy barrier is the maximum energy during this process, minimized over all
processes
EBzmin{



Arrhenius Law

‘1'he memory time below
1. can be estimated roughly by

E
o (1) »

where Ep 1s an energy barrier between two degener-
ate ground states and 1 is the temperature. This pre-
dicts exponentially diverging memory time 7 ~ exp(L)
at low temperatures, and thus the Ising model is a self-
correcting memory. This empirical formula in Eq. 1s
often called the Arrhenius law and is widely used to pre-
dict time scales of stochastic processes such as chemical
reaction time.

* Energy barrier can be used to get a rough idea of the lifetime

« Entropy will also play a role, but the 'law' restricts to ordered systems to avoid
this

* A quick Google search suggests that it is only the author who uses this name
regularly



Example: Ising model

* Ising model has two state classical spins
« Hamiltonian wants nearest neighbours to align
« Two ground states, all up and all down, so can store a bit

1D Ising model

T=0(1) E,=0(1) 0000111000000011110000

« >1D Ising model: L lattice

E,=O(L) O's

magnetic order (T' < T,) = 7 ~exp(LP™1)
no order (1" >1,.) = 71 ~log(L)

where D > 1 is the spatial dimension. Indeed, the above
relations have been proven mathematically for D = 2
and confirmed for D = oo in the mean field model.




Clock models

» Generalization of Ising model to g-state classical spins
« Nearest neighbours want to align

* The more displaced they are, the more energy they pay

Clock model — The g-state clock model is a general-
ization of the Ising model to g-state spins. Spin values

sj = 0,---.qg — 1 may be associated with angular vari-
ables Qj — 2?”.5:,-. The Hamiltonian of the clock model

1S

H=-— Y cos(ti—b;) (2)

[i,7]en.n.

The sys-
tem has g degenerate ground states which are separated

by O(L) energy barrier. The total magnetization m and

the total angular value @ is given by me'? = flg— > M

where m; = €275 /4q.



Phase Transitions

* For g=2,3,4 there is a finite temperature phase transition

e m is finite for T<T,, but vanishes for T>T,

 For higher q there are two transitions

i Lo (a) low T (b) medium T (c) high T
* mis finite for T <T_ . DACRZAU
o o 0@ 0 b @@
* majority spin value percolates for Do O
L & @ 0\ A & @E disordered
T<T <T & 5P
Poe O N> D
« System is magnetically ordered P(s) PFS) P(s)
below T, so Arrhenius law would
seem to predict
TNeBEB —t—t—t—F— S —tt —t
. - -2 -1 0 +1 +2 ---- -2 -1 0 +1 42 ---- - -2 -1 0 +1 42 ----
for both the low and medium T

regimes

e |s this true?

FIG. 1: Static properties of the clock model. (a) Low temper-
ature phase. (b) Intermediate temperature phase. (c) High
temperature phase.



Lifetime for medium T

The plots can be fitted by straight lines,
implying that the memory time is indeed polynomially
diverging, with 7 o< L*.

100000 ]
I 6-state T=0.890 |
A 6-state T=0.710 ]
L Bstate T=0890 3K
A8 . E S-state T=0710 [ ] ]
10000 - A g 8-state T=0.530 4
AN XY model T=0.800 /]
A Ml ]
g FAN th *
= && oy *
£ 1000} A ul
£ A O x
o L\.A ﬁ A ¥
E FO X
+ E ¥¥
100} + O x
Lo
*
10 .
10 100 1000
length

FIG. 2: Memory time of the clock model and the XY model
versus length L in a log-log plot. All the temperatures are in
the intermediate regime.

e Lifetime increases quadratically, not exponentially

* Does this violate the law?

Estimates at

temperatures near T), all give z = 2.0 for ¢ > 6.

state g|temperature|exponent =z
3] T 21210
3 T 2.11(1)
5 0.950 1.92(1)
5 0.910 1.92(2)
6 0.890 2.11 (1)
6 0.710 2.00 (1)
8 0.890 2.13 (2)
8 0.710 2.07 (1)
8 0.530 2.04 (1)
8 0.430 1.98 (2)
12 0.890 2.61(5)
12 0.550 2.30(8)
12 0.200 1.99 (3)
00 0.800 1.96 (1)

TABLE I: Exponents of memory time for the clock model and

the XY model.



Energy Barriers 2

 To solve the apparent violation, energy barriers are redefined

e Rather than going ground state to ground state

0/ —]1] [Tulo=Nh

we consider going from a typical thermal state with one spin value in the majority,
to a state with another majority

Po™ Py medium T

 Lack of percolation means isolated clusters of size _U k—@

not greater than ~log(L)

» Energy barrier dominated by flipping the largest @
cluster 0 &
E,=0O(log L) O @ 0

* This is consistent with the lifetime result @)

r=e”"**"'=poly (L) 0\ 5 N @ﬂ-




XY model

* Infinite g corresponds to the XY model T Isingmodel T clockmodel(@>4) T XY model
. . time ~ O(1) time ~ O(1) time ~ O(1)
TP o O TC o O ( 1 ) no order no order no order
Te Qrmmmmmmmmnnmnnmnnn: Tc Qr=m=mmmmmmmmmmemen, Te Qrem=mmmmmmnmmmneean,
. T time ~ POLY(L)
* This also has poly(L) lifetime [ |
time ~ EXP(L)  Tp Grerremeeeremeesenes. time ~ POLY(L)
* However, m is only finite when q is magnetic order fime ~ EXP(L) no order
finite. It vanishes for finite T in the magnetic order
XY model
o FIG. 3: Time scales of the clock model. Shaded regions rep-
e S50 TNIS IS an exampie o1 a po resent phases with magne§ic order. The system possesses
So th ple of a poly(L) p g ystem p
I|fet|me in the absence Of Ol’der magnetic order and polynomially diverging (experimentally

relevant) time scale only for intermediate values of gq.



Conclusion

In summary, the following relations seem to hold:

magnetic order (T'<T,) = 7 > poly(L)
no order (1" >17,) = 71 <poly(L)

(3)

The ¢-state clock model (¢ > 5) and two-dimensional
XY model (¢ — oo) correspond to the equalities in the
above relations.

e Conclusion is that order seems to imply self-correction, though not always as
good as we'd like

 Disorder doesn't always imply that self-correction is impossible



Outlook

* Time evolution of spin occurs on experimentally relevant timescale
« Might be interesting to observe

» multiferroic hexagonal manganites could provide q=6
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FIG. 4: Time evolutions of magnetization and polarization
angle for 3 - 10 Monte-Carlo steps. Polarization angles are
converted into effective spin values 6 /27 modulo 6.



Thanks for your attention
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